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ABSTRACT 

Railway prestressed concrete sleepers often experience significant aggressive loading conditions 

and environmental effects. Especially in sharp curves, lateral loading of trains in combination with 

incompressible hydraulic pressure aggravates the lateral oscillation and abrade the surface of 

sleepers right underneath the rail seats. Many investigators in the past have proposed various 

material models to improve abrasive resistance characteristics but those have been mostly applied to 

the new products using novel materials such as fibre-reinforced concrete. However, prestressed 

concrete sleepers have been used for over 50 years and they have worn over time. This paper 

highlights the capacity evaluation of worn sleepers, which will lead to predictive models that could 

be realistically applied to operation management of railway lines. This paper presents an 

investigation into the structural capacity reduction in worn railway prestressed concrete sleepers. 

RESPONSE2000 has been used to evaluate the residual capacity based on the compression field 

theory. The study results exhibit the level of wear and tear, which is critical to the integrity of 

sleepers and is required for immediate replacement. The improved understanding from this paper 

will help update the practical maintenance issues in railway industry.  

Keywords: prestressed concrete, sleepers, abrasion, railseat abrasion, soffit abrasion. 

1. INTRODUCTION 

Railway sleepers (also called ‘railroad tie’ in North America) are a main part of railway track 

structures. Railway sleepers embedded in ballasted railway tracks are laid to support the rails. 

Notably, railway prestressed concrete sleepers have been used in railway industry for over 50 years 

(Kaewunruen and Remenikov 2006, 2007). The sleepers can be typically made of timber, concrete, 

steel or other engineered materials (Esveld 2001). Their key duty is to redistribute loads from the 

rails to the underlying ballast bed and to secure rail gauge and enable safe passages of rolling 

stocks.It is important to note that railway sleepers are a structural and safety-critical component in 

railway track systems (Fryba 1996, Gamage et.al. 2015, Kaewunruen and Remenikov 2009, 2013, 

Remenikov et.al. 2007, 2012). 
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Railway track structures often experience impact loading conditions due to wheel/rail interactions 

associated with abnormalities in either a wheel or a rail (Remennikov and Kaewunruen 2008). 

Generally, dynamic shock loading corresponds to the frequency range from 0 to 2000 Hz due to 

modern track vehicles. Wheel/rail irregularities induce high dynamic impact forces along the rails 

that may greatly exceed the static wheel load. In all cases, the impact forces are significantly 

dependent on the train speed. These impulses would occur repetitively during the roll. Loss of 

contact between wheel/rail, so-called “wheel fly”, will occur if the irregularity is large enough, or 

the speed is fast enough. However, the impact force could be simplified as a shock pulse acting 

after the static wheel load is removed.  

Previous work revealed that most of the numerical and analytical models employed the concept of 

beam on elastic foundation where a sleeper is laid on the elastic support, acting like a series of 

springs. In practice, the lateral force is less than 20% of vertical force and the anchorage of 

fastening has been designed to take care of lateral actions (Rahrovani 2016). In fact, field 

measurements suggest a diverse range of sleeper flexural behaviors, which are largely dependent on 

the support condition induced by ballast packing and tamping (Gustavson 2002, Kaewunruen and 

Remenikov 2007, 2008). However, it is still questionable at large whether modern ballast tamping 

process is effective and it could enable adequate symmetrical support for sleeper at railseat areas. 

Over time, ballast densification at railseats is induced by dynamic broadband behaviours and the 

sleeper mid-span comes into contact or is fully supported by ballast until the track geometry is 

restored by resurfacing activity (i.e. re-tamping) (Kaewunruen et.al. 2011). At railseat, the dynamic 

loading condition gives a high change that the bottom of sleeper (or called ‘soffit’) may experience 

aggressive abrasive force, wearing out the materials in the region.  

The critical literature review reveals that the dynamic behavior of railway sleepers has not been 

fully investigated, especially when the sleepers are deteriorated by excessive wears (Kaewunruen, 

and Remennikov 2008, 2010, Ngamkhanong 2017). Most common wears are railseat and soffit 

abrasion at railseat. These deterioration mechanisms can be observed in the fields. Although it is 

clear that the railway sleepers can experience dynamic lateral wears, such the aspect has never been 

fully investigated. This paper is the world first to investigate and present an advanced railway 

concrete sleeper modelling capable of parametric analysis into the effect of surface abrasion 

together with strain rate on the dynamic behaviors of railway sleepers. The emphasis of this study 

has been placed on the impact capacity of the crossties with abrasion. The improved understanding 

from this paper will help update the practical maintenance issues in railway industry. 

2. PREDICTION FOR ULTIMATE MOMENT CAPACITY 

2.1. Modified compression field theory 

In this study, the ultimate moment has been used to represent the capacity of prestressed concrete 

sleepers. The moment capacities are predicted by the modified compression field theory using 
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Response-2000 (Bentz 2000). This theory is capable of predicting the behaviour of reinforced 

concrete subjected to in-plane shear and normal stresses. The concrete stresses in principal 

directions along with prestressing steel are considered in only axial direction and uncracked portion 

will carry on to sustain a load in the analysis (Remennikov and Kaewunruen 2014). 

2.2. Effect of strain and loading rates 

Based on the assumption of perfect bond between prestressing wires and concrete, the strain rate 

plays an important role in material strengths. In this study, strain rate are varied to study the effect 

of strain rate to moment capacity under impact loading. The dynamic material properties of 

concrete and prestressing wires can be determined as follows (Wakui and Okuda 1999). 

Concrete: 

,

,
1.49 0.268 log 0.035 log                                                                                    (1) 

Prestreesing wires: 
,

,
10 . .

0.993                          (2) 

Where ,  is the dynamic upper yield point stress, ,  is the static upper yield point stress of 

prestressing wires (about 0.84 times proof stress), and  is the strain rate in tendon. 

3. MATERIAL PROPERTIES 

In this study, 2 positions of prestressed concrete sleepers, which are normal position and inverse 

position, are comsidered in order to evaluate the positive and negative ultimate moment capacities, 

respectively, as shown in Fig 1.   

 

a) 

 

b) 

Figure 1: Prestressed concrete sleepers in a) Normal position b) Inverse position 

3.1. Static  

The dimension and shape of prestressed concrete sleepers are shown in Figure 1.The high strength 

concrete was used with the design cylinder compressive strength of 55 MPa. The stress-strain curve 

of concrete derived by Vechio and Collin 1986 was used in this study, as shown in Figure 2. The 

22- prestressing steels used were the high ultimate strength with rupture ultimate strength of 1860 

MPa, as shown in Figure 2. The initial elastic modulus of prestressing steel was 20000 MPa. 
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(a) 
 

(b) 

Figure 2: Stress-strain curve of a) concrete b) steel 

3.2. Dynamic 

The prediction of moment capacity has been carried out using the data obtained from the previous 

experiments (Kaewunruen and Remennikov 2009, Li et.al. 2017, Ngamkhanong et.al. 2017). It 

should be noted that the average total duration of impact forces is about 4 ms. In this study, the 

strain rate of concrete is varied from 2 ms to 8 ms. It is well known that the dynamic ultimate strain 

of prestressing steel is about 20x103, and the total duration of impact force influencing the steel 

fibre is roughly from 6 ms to 12 ms. This is because the impact stress wave delays during the stress 

propagation and will be impeded through concrete (Wakui and Okuda 1999). The dynamic strength 

of materials can be obtained as the input for the sectional analysis using equation (1) and (2). The 4 

pairs of strain rates variations are used in this study, as shown in Table 1.  

Table 1: Strain rate variations under impact loading 

Material A B C D 

Concrete 2 4 6 8 

Prestressing wires 6 8 10 12 

4. RESULTS AND DISCUSSIONS 

Using the material properties from section 3, the ultimate moment capacities of worn prestressed 

concrete sleepers, which are railseat abrasion and soffit abrasion, under static loading and impact 

loading can be illustrated in this section. As for railseat abrasion, the depth of prestressed concrete 

sleepers is reduced by 10 cm, 20 cm, and 30 cm, respectively, at the top surface. In term of soffit 

abrasion, the depth is reduced by 15 cm, 30 cm, and 45 cm until the position of lowest layer of 

prestressing steel. It is assumed that the steel still locate in the bottom position. 

4.1. Static analysis 

Table 2 demonstrates ultimate moment capacities of worn prestressed concrete sleepers under static 

loading. It exhibits that railseat abrasions play a dominant role on positive moment capacity of the 

worn sleepers, whilst negative moment capacity does not have similar effects. Moreover, it can be 
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observed that soffit abrasion plays a little role on positive moment capacities of the worn sleepers. 

On the other hand, this mechanism can be a significant effect on negative moment capacity 

reduction.     

Table 2: Ultimate moment capacities of prestressed concrete sleepers under static loading 

Worn depth (cm) Recorded moment capacity (kNm) 

Railseat Soffit Positive Negative 

Full cross section 59.30 47.50 

10 0 52.50 47.40 

20 0 45.80 47.30 

30 0 39.40 47.00 

0 15 59.00 37.40 

0 30 58.50 28.10 

0 45 58.00 19.80 

4.2. Dynamic analysis 

Apart from effect from worn depth, 4 pairs of strain rate are taken into account based on perfect 

bond between prestressing wires and concrete. Table 3 shows the ultimate moment capacities of 

prestressed concrete sleepers under impact loading at different strain rate. 

 Table 3: Ultimate moment capacities of prestressed concrete sleepers under impact loading 

Worn depth (cm) 
Recorded moment capacity (kN-m) 

A B C D 

Railseat Soffit Positive Negative Positive Negative Positive Negative Positive Negative 

Full cross section 69.50 56.40 70.90 57.30 71.50 57.90 72.00 58.20 

10 0 62.30 56.10 63.30 57.10 64.00 57.60 64.40 58.00 

20 0 54.90 55.90 56.00 56.90 56.50 57.30 56.90 57.80 

30 0 47.90 55.70 48.80 56.80 49.30 57.10 49.70 57.50 

0 15 69.30 45.40 70.40 46.30 71.10 46.70 71.50 47.10 

0 30 68.80 35.30 69.90 36.00 70.60 36.40 71.00 36.70 

0 45 68.30 26.20 69.30 26.80 69.90 27.30 70.40 27.50 

In case of railseat abrasion, it can be observed that moment capacities of worn sleepers are about 

70% and 99% for normal and inverse position, respectively, of moment capacities of full 

cross-sectional area by 30 cm increasing in worn depth. As for soffit abrasion, about 98% and 60% 

of moment capacities in full cross-sectional area are observed when worn depth reaches 45 cm.   
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a) b) 

Figure 3: Ultimate moment capacity at different strain rates in a) positive b) negative 

As for strain rate, it can be seen from Figure 3 that strain rate also play a role in moment capacity in 

concrete sleepers. The moment capacity show an upward trend when the strain rates are increased 

with the same rate at any case of mechanisms. 

5. CONCLUSION 

This study is the world first to investigate the effect of surface abrasion on the impact capacity of 

railway prestressed concrete sleepers. It exhibits that the surface abrasion undermines strength and 

impact capacity of railway concrete sleepers. Based on a critical literature review, it can be seen that 

the degradation of railway concrete sleepers in dynamic analysis has not been considered in 

previous research work in open literature. In fact, the ballast angularity causes differential abrasions 

on the soffit or bottom surface of sleepers (especially at railseat zone). Furthermore, in sharp curves 

and rapid gradient change, longitudinal and lateral dynamics of rails increase the likelihood of 

railseat abrasions in concrete sleepers due to the unbalanced loading conditions. Therefore, it is 

essentially important for track and rail engineers to assure that the modification or retrofitting of 

concrete sleepers at construction sites is carried out in a proper manner. By the results obtained 

from these unprecedented studies, it is found that the soffit abrasion plays a critical role on negative 

moment capacity reduction. Moreover, the railseat abrasion can reduce the positive moment 

capacity of the sleepers. Also, strain rate play a role on the moment capacity under impact load 

especially when the strain rate is high. The insight into the impact behavior of the concrete sleepers 

with surface abrasion will enable safer built environments in railway corridor, especially for 

concrete sleepers whose structural inspection is very difficult in practice. 
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