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ABSTRACT 

Creep and shrinkage of railway prestressed concrete sleepers play vital role in serviceability 

performance required for safe and reliable operations of a railway line. The time-dependent effects 

depend largely on various environmental and loading condition factors. Many investigators in the 

past have proposed various material models to predict creep and shrinkage effects but those were 

mostly applied to general reinforced concrete members. In contrast, prestressed concrete design 

needs a suitable model for predicting the time dependent behaviour of prestressed concrete 

structures such as long span bridges, stadiums, silos and confined nuclear power plants, etc. This 

paper highlights the constitutive models, which have led to predictive models that could be 

realistically applied to prestressed concrete. This paper presents a critical review of creep and 

shrinkage effects on railway prestressed concrete sleepers. Three common design codes have been 

considered, including European Standard EUROCODE2, American Standard ACI and Australian 

Standard AS3600-2009. The study results show that EUROCODE2 and AS3600 are very coherent 

and consistent. The paper also highlights the construction and practical issues as a result of 

undesirable creep and shrinkage effects at different time frames.  

Keywords: railway, prestressed concrete, sleepers, creep, shrinkage. 

1. INTRODUCTION 

Development of railway transportation system is dramatically and continuously around the world. 

Train is the safest transportation which the accidents are the minimum in comparison to other 

transportations. Railway transportation is also very economic because of its large capacity, 

especially for heavy haul transportation. Nowadays, high-speed train is developed rapidly which 

becomes the best choice for long distance traffic due to the fact that train travels at high speed over 

long distance. In the environmental aspect, railway transportation has less carbon emissions than 

airplanes and road vehicles.  

Traditional ballasted railway structure consists of superstructure and substructure. The 

superstructure is made up of rails, fastening system, rail pads, and sleepers. The substructure 

consists of ballast, sub-ballast and formation. Railway sleepers are transverse beam located on 
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ballast used to support the rail and maintain rail gauge. Railway sleepers can be traditionally 

manufactured by timber, concrete, and steel. Nowadays, some new engineered materials can also be 

used to produce railway sleepers like rubber crumb. The use of new materials has improved 

efficiency of recycling of waste material. Furthermore, they also optimize structural functions. 

There are 3 types of sleepers commonly in use: monoblock sleeper, twinblock sleeper, and railblock. 

Monoblock sleeper is the most commonly used in the conventional track. It’s a one piece sleeper 

which may be manufactured from timber, concrete or steel. Twinblock sleeper consists of two 

concrete blocks tied together by a steel bar. Rail block is usually made of concrete or stone which 

supports a single rail (Taylor, H., 1993). Rail block is frequently used in the non-ballasted track. 

Most of the sleepers are currently produced by prestressed concrete which is the most commonly 

used type of sleepers. They play a vital role in track performance, behaviours and safety. Today, 

many prestressed concrete sleepers do not meet the intended design life. This can be attributed to 

the use of the railway system increases significantly. Therefore, previous prestressed concrete 

sleepers were not designed for durability and time-dependent performance of today’s high speed 

and heavy haul train traffic. A large number of prestressed concrete sleepers are in need of repair or 

complete replacement. This paper presents a critical review of creep and shrinkage effects on 

railway prestressed concrete sleepers. Three common design codes have been considered, including 

European Standard EUROCODE2, American Standard ACI and Australian Standard AS3600-2009. 

2. CREEP AND SHRINKAGE PREDICTION 

For prestressed concrete sleepers with 50 years design service life, the serviceability limit state 

becomes very important. The accurate prediction of creep and shrinkage of prestressed concrete 

sleepers becomes essential when considering the serviceability limit state. During the design of a 

sleeper, the engineer must estimate the long-term behaviour of the prestressed concrete sleepers. 

Because concrete is not a homogeneous material, the prediction of creep and shrinkage at the 

beginning of service life is very difficult. In addition, creep and shrinkage also continually change 

with time. Therefore, to accomplish an accurate estimation of long-term behaviour is very difficult 

and complex.  

2.1. Creep 

The concrete under load that strain increases with time is due to creep. Therefore, creep can be 

defined as the increase in strain under the sustained stress and it can be several times as large as the 

initial strain. Creep is a considerable factor in concrete structure (Neville, A. M, 1981).  

The deformation of concrete is different from other materials like steel. When a load is applied to 

steel, the deformation won’t change with time if the load is constant. Concrete deforms as soon as 

the load applied like steel. This is known as elastic deformation. However, the displacement of 

concrete gradually increases with time when the load left in place. The displacement reaches a value 

as large as three to four times of immediate elastic deformation. The inelastic deformation with 
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constant load is known as creep deformation. “Creep is defined as the increase of strain with time 

when the stress is held constant.” As the rule, creep increases when water/cement ratio increases or 

cement content increases. On the other hand, creep decreases when aggregate content increases in 

concrete mixture (Bhatt, P., 2011).  

2.1.1. Eurocode 2 

The total creep strain εcc (∞, t0) of concrete due to the constant compressive stress of 𝜎𝑐 applied at 

the concrete age of t0 is given by: 

                                                          (1) 

Where (∞,0) is the final creep coefficient, which the value of 𝜎𝑐 does not exceed 0.45fck (t0). Ec is the 

tangent modulus. 

                                                    (2) 

                                                   (3) 

                                                (4) 

 

                                                        (5) 

 

Where: RH = relative humidity in %, h0 = 2Ac/u mm, Ac = cross sectional area, u = perimeter of the 

member in contact with the atmosphere, S, R and N refer to different classes of cement. 

2.1.2. ACI 

According to ACI 209-92, the predicted parameter is creep coefficient  and the equation is 

given by: 

 

                                                      (6) 

 

where         is creep coefficient at any time t when a load applied at age t0.  
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 (days) and  are considered constants for a given member shape and size that 

define the time-ratio part. ACI-209R-92 recommends an average value of 10 and 

0.60 for  and  respectively.  

              is the ultimate creep coefficient. 

 

For the ultimate coefficient , the average value is given: 

 

According to ACI-209R-92, the creep coefficient  needs to be modified by correction factors. 

Therefore,  should be multiplied by six factors. 

                                                                 (7) 

                                                   (8) 

Where         = loading age coefficient 

              = ambient relative humidity coefficient 

              = the volume to surface ratio of the concrete section coefficient 

              = slump coefficient 

              = fine aggregate coefficient 

              = air content coefficient 

2.1.3. Australian Standard 3600-2009 

The creep coefficient at any time 𝜑𝑐𝑐 can be determined by: 

 

                                                            (9) 

 

Where 𝑘2 is the development of creep with time; 𝑘3 is the factor which depends on the age at first 

loading τ (in days); 𝑘4 is the factor which accounts for the environment; and 𝑘5 is the factor which 

accounts for the reduced influence of both relative and humidity and specimen size. 

For the development of creep with time  can be calculated by: 

                                                        (10) 

                                                        (11) 
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                                                                  (12) 

Where  is any time in days 

              is the hypothetical thickness 

              is the cross-sectional area of the member  

              is the portion of the section perimeter exposed to the atmosphere plus half the 

total perimeter of any voids contained within the section 

 

For factor   which depends on the age at first loading  can be shown as: 

                                                (13) 

 

For the factor  which accounts for the environment: 

 

 

 

 

 

For the factor  is given by: 

                                                    (14) 

                   (15) 

Where  

 

The basic creep coefficient  is shown table below: 

 

2.2. Shrinkage prediction 

Both of creep and shrinkage are influenced by the same parameters. Shrinkage is not an entirely 

reversible process like creep and it can be also influenced by relative humidity, surface exposed to 



EASEC-15 October 11-13, 2017, Xi’an, China 

6 

 

atmosphere, compressive strength of concrete and types of cement. Shrinkage can be divided by 

two parts (Bhatt, P., 2011): 

(1) Plastic shrinkage: it happens in few hours after concrete placed. 

(2) Dry shrinkage: evaporation leads to loss of water. 

According to, plastic shrinkage is due to water loss from concrete in plastic state. It could happen 

during the hydration process or water evaporation in environmental conditions. The factors lead to 

autogenous shrinkage is chemical reactions between water and cement known as hydration. There is 

not environmental influence such as temperature and moisture. Chemical reactions between carbon 

dioxide and the hydration products of cement leads to carbonation shrinkage. The carbonation 

chemical reaction equation is shown as (Haranki, B., 2009): 

 

The effects of shrinkage include environmental condition, material properties, curing method and 

mix proportion. According to ACI, shrinkage is related to ratio of volume and surface area which 

shrinkage is inversely proportional to ratio of volume and surface area: 

 

where V is volume and S is surface area 

2.2.1. Eurocode 2 

The total shrinkage strain 𝜀𝑐𝑠 can be given by: 

𝜀𝑐𝑠=𝜀𝑑𝑠+𝜀𝑎𝑠                                                                    (16) 

Where 𝜀𝑑𝑠 is drying shrinkage strain; and 𝜀𝑎𝑠 is autogenous shrinkage strain. 

2.2.2. ACI 

The shrinkage stain  at age of concrete t (days), predicted from the start of drying at tc can 

be calculated by: 

                                                      (17) 

 

 

Where         (in days) and  are considered constants for a given member shape and size 

that define the time-ratio factor 

              is ultimate shrinkage strain 
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              is the time between end of curing and any time after curing 

2.2.3. Australian Standard 3600-2009 

The total shrinkage strain 𝜀𝑐𝑠 is shown below: 

𝜀𝑐𝑠 = 𝜀𝑐𝑠𝑒 + 𝜀𝑐𝑠𝑑                                                                (18) 

Where 𝜀𝑐𝑠𝑒 is autogenous shrinkage strain; 𝜀𝑐𝑠𝑑 is drying shrinkage strain. 

 

The autogenous shrinkage 𝜀𝑐𝑠𝑒 is given by: 

                                                      (19) 

                                                (20) 

                                                        (21) 

Where 𝜀’𝑐𝑠𝑑.𝑏 depends on the quality of the local aggregates and may be taken as 800×10
−6

 for 

concrete supplied in Sydney and Brisbane, 900×10
−6 

in Melbourne and 1000×10
−6

 in elsewhere. 

The drying shrinkage strain 𝜀𝑐𝑠𝑑 after the beginning of drying (𝑡−𝜏𝑑) can be estimated: 

                                                                (22) 

Where 𝑘1 is the factor which describes the development of drying shrinkage with time; and 𝑘4 is the 

factor which accounts for the environment. 

3. CONCLUSIONS 

There are two main duties for railway prestressed concrete sleepers (or railroad ties) that must 

successfully perform: first, to carry wheel loads from the rails to the ground; and second, to secure 

rail gauge for dynamic safe movements of trains. In many cases, inappropriate design of the 

time-dependent behaviour of railway concrete sleepers due to their creep, shrinkage and elastic 

shortening responses of the materials affect significantly the rail gauge control. This paper 

highlights constitutive models of concrete materials within the railway sleepers under different 

environmental conditions over time. Comparison has been carried out among a variety of reputable 

methods to evaluate shortening effects in railway prestressed concrete sleepers. This insight will 

improve material design and structural restraints, which are very critical to the durability of railway 

track components. 
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