
 
 

University of Birmingham

Uncertainty Averse Pushing with Model Predictive
Path Integral Control
Arruda, Ermano; Jacob Mathew, Michael; Kopicki, Marek; Mistry, Michael; Azad, Morteza;
Wyatt, Jeremy
DOI:
10.1109/HUMANOIDS.2017.8246918

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Arruda, E, Jacob Mathew, M, Kopicki, M, Mistry, M, Azad, M & Wyatt, J 2017, Uncertainty Averse Pushing with
Model Predictive Path Integral Control. in Proceedings of 2017 IEEE-RAS International Conference on
Humanoid Robots (Humanoids 2017). IEEE Computer Society Press, pp. 497-502, 2017 IEEE-RAS International
Conference on Humanoid Robots (Humanoids 2017), Birmingham, United Kingdom, 15/11/17.
https://doi.org/10.1109/HUMANOIDS.2017.8246918

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 07. May. 2024

https://doi.org/10.1109/HUMANOIDS.2017.8246918
https://doi.org/10.1109/HUMANOIDS.2017.8246918
https://birmingham.elsevierpure.com/en/publications/42d2e0c6-6529-4948-ba37-7fa6d092bb10


Uncertainty Averse Pushing with
Model Predictive Path Integral Control

Ermano Arruda∗1, Michael J Mathew∗1, Marek Kopicki1, Michael Mistry2, Morteza Azad1 and Jeremy L Wyatt1

I. INTRODUCTION

Abstract— Planning robust robot manipulation requires good for-
ward models that enable robust plans to be found. This work shows how
to achieve this using a forward model learned from robot data to plan
push manipulations. We explore learning methods (Gaussian Process
Regression, and an Ensemble of Mixture Density Networks) that give
estimates of the uncertainty in their predictions. These learned models
are utilised by a model predictive path integral (MPPI) controller to
plan how to push the box to a goal location. The planner avoids regions
of high predictive uncertainty in the forward model. This includes both
inherent uncertainty in dynamics, and meta uncertainty due to limited
data. Thus, pushing tasks are completed in a robust fashion with respect
to estimated uncertainty in the forward model and without the need
of differentiable cost functions. We demonstrate the method on a real
robot, and show that learning can outperform physics simulation. Using
simulation, we also show the ability to plan uncertainty averse paths.

II. INTRODUCTION

Manipulating objects via non-prehensile actions, such as pushing,
is a well-known problem in robotics [6], [10]. Planning these push-
manipulations requires a forward model. There are many ways to
express and acquire such a model, from analytic mechanics to
machine learning, as well as hybrid techniques. There are several
open problems, of which we address two. First, push planning
typically does not take account of all the types of uncertainty in
the predictions of the forward model. Second, when using purely
learned models, push planning has only been demonstrated for
single pushes, not for complex push sequences. In this work we
present a combined solution to these problems.

Uncertainty in prediction comes from two sources. First, it can
arise from small variations in physical properties, such as shape and
friction, that are hard to measure, but which significantly alter action
effects. Second, in a learned forward model it can arise from a
paucity of data. In this paper, we use two different learning methods
to explicitly predict a distribution over push outcomes, including
both types of uncertainty.

When planning an action sequence the robot can take account
of regions of high uncertainty. This is important because actions in
uncertain regions of the state space can lead to unrecoverable states.
We model these as incurring a cost that rises with the uncertainty
predicted by the forward model. But, what push planner can we use?
The choice is complicated by the fact that the overall cost function
is typically not a differentiable function of the actions. In this case, a
path integral formulation [15], [28], [29] works well. We also utilise
re-planning each step to account for model inaccuracies. Thus, our

*Joint first authors.
We gratefully acknowledge support of the Commonwealth scholarship

by the British Council for Michael Mathew and a scholarship from the
Brazilian National Council for Scientific and Technological Development
(CNPq) for Ermano Arruda.

1School of Computer Science, University of Birmingham, B15 2TT, UK
(exa371,mjm522,msk,m.azad,jlw)@cs.bham.ac.uk

2Edinburgh Centre for Robotics, University of Edinburgh, Edinburgh,
EH8 9YL, UK mmistry@inf.ed.ac.uk

Fig. 1. A high-level diagram of the approach. The forward model is
acquired from data, and gives uncertainty in its predictions. The system is
the robot plus box and environment.

planner is a model predictive path integral (MPPI) controller that
performs uncertainty averse pushing.

The technical contributions of this work are: (i) applying ensem-
bles of MDNs and Gaussian Processes to learn uncertainty aware
forward models of push manipulation; (ii) using a learnt forward
model with model predictive path integral (MPPI) control to push
an object to a given goal pose with a many step plan; and (iii) two
algorithms for uncertainty averse push planning.

The paper is organised as follows. Section III reviews existing
work on push learning and planning. Section IV gives a brief
background on the elements of our approach. Section V explains
the problem formulation and algorithms. Section VI details the
experimental study. Finally, Section VII is a discussion.

III. RELATED WORK

A. Learning Models for Pushing

There are many approaches to modelling push effects based on
classical analytic mechanics [22]–[25]. These require modelling and
knowledge of parameters such as friction, mass, inertia, and centre
of gravity, of the manipulated object, manipulator, and other objects
in contact. Accurate identification of these parameters is hard. Even
if this is solved, approximations used in rigid body engines can
render poor predictions. An alternative is to learn a model from data
[1], [11], [18], [26], or to use a hybrid approach [3], [32]. Learning
methods divide into data-intensive and data-efficient methods.

Data-intensive methods, such as deep-learning, adopt self-
supervision for data collection, allowing the creation of large
datasets. In [1], for example, a siamese architecture learns a forward
and an inverse model for pushing. The forward model is used as
a regulariser for the inverse model. Limitations are the use of a
discrete action space and the lack of a representation of predictive
uncertainty. Finn et al [11] used an auto-encoder based forward
model that is used in a model predictive control schema to find
push actions based on image input. However, this model also lacks
knowledge of the predictive uncertainty and has only been shown
to achieve single step push manipulations. Pinto et al. [26], used



push models to improve grasp performance through pushing. Again,
predictive uncertainty in the learnt models was not explored.

There are also data-efficient approaches to learning push effects
[2], [18], [19]. These models typically use hand-crafted features,
and have not yet been used for push planning. They do, however,
represent uncertainty in the outcome, including, in [2], the ability
to predict meta-uncertainty due to a lack of data.

B. Estimating Predictive Uncertainty

The ability to predict both uncertainty in dynamics and meta-
uncertainty in this dynamics model is useful for robot planning [8].
Policy search method PILCO [8] utilises Gaussian Processes (GPs)
[29]. GPs, however, scale poorly with the amount of training data.
Representations such as Gaussian Mixture Regression scale better
and can estimate dynamic uncertainty, but not the meta uncertainty
[7]. A neural network approach to representing uncertainty in
dynamics is to learn the parameters of a mixture density. This is
termed an mixture density network (MDN). This can be extended
to add meta-uncertainty due to a lack of data in various ways. One
way is to use dropout [12]. Another way is to use an ensemble of
MDNs and adversarial training [20]. We use this latter approach.

C. Path Integral Applications for Control

Stochastic optimal control (SOC) deals with both uncertainty in
the action and sensor models, and the resultant state uncertainty. The
sequence of control commands is found by minimising an integral
of individual step costs (called the running cost) along a given
trajectory. The SOC problem is defined by a Hamilton-Bellman-
Jacobi (HJB) partial differential equation (PDE) corresponding to
the system to be controlled. This can be solved numerically back-
wards in time, given the system’s initial and target configurations
[15]. This is straightforward for linear systems with quadratic costs
[21], but non-trivial for non-linear systems.

However, by using the Feynman-Kac theorem, a non-linear HJB
can be converted into a linear PDE, which can be solved via forward
sampling of trajectories [15], [28]. This formulation can cope with
arbitrary state costs that need not be differentiable, and is applicable
to a wide range of non-linear systems. Recently, researchers have
explored its benefits for robot control [29]–[31]. We make use of the
path integral framework. Specifically, we apply the model predictive
path integral control algorithm proposed by [29].

IV. PRELIMINARIES

Classical optimal control deals with finding a set of control
actions that solves the problem (typically deterministic systems) and
is optimal with respect to a cost function. The general framework
is to design an agent as an automaton that seeks to minimise
a cost function for a fixed or varying time horizon [16]. There
are typically two methods to solve an optimal control problem.
They are the HJB formulation (finding a solution using dynamic
programming) and the second is by using Pontryagin’s Minimum
Principle (PMP) (finding a solution to the ordinary differential
equations formed) [17]. These formulations are typically interested
in finding a globally optimal solution.

In this paper we define a trajectory as being a sequence of states
xt, actions ut and associated uncertainty σ̂t,n at time step t. Thus,
let st,n be a convenient tuple, such that st,n = (xt,n,ut,n, σ̂t,n).
Then, using n to index a trajectory and i to index a discrete
timestep, the optimal control problem is cast by defining a cost
function for a trajectory n starting from timestep i until T , i.e.

τi,n = [si,n, si+1,n, si+2,n, ..., sT,n]:

Si = S(τi,n) = φT (xT ) +

T−1∑
t=i

rt(xt,ut, σ̂t) (1)

where, rt is the immediate cost function and φT is the final cost
function. The aim is to find a policy that minimises the above cost
function. The value function for a state is defined as the minimum
cumulative cost the agent can obtain from a state, if it proceeds
optimally from that state to the goal. The value function for a state
xi can be defined as:

V (xi) = min
ui:T

E[Si] (2)

At any state xi, the aim is to find a set of control commands
or actions u = (ui, ...uT ) that would minimise the expected
cumulative cost from that state. Note that in Eq 2 the expectation
is taken over all possible paths (i.e. trajectories) and thus the index
n is dropped for convenience.

V. APPROACH

We now describe the proposed uncertainty averse push planner,
which comprises two parts. First, an uncertainty calibrated forward
model is learnt with data collected from a variety of pushes. Second,
using the learnt model, we formalise our planning problem as Model
Predictive Path Integral control (MPPI) and detail our planning
algorithm. Later we describe another path integral based approach
to find a low cost trajectory that can be followed by using the MPPI
controller.

A. Forward Models with Predictive Uncertainty

There are various ways to capture uncertainty in predictions.
Gaussian Processes, for example, provide an effective and theo-
retically clean tool to make uncertainty aware predictions [27]. The
main problem with Gaussian processes (GPs) is their inability to
scale to high dimensional spaces or large data sets. We therefore
also utilise an ensemble of mixture density networks (E-MDN).

Arbitrary densities can also be learnt via gradient descent with
Mixture Density Networks (MDNs) [4]. In such models, if we
choose the mixture components to be Gaussian, the network outputs
the parameters of a Gaussian mixture model conditioned on a
suitable choice of input vector h ∈ Rn, thus modelling arbitrary
multi-modal densities as defined in equation 3.

pθ(xt+1|h; θ) =

K∑
k=1

πk(h; θ)N (xt+1|µk(h; θ), σ2
k(h; θ)), (3)

where πk(h; θ), µk(h; θ) and σk(h; θ) are the network outputs
which form the parameters of the mixture. In order to make
sure the network outputs valid parameters for the mixture, Bishop
[4] suggests using a softmax layer to represent πk, such that∑K
k=1 πk(h; θ) = 1, whereas an exponential layer is able to

guarantee that σk is positive definite, and finally µk can be a linear
combination of hyperbolic tangent activation functions. The reader
is encouraged to refer to Bishop [4] and Graves [13] for further
details on practical considerations in implementing MDNs.

Concretely, for learning a forward model, we define h = [xt,ut],
where xt is the state at time step t, (position and orientation of the
box on the plane) xt = [xt, yt, θt], and ut is the action taken at
that time, encoded as a direction vector [pxt, pyt] and a single real
value at, normalised between zero and one, indicating the contact
location on the box edge, i.e. ut = [pxt, pyt, at] (all quantities are
given in the object frame). Furthermore, as has been demonstrated



by [20], one can form an ensemble of such models so as to estimate
the uncertainty of the forward model’s predictive distribution. If
an ensemble is composed of M members, the final model can be
written as:

p(xt+1|xt,ut) =
1

M

M∑
m=1

pθm(xt+1|xt,ut; θm) (4)

The statistics of interest that we compute from the ensemble
are the mean prediction and the variance, which, when trained
accordingly, can reflect the predictive uncertainty of the model [20],
and are given by:

µ̂ =
1

M

M∑
m=1

µθm (5)

σ̂2 =
1

M

M∑
m=1

(σ2
θm + µ2

θm)− µ̂2 (6)

Thus, the predictive uncertainty we refer throughout this paper
represents both inherent uncertainty in dynamics, and meta uncer-
tainty due to lack of data, as given by 6.

B. Uncertainty Averse Model Predictive Path Integral Control

Once we have a forward model, we need a way to use this model
to find the right sequence of push commands to move the object
to the goal. When solving a task, it is easier to exploit the already
known part of the state-action space rather than exploring new parts.
This suggests moving through more certain regions of the state-
action space. We use the path integral based approach to model
predictive control in [29].

The path integral formulation for stochastic optimal control
permits one to find policy updates by calculating expectations over
trajectory roll outs [28]. It provides an alternative to directly solving
the non-linear HJB equation via backward integration, and allows
one to find the command updates that minimise the cost-to-go in
Eq 7 as a weighted average over N forward sampled trajectories.

S(τi,n) = φ(xT ) +

T−1∑
t=i

r(xt,ut, σ̂t), (7)

Given the cost-to-go in Eq 7, one wants to find the optimal action
sequence as

∗
u = arg minuE[Si]. Note that in this work the cost

is also a function of the predictive uncertainty σ̂t, in addition to
the state xt ∈ Rn and controls ut ∈ Rm. The importance of each
nth sample is given by a weight, defined as the exponential of the
cost-to-go S(τi,n), which is given by:

wi,n =
exp(− 1

λ
S(τi,n))∑N

l=1 exp(−
1
λ
S(τi,l))

(8)

where λ can be seen as the temperature parameter for the softmax
distribution in Eq 8 and affects the control update given by Eq 9.

∆ui =

N∑
n=0

wi,nδui,n(η) (9)

Thus, the control command updates are calculated as an expecta-
tion, or weighted average, over sampled control disturbances δui,n
with weights equal to wi,n. Here, control disturbances are in a
similar manner to that defined in [29]. However, we introduce an
exploration decay parameter η, i.e.

δui,n(η) = η
1
√
ρ

ε√
∆t

, (10)

where ∆t is the time step magnitude, with ε ∼ N (0, I), which
has same dimensionality as the control actions ut ∈ Rm. The
parameter ρ can be seen as a constant responsible for controlling
the magnitude or level of exploration of the sampled disturbances
δui,n, whereas a suitable exploration decay schedule for η helps
to ensure local convergence even when the number N of sampled
trajectories is small. In all experiments presented in this paper η
is always initialised as η = 1.0 and geometrically decays over a
chosen number of decay steps L as detailed in Algorithm 1.

By using a model predictive approach we are able to incorporate
feedback into the system. At each state a look-ahead window of
T time steps is used, starting at time step i. Then the first control
command of the T steps is executed on the robot. After this first
push, the new state is fed back into the optimiser and the process
is repeated till task convergence.

The immediate cost function used in our formulation is

r(xi,ui, σ̂i) = γ ∗ σ̂i + (xi − xgoal)
TQ(xi − xgoal) + uTi Rui,

(11)
and the final cost is given by

φ(xT ) = (xT − xgoal)
TQ(xT − xgoal) (12)

By adding the σ̂ term in equation 11, the samples that pass
through an uncertain region are penalized more and hence would
contribute less to the control update in equation 9. Throughout the
remainder of the paper, the state of the object to be pushed is defined
by its position and orientation on the plane under the quasi-static
assumption, subject to only planar motion, i.e. xi = [xi, yi, θi].

C. An Alternative Approach to Uncertainty Averse Planning

The performance of MPPI for uncertainty averse planning de-
pends on the cost function defined. The challenge of the cost
function defined in equation 7 is to optimise the trade off between
Q and γ.

There is a different approach that involves decoupling goal
finding and uncertainty reduction. First, a simple path is defined
from start to goal. Then the learnt forward model can be used to
find a low uncertainty variation of this path. Finally, this can be
given to the model predictive controller to follow. The decoupling
of the uncertainty cost and the final goal cost gives a significant
improvement in performance. We propose a path integral based
approach to find a low cost trajectory in the state-action space
that can then be followed by the MPPI. The formulation derives
inspiration from the STOMP planner [14], though our formulation
uses a different cost function and improvement equations. Apart
from finding a low cost trajectory, kinematic constraints are imposed
on the optimisation problem to find paths within the workspace of
the system.

The problem of finding a low uncertainty trajectory can be
formulated as:

Minimise: S(τi,n) = α

T∑
i=0

σ̂i

Subject to state constraints: xmin ≤ x ≤ xmax

(13)

where, for a state x at time i the uncertainty predicted is σi and
α is a positive constant. The uncertainty for each point in the heat-
map is estimated via Monte Carlo sampling. Thus, by iterating over
a subset of states (e.g. states on a grid) and random actions for each
state, the average uncertainty is estimated using the learnt forward
model with Eq 6 for each state. With this uncertainty heat-map,



Algorithm 1 The modified MPPI algorithm with exploration decay,
a modification of the the original algorithm proposed by [29] that
uses an uncertainty calibrated forward model (Eq 5 and 6)

Given:
N: Number of samples;
T: Number of timesteps;
L: Number of decay steps;
(u1,u2, ...,uT ): Initial action sequence;
ηinit: Initial η, for exploration decay, Eq 10;
∆t,xinit, µ̂(·, ·), σ̂(·, ·): System sampling dynamics;
φ, r,R,Q, λ, γ: Cost parameters;
uinit: Value to initialise new controls to;

while task not completed do
η = ηinit
for l = 0 to L do

for n = 1 to N do
x0 = xinit
σ̂0 = σ̂(x0,0) (given by Eq 6)
for i = 1 to T − 1 do

xi+1 = µ̂(xi,ui + δui,n(η)) (given by Eq 5)
ˆσi+1 = σ̂(xi,ui + δui,n(η)) (given by Eq 6)

S(τi+1,n) = S(τi,n) + r(xi,ui, σ̂i)
end for
S(τT,n) = φ(xT)

end for
for i = 1 to T do

ui = ui + ∆ui (with ∆ui given by Eq 9)
end for
η = 0.99η (exploration decay)

end for
send control command(u0)
for i = 1 to T − 1 do

ui = ui+1

end for
uT−1 = uinit
Update current state
Check task completion

end while

Algorithm 2 starts with a initial trajectory leading from start to
goal. This could be simple linear interpolation from start to goal.
If the total number of states in this interpolation is T , then the
optimisation is performed for states from 1 to T − 1, thus ensuring
the path continues to reach the goal from the start. The initial
trajectory is improved iteratively by usinq Eq 8 for the cost defined
in Eq 13. The iterative update is defined by:

∆xi =

N∑
n=0

wi,nδxi,n (14)

VI. EXPERIMENTS

Experiments 1 and 2 described below validate the fundamental
ability to push objects to a goal location using E-MDN as the
learnt forward model on a real robot (Baxter), without considering
uncertainty in the cost function. Experiments 3 and 4 demonstrate
in simulation that the same approach is able to find uncertainty
averse trajectories for pushing an object to a given goal. For the
experiments in the real robot, we found that uncertainty averse
pushes achieved in simulation were sometimes hard to reproduce

Algorithm 2 Algorithm 2 optimises a trajectory with respect to
model predictive uncertainty. The output of the algorithm is a
trajectory with low uncertainty cost which can be tracked by a push
controller, in this work we use the Model Predictive Path Integral
Controller for following the pushing trajectory.

Given:
N: Number of samples;
T: Number of time steps;
f(x,u): Learnt forward dynamics;
ε: Threshold of cost change;
τ : (x0,x2, ...,xT−1);
α: positive constant multiplier to cost;
while S ≥ ε do

for n = 0 to N do
for i = 1 to T − 1 do

δxi,n ∼ N (0, I)
xi,n = xi + δxi,n
Enforce state constraints(xn,i)
S(τi+1,n) = S(τi,n) + α

T
σ̂i

end for
end for
for i = 1 to T − 1 do

xi = xi + ∆xi (with ∆xi given by Eq 14)
Enforce state constraints(xi)

end for
end while

on the Baxter platform due to kinematic limitations of the robot, i.e.
the inverse kinematic solver sometimes failed to find solutions for
planned pushes. Thus, general pushing is shown on the real robot,
whereas uncertainty averse pushing (which requires using a much
larger workspace) is demonstrated in simulation only. We now pro-
ceed to describe the experiments in the real robot. Finally, we will
describe the simulation experiments that demonstrate uncertainty
averse pushing.1

A. Experiment 1:

In this experiment we trained the E-MDN model on a set of 326
pushes, gathered from the Baxter robot 2. The E-MDN utilised had
M = 10 members in the ensemble, each member being an MDN
with 3 hidden layers with 20 neurons per layer. The number of
mixtures in each MDN was chosen to be K = 1 for simplicity.
The model was trained for 3000 epochs with stochastic gradient
descent using the Adam [9] optimiser. We utilised batch size 5
and the learning rate was 0.001. Following the training protocol
described by [20], we used 0.005 as the adversarial coefficient for
generating adversarial examples for training. Figure 2(a) and (b)
shows the predictions given by the trained E-MDN model and the
GP model respectively.

To show that uncertainty rises when the amount of available data
is limited we also gathered data from randomised pushes in Box-2D
[5]. Then we lesioned the data for various parts of the state space,
and trained the E-MDN model. The uncertainty should be higher
in the lesioned parts of space, and this is what we see in Figure 4,
in which the average uncertainty for a given state was obtained via

1See video summarising the proposed approach and experiments:
https://youtu.be/LjYruxwxkPM

2see data collection setup, in which the robot applies random pushes to
the object and periodically restarts the box to an initial location: https:
//youtu.be/pRDvkDkCSTQ

https://youtu.be/LjYruxwxkPM
https://youtu.be/pRDvkDkCSTQ
https://youtu.be/pRDvkDkCSTQ


Fig. 2. (a) Predictions of the E-MDN. (b) Predictions of the GP. The top
row shows predicted X displacement. The middle shows Y displacement.
Theta shows the change in orientation. The red dots illustrate the true delta,
the green dots show the prediction on the training set. The blue dots show
the prediction on a test set generated from a distribution having same mean
and covariance as the training set.

Treatment Starting pose Initial cost Final cost Steps
MPPI-Box2D Pose 1 0.800 0.112 13
MPPI-E-MDN Pose 1 0.795 0.057 8

MPPI-GP Pose 1 0.764 0.255 12
MPPI-Box2D Pose 2 0.766 0.097 12
MPPI-E-MDN Pose 2 0.768 0.079 8

MPPI-GP Pose 2 0.729 0.072 9

TABLE I
THE COST IS A WEIGHTED AVERAGE OF THE POSITION ERROR (METRES)

AND ORIENTATION ERROR (RADIANS).

marginalisation over the action space at the given state (average
uncertainty for a given box state x was calculated using Monte-
Carlo action samples).

B. Experiment 2:

We performed experiments with the real robot, using the MPPI
planner to plan with the learnt models from Experiment 1, and also
with a physics simulator suitable for planar pushing called Box-2D
[5]. We use this to investigate whether the push planning framework
can be combined with a variety of forward models to achieve many-
step push manipulations. Some push sequences are visualised in
Figure 3. These show that both learning methods terminate with
positions close to, but not at, the goal, in terms of both orientation
and position. Table I shows that both substantially reduce the cost
in paired trials, and that there is no clear difference in performance
between the different predictors underpinning MPPI. The cost pa-
rameters for the MPPI were chosen to be Q = diag(1.5, 1.5, 0.01),
γ = 0, R = 0. The optimisation horizon was set to T = 2 and the
number of sampled trajectory rollouts was chosen to be N = 150,
L = 20, with h = 1, ρ = 1.0, and ∆t = 0.05.

C. Experiment 3:

Utilising Algorithm 1, together with the cost function defined by
Equation 11 set to penalise uncertainty for 150 pushes, and having
the uncertainty penalty switched off there after. The aim of this
experiment was to show in simulation that, with the right trade-off
between the goal and the uncertainty gains, a box can be pushed to a
desired location while avoiding regions with high uncertainty. The
E-MDN was trained with 261 pushes collected from simulation.
The parameters of the model were M = 10, in which each MDN

Fig. 3. Push sequences from two positions with MPPI. The first row
contains results for Box2D (a and b), the second row contains the results
for E-MDN (c and d) and the third row contains results for GP (e and f).
Red frames show the starting and intermediate positions, the blue frame
shows the goal. In figures a and c the goal has the same orientation as but
different position from the initial box pose, whereas in b and d the goal is
orientated 90 degrees anti-clockwise with respect to the initial box pose. In
our experiments MPPI-E-MDN reached the goal with fewer pushes.

member of the ensemble had a single hidden layer with 25 units, and
the number of mixtures was set to K = 1. The MPPI parameters
were set to Q = diag(0.5, 0.5, 0.5), h = 2.0, ρ = 2.0, T = 2,
∆t = 0.05, N = 10, L = 0 (exploration decay not utilised) and
the uncertainty penalty was set to γ = 115 for 150 pushes, and
then γ = 0 afterwards. The results for this first experiment are
shown by Figures 5 (a) and (b), in which two distinct trajectories
are obtained as a result of either penalising or not penalising for
model uncertainty.

D. Experiment 4:

Finally, this experiment makes use of Algorithm 2, which per-
forms optimisation to find a low uncertainty cost trajectory first.
This low uncertainty cost trajectory is then followed by Algorithm 1
push controller, but this time, we do not need to penalise uncertainty
in its running cost, since the trajectory has already been optimised
for that. The results for this experiment are shown in Fig 6.

VII. DISCUSSION

A push planning approach that uses a learnt forward model
is presented. The push planner is also capable of taking into
account the reliability of the learnt model. Initially we showed
how a learnt forward model can be used by a real robot to push
the object to a target location using the MPPI approach. Later,
we showed the modification to this basic MPPI to accommodate
predictive uncertainty in two ways. In the first algorithm the
uncertainty is directly inserted into the MPPI cost function. In
the second formulation, a trajectory that is uncertainty averse
is pre-computed using a path-integral update (Algorithm 2) and



Fig. 4. Simulated data collected from random pushes in Box2D and then
lesioned in different ways (left). On the right are the corresponding heat
maps depicting forward model model predictive uncertainty in different
regions of the state space (right). Starting locations are shown as green
crosses, positions after pushes are shown as red crosses.

Fig. 5. Uncertainty averse pushing (Algorithm 1). The top and bottom grey
rectangles depict the start and goal locations, respectively. Dashed boxes in
black show sub-sampled box locations along the trajectory in white. In
simulation the box is pushed at its CoR, so it will not rotate. (a) Without
an uncertainty penalty, the box follows a straight line towards the target.
(b) Penalizing uncertainty, the box avoids it. The heuristic cost is defined
such that uncertainty acts as a penalty for 150 pushes, and is set to zero
afterwards (γ = 0). For this experiment γ = 115, Q = diag(0.5, 0.5, 0.5),
h = 2.0, ρ = 2.0, T = 2, ∆t = 0.05, N = 10, L = 0. As before, the
multi-coloured lines are forward sampled trajectories from the current box
state, and the circle radius represents current uncertainty in dynamics.

6. Uncertainty averse pushing
(Algorithm 2). The red dots are
the way-points to be followed and
are generated by Algorithm 2. Al-
gorithm 1 then attempts to follow
these, producing the actual trajectory
(white line). Forward sampled tra-
jectories from the current box state
are shown as multi-coloured lines,
and the circle radius represents cur-
rent region uncertainty.

MPPI (Algorithm 1) is used to follow it. We have shown that
both algorithms exhibit the desired behaviour subject to tuning.
In addition we have created the data gathering framework on a
Baxter robot, and shown that E-MDNs and GPs produce very
similar estimates of model uncertainty for real data. Experiments
showed that Algorithm 1 works on the real robot, and that either
one or both learning methods outpeformed a physics simulator,
when used as the forward model for planning.

REFERENCES

[1] P Agrawal, A Nair, P Abbeel, J Malik, and S Levine. Learning to poke
by poking: Experiential learning of intuitive physics. CoRR-2016.

[2] M Bauza and A Rodriguez. A probabilistic data-driven model for
planar pushing. In Proc. of IEEE, ICRA-2017.

[3] D Belter, M Kopicki, S Zurek, and J Wyatt. Kinematically optimised
predictions of object motion. In Proc. of the IEEE, IROS-2014.

[4] C M Bishop. Mixture density networks. Technical report, 1994.
[5] Erin Catto. Box2D: A 2D physics engine for games, 2011.
[6] A Cosgun, T Hermans, V Emeli, and M Stilman. Push planning for

object placement on cluttered table surfaces. In Proc. of the IEEE,
IROS- 2011.

[7] B Da Silva, G Konidaris, and A Barto. Learning parameterized skills.
arXiv preprint arXiv:1206.6398, 2012.

[8] M Deisenroth and C E Rasmussen. PILCO: A model-based and data-
efficient approach to policy search. In ICML-2011.

[9] D Kingma and J Ba. Adam: A method for stochastic optimization.
CoRR-2014.

[10] M Dogar and S Srinivasa. A framework for push-grasping in clutter.
Robotics: Science and Systems VII, 2011.

[11] C Finn, I J. Goodfellow, and S Levine. Unsupervised learning for
physical interaction through video prediction. CoRR-2016.

[12] Y Gal and Z Ghahramani. Dropout as a Bayesian approximation:
Representing model uncertainty in deep learning. In ICML-2016.

[13] A Graves. Generating sequences with recurrent neural networks.
CoRR-2013.

[14] M Kalakrishnan, S Chitta, E Theodorou, P Pastor, and S Schaal.
Stomp: Stochastic trajectory optimization for motion planning. In
Proc. of the IEEE, ICRA-2011.

[15] H J Kappen. Path integrals and symmetry breaking for optimal control
theory. Journal of Statistical Mechanics: theory and experiment, 2005.

[16] H J Kappen. Optimal control theory and the linear Bellman equation.
2011.

[17] D E Kirk. Optimal control theory: an introduction. Courier Corpora-
tion, 2012.

[18] M Kopicki, S Zurek, R Stolkin, T Moerwald, and J L. Wyatt. Learning
modular and transferable forward models of the motions of push
manipulated objects. Autonomous Robots-2016.

[19] M Kopicki, S Zurek, R Stolkin, T Mörwald, and J L Wyatt. Learning
to predict how rigid objects behave under simple manipulation. In
Proc. of the IEEE, ICRA-2011.

[20] B Lakshminarayanan, A Pritzel, and C Blundell. Simple and scalable
predictive uncertainty estimation using deep ensembles. arXiv preprint
arXiv:1612.01474, 2016.

[21] W Li and E Todorov. Iterative linear quadratic regulator design for
nonlinear biological movement systems. In ICINCO-2004.

[22] K Lynch. The mechanics of fine manipulation by pushing. In Proc.
of the IEEE, ICRA-1992.

[23] M T Mason. Manipulator grasping and pushing operations. PhD
thesis, MIT, 1982.

[24] M T Mason. Mechanics of robotic manipulation. MIT press, 2001.
[25] M A Peshkin and A C Sanderson. The motion of a pushed, sliding

workpiece.
[26] L Pinto and A Gupta. Learning to push by grasping: Using multiple

tasks for effective learning. CoRR-2016.
[27] C Rasmussen, E. Gaussian processes for machine learning. 2006.
[28] E Theodorou, J Buchli, and S Schaal. A generalized path integral

control approach to reinforcement learning. JMLR-2010.
[29] G Williams, A Aldrich, and E Theodorou. Model predictive path

integral control using covariance variable importance sampling. arXiv
preprint arXiv:1509.01149, 2015.

[30] G Williams, P Drews, B Goldfain, J M Rehg, and E A Theodorou.
Aggressive driving with model predictive path integral control. In
IEEE, ICRA-2016.

[31] C Yevgen, M Kalakrishnan, A Yahya, A Li, S Schaal, and S Levine.
Path integral guided policy search. CoRR-2016.

[32] J Zhou, J A Bagnell, and M T Mason. A fast stochastic contact model
for planar pushing and grasping: Theory and experimental validation.
In RSS-2017.


	INTRODUCTION
	INTRODUCTION
	RELATED WORK
	Learning Models for Pushing
	Estimating Predictive Uncertainty
	Path Integral Applications for Control

	PRELIMINARIES
	APPROACH
	Forward Models with Predictive Uncertainty
	Uncertainty Averse Model Predictive Path Integral Control
	An Alternative Approach to Uncertainty Averse Planning

	EXPERIMENTS
	Experiment 1:
	Experiment 2:
	Experiment 3:
	Experiment 4:

	DISCUSSION
	References

