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Abstract 
The identification of a mental disorder at its early stages is a challenging task because it requires clinical interventions that may not be 

feasible in many cases. Social media such as online communities and blog posts have shown some promising features to help detect 

and characterize mental disorder at an early stage. In this work, we make use of user-generated content to identify depression and 

further characterize its degree of severity. We used the user-generated post contents and its associated mood tag to understand and 

differentiate the linguistic style and sentiments of the user content. We applied machine learning and statistical analysis methods to 

discriminate the depressive posts and communities from non-depressive ones. The depression degree of a depressed post is identified 

by using variations of valence values based on the mood tag. The proposed methodology achieved 90%, 95% and 92% accuracy for 

the classification of depressive posts, depressive communities and depression degree, respectively. 
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1. Introduction 

Social media tools such as blogs and online discussion forums have become increasingly recognized as open and free 

communication platforms to help in problem solving and information sharing. Recently, there has been a growing research 

interest in the use of social media for identification, prevention, or intervention of different kinds of mental illnesses [1] 

[2]. Due to recent lifestyle changes, every human being undergoes the feelings of tension, anxiety, or sadness at different 

times. When these feelings become so disturbing and overwhelming that people have great difficulty in coping with the 

day-to-day activities [3][4] such as work, enjoying leisure time, and maintaining relationships then it is considered an 

indication of some mental illness. Medical, psychological and social experts have identified that there are more than 450 

different definitions and types of mental illnesses with varying degrees of severity1. Mental illnesses are estimated to 

account for 11% to 27% of the disability burden in Europe [3], while mental disorders are the leading cause of years lived 

with disability worldwide [4]. Some of the major types of mental illnesses are depression, anxiety, bipolar disorder, 

personality disorder and schizophrenia. Of these, the most common mental illnesses are anxiety and depressive disorders2. 

The World Health Organization (WHO) has ranked major depression, a common form of mental illness, as one of the 

most burdensome diseases in the world [5]. 

There is a need for effective interventions, policies, and prevention strategies to allow early detection and diagnosis of 

mental health concerns in populations. Traditionally, most of the assessment is carried out using questionnaires requiring 

a subjective response or comment by the patient. Generally, such responses are not only influenced by the context – the 



environment and the patient’s relationship with the clinician – they may also be a representation of the patient’s state of 

mind, or mood, at that particular instance in time and not the actual, prevailing state of mind of the patient [2].  Social 

media, on the other hand, not only allows its users to express their thoughts in their own words but at a time when they 

feel the need to express. Social support from social media is crucial to well-being and quality of life of patients with 

incurable and recurrable diseases [6]. A series of thoughts and expressions over a longer period provides a better 

opportunity for the assessment process. Therefore, social media provides a rich source of author-identified text that can 

be used for personality profiling as well as knowing the mental state of a person. For this reason, social media has been 

recognized as an important tool [7] [8] for identifying and analyzing depression. In general, different text mining 

techniques are used for the analysis of user’s social media posts. For evaluating mental health conditions, researchers use 

different textual cues including writing style, word usage, sentence structure, vocabulary, topic of the text, etc. In 

particular, for identification of depression, researchers have found the use of swear words and expression of sadness as a 

feature of the text [9]. 

 A relatively unexplored territory in the analysis of depression from the text is the use of mood and emotions. Efforts 

such as [10] [11] have analyzed mood and emotion in the text but did not evaluate it for identification of depressive 

symptoms. Most of these efforts depend upon a dictionary of words related to various degrees of moods – called affective 

lexicon – for mood identification. Perhaps, a reason for not associating emotions with depression is that, despite its 

simplicity, it has been found that creation of an effective lexicon is difficult since only 4% of words used in  texts have 

emotional value [12]. 

In this study, we demonstrate that by using only a small subset of language features, not only we can differentiate 

between depressive and non-depressive text but we can also identify the degree of depression with high accuracy. 

Although much of the recent research work in depression analysis has used topic modelling, we are not using this approach 

because of two reasons. First, use of topics restricts the analysis to a handful of topics as it is not possible to take care of 

all the topics expressed in all types of blogs. A topic based approach will typically result in an adequate analysis in a 

particular set of topics for which the algorithms are trained but it will result in relatively poor analysis when applied in 

the wild. Second, topic analysis will falsely classify any posts as depressive that will only be informative in nature on the 

topic of depression, e.g., an article about depression written by some expert. Avoiding such misclassification is yet another 

challenge, which has not been addressed adequately thus far. 

Our contributions in this work are two-fold. First, we use language style and sentiment information for finding the most 

effective data dimensions of Linguistic Inquiry Word-Count (LIWC) [12] by applying feature extraction. This approach 

provides a set of predictors for the classification of depressive posts [13] and communities. Second, together with the 

mood expressed by the author, we are also able to characterize the degree of the depression expressed in the text either as 

mild, moderate, or severe. To our knowledge, this is the first of its kind of work for analysis of depression degree after 

identification of the text as depressive text. Estimating the depression degree is important to determine the urgency and 

severity of treatment. In the literature, Hamilton Depression Rating Scale [14] is a popular tool that classifies depression 

into four degrees: mild, moderate, severe and very severe. For this research, we are using the first three only as the 

identification of a person having a severe degree of depression is as important to treat urgently as someone with very 

severe condition. To allow other researchers to build upon our work, we explain the different machine learning and 

statistical methods used in our analysis in great detail along with results and a discussion on them. 

The rest of the paper is organized as follows. We briefly discuss the background and related work in Section 2. In 

Section 3, we introduce the proposed methodology for the classification of depressive posts and communities followed 

by the prediction of depression degree. In Section 4, we analyze and evaluate the experimental results to validate the 

proposed approach. Finally, the conclusion is presented in Section 5. 

2. Background and Related Work 

Social media platforms have become a rich source of information about individuals for recording their individual-centric 

thoughts, feelings, or opinions about small and big happenings in their life [15]. The study in [16] highlighted the support 

of social media for creation of tacit knowledge and sharing. Their study found six main ways where social media can 

support information encountering and provided opportunities for users to gain greater value of knowledge creation and 

sharing. The advantage of measurement of behaviour via social media helps in capturing one’s social activity and language 

expression in a naturalistic setting [17] [18] as compared to doing the same via traditional settings such as interviews, 

which typically require recollection of certain facts that might be subjective and may vary according to the participant’s 

current mental state or mood [19].  

The authors in [20] did a comparative analysis of Facebook, Twitter, Delicious, YouTube and Flicker to analyze the 

motivation of users for sharing information and social support in social media. They involved 1,056 social media users in 



five different surveys about the motivation of sharing information to understand the human information behavior. The 

results showed that learning is the highly influential motivation and social engagement is the second. The study in [7] 

discovered a connection between social anhedonia and Twitter users. They collected the dataset by using Amazon 

crowdsourcing. They conducted the depression survey followed by questions related to depression history and 

demographics with the access to the Twitter accounts of the participants. Their results indicated that a depressed person 

typically has a smaller social network, more negative feelings, greater concerns with drugs and intense expression of 

religious ideas. They developed a model using Support Vector Machines (SVM) classifier that predicts depression of an 

individual with 70% accuracy. The work done in [21] studies the impact of 14 words with the potential to stigmatize the 

mental health on Twitter. The data was collected in two stages (a) keyword based data and (b) user based data and their 

findings show that mental health aware users use stigmatizing words less frequently than other users. This indicates the 

sensitivity of users towards stigmatization of those with mental illnesses.  

In a study conducted in 2011, Facebook profiles of 200 students were tested for the purpose of determining symptoms 

and depression level [22]. The findings of their research reported that 30 students’ status updates show the indication of 

hopelessness, insomnia, or excessive sleeping. Their results concluded that the college students are facing more depression 

as compared to other people. The authors in [23] proposed an algorithm to detect stress and relaxation strength in tweets 

with a significant agreement rate with human judgements. They developed a lexical approach based system to detect the 

strength of stress and relaxation. The result showed that their proposed algorithm is flexible enough to work in a range of 

different contexts therefore; it can be used as an off-the-shelf solution for stress and relaxation detection. Park et al. [24] 

showed that online social network data can be successfully used for clinical studies. They performed sentiment analysis 

on tweets by using the LIWC [12]. They developed a multiple regression model by using all the sentiment categories and 

examined how variables of LIWC are associated with the CESD-R score [13].  

In [25], the authors compared information need and provision by analyzing 10 depression blogs and 40 threads of 

Finnish internet discussion forums. They applied descriptive statistics and qualitative content analysis and identified that 

instead of factual and procedural information; most of the users were interested to get an opinion or evaluation of an issue 

relevant to depression. The work done in [26] analyse the use of affective information, topics and language style for 

depression community and personal blogs. Their results indicate that language style and topics have strong indicative 

powers for the prediction of depression. The authors in [27] discriminated online messages between depression and control 

communities using mood, psycholinguistic processes and content topics extracted from the posts generated by members 

of these communities. According to their research, writing style of both communities are significantly different that 

contributed in discriminating the depressive communities from control communities. Sentiment analysis shows the clinical 

group has lower valence than people in the control group. They extracted a number of features for affect, mood, linguistic 

style and topic of the post. For the affect feature, the Affective Norms for English Words (ANEW) lexicon [28] was used. 

To identify the mood of the user, they relied on the user-tagged mood label of the post. For linguistic style, the LIWC 

features [12] were used. Finally, they extracted topic for each post using the Latent Dirichlet Allocation (LDA) approach 

[29]. The major drawback of their approach is the application of a complex pipeline that involves a series of algorithms 

and may not be scalable to large datasets. Compared to them, our approach relies on a small number of features and does 

not carry out topic extraction, which is not only expensive but also restricted to only a few topics present in the dataset. 

Malmasi et al. [30] carried out the classification of data from ReachOut.com forum posts into two main categories. The 

distinguishing feature of their work is that they employed a meta-classifier that used a set of base classifiers constructed 

from lexical, syntactic and metadata features. Initially, a single classifier was trained for each feature type and context, 

resulting in an ensemble of over 100 classifiers. The output from these classifiers was used to train a meta-classifier, which 

outperformed the individual classifiers as well as an ensemble classifier. This meta-classifier was then extended to random 

forests of meta-classifiers, yielding further improvements in classification accuracy. Although their classification achieved 

an overall accuracy of as high as 91% for categorizing a post into one of two labels – green and non-green posts – it was 

limited because of the nature of dataset: problems specific to youth population. 

 Saha et al. [31] developed a framework for classifying online mental-health-related communities for identification and 

presence of a mental condition such as depression. The framework used multi-task learning (MTL) as a joint learning 

method where an independent problem is considered as a task and MTL computes parameters of multiple tasks in an 

integrated framework.  They used two main features of the text: language style and topic. The language style was extracted 

using the LIWC tool while topics from the posts were extracted using LDA [29]. A total of 68 topics and 50 linguistic 

features were used. Their suggested MTL framework outperformed a single-task approach. However, this work is limited 

due to the usage of topics and high-dimensional data for classification. 

There is not much work in the area of mood classification for blog posts. Mishne [32] introduced one of the first mood 

classification methods from blog posts. They used the post length, word frequency, word’s semantic orientation, 

emphasized words, and special symbols as features. The classification accuracy was modest, being slightly above baseline. 



Nguyen et al. [11] used a wider range of features, including cheap and effective features inspired from psychology study, 

for the problem of mood classification for LiveJournal posts. The best accuracy result achieved was 78.8%. A better 

approach that used a hierarchy of possible moods was introduced in [10] [33], achieving better results than flat 

classification.  

The existing work reviewed above has contributed significantly in finding the depression from user generated content 

posted on different social media. We first described studies that use Social Networking Sites (SNS) such as Facebook and 

Twitter for depression analysis [7][21-23]. Then we mentioned work done in the area of online blogs [11][26-32]. We 

also discussed the approaches for depression identification related to writing styles [24][27], use of lexicons [20][23][27], 

sentiment analysis [23][24][27], machine learning [23][30][31], and mood-based identification [10][11][32][33]. The 

focus of most of the research work was to identify and understand the differences in the writing style of the depressed 

individuals. However, in this paper, we build a model on existing findings with the additional feature of predicting the 

degree of depression as an important factor in determining the treatment urgency. 

3. Methodology 

The proposed framework consists of six major modules, as shown in Figure 1: (1) Data Extraction: to collect data from 

social communities for depression analysis. (2) Community Analysis: to apply LIWC to identify the variations of different 

sentiments in each community. (3) Feature Extraction: to identify the significant data dimensions to facilitate the 

classification algorithm for better performance. (4) Post and Community Classification:  differentiate the depressive posts 

and communities from non-depressive posts and communities. (5) Depression Degree Analysis: analyze the depressive 

posts to measure the degree of depression and (6) Depression Degree Classification: assign a degree of depression to each 

depressive post. The details of each module are described in the following sections. 

 

Figure 1. The proposed system architecture. 

3.1. Data Extraction   

Data is crawled from LiveJournal3, a well-known platform for people to join their community of interest and discuss 

various issues. This most popular blogging site has attracted over 1.9 million active users since 1999 [34]. We identify 



depressive and non-depressive communities by using "search communities by interest" option provided by LiveJournal. 

The depressive communities are selected based on the description of individual communities like depression, bi-polar, 

death, and suicide. The non-depressive communities are extracted by considering different aspects of life such as computer 

help, childcare, and beauty. After crawling the data, it was cleaned by removing unnecessary tags and labels and use the 

post title, post mood and post body for further data analysis. 

3.2. Community Analysis  

In different communities, people discuss various topics with positive and negative emotions. In depressed communities, 

people talk about health, anxiety, and sadness while in other communities the topics of discussion are home, jobs and 

leisure activities. In order to identify the difference between communities, LIWC features [35] are extracted to analyze 

the word use within text. LIWC calculates the percentage of usage of sets of words and assigns an output measure to 

different linguistic categories. Post title and post body are provided as the input and 93 output variables are produced by 

LIWC to indicate the variations in sentiments and linguistic style. 

3.3. Feature Extraction  

From LIWC results, we are interested in a set of variables that can help to differentiate the depressive posts and 

communities from rest of the data. For this purpose, we use RELIEFF [36][37] as a feature extractor that computes rank 

and weight of each data dimension by using regression with K-nearest neighbors. At each iteration, RELIEFF takes ith 

feature vector yi and computes its closeness to each class by Euclidean distance. The computed close class is called Near 

and the other is called Far as shown in equation 1.  

 𝑊 = 𝑊𝑖 − (𝑦𝑖 −  𝑁𝑒𝑎𝑟𝑖)2 + (𝑦𝑖 − 𝐹𝑎𝑟𝑖)
2  (1) 

Table 1. Detailed explanation of the feature set. 

Feature Set Description Example 

I first personal singular I, me, mine 

Posemo positive emotion love, nice, sweet 

Negemo negative emotion hurt, ugly, nasty 

Anx Anxiety worried, fearful, nervous 

Cogproc cognitive process cause, know, ought 

Insight Insight think, know, consider 

Cause Cause because, effect, hence 

Health Health clinic, flu, pill 

Affiliation Affiliation ally, friend, social 

Informal informal language shit, OK, hmm 

 

RELIEFF assigns the weight vector based on nearby instances of the class. In our case, the input for the RELIEFF is 

93 output variables from LIWC. RELIEFF computes the significance of 93 input variables by computing their closeness 

to depressive and non-depressive classes and as an output, we construct a feature vector consisting of top 10 variables 

based on the assigned weight and rank for each variable. The relevant weight and rank of remaining variables are 

significantly low and static in comparison to the top 10 variables. The detailed explanation of variables of the feature set 

is shown in Table 1. The first column represents the formal name of the feature attribute as given by LIWC, the second 

column shows its description and examples are given in the third column for clear understanding. The extracted feature 

set values serve as an input to the classification algorithm for the identification of depressive and non-depressive posts 

and communities. 



3.4. Post and Community Classification  

In this section, we examine the usefulness of extracted features by utilizing them in the two classification setups studied 

in this work. Firstly, posts are classified as depressive or non-depressive. Subsequently, set of posts (i.e. a community) is 

classified as depressive or non-depressive community. For this purpose, we used random forests [38] that is an ensemble 

learning method for classification, which operates by constructing decision trees at training time, and gives out the class 

label by using mode or mean of individual trees. Random forests use averaging of deep decision trees to reduce the 

variance by training on different parts of the same dataset. 

The learning procedure of the random forests classifier starts by building the random trees and each tree casts a unit 

vote for the most popular class to classify an input vector. The design of decision tree requires the choice of attribute 

selection and a tree pruning method. In this work, the random forests classifier uses Gini index for attribute selection and 

measuring the relevance of an attribute with the class label. For a given training set X, selecting one class (depressive) at 

random and saying that it belongs to some class Ci, the Gini index [39] is shown in equation 2. 

 ∑ ∑ (
𝑓(𝐶𝑖,𝑋)

|𝑋|
) (

𝑓(𝐶𝑗,𝑋)

|𝑋|
)𝑗≠𝑖  (2) 

where 𝑓(𝐶𝑖, 𝑋)/|𝑋|   is the probability that the selected case belongs to class 𝐶𝑖. One of the major benefits of the 

random forests classifier over the other decision tree methods is that trees those are grown to maximum depth on training 

data using combination of features are not pruned.  

 

Figure 2. Algorithm for Post and Community Classification. 

The number of features to generate a tree and total number of trees to be grown are two user defined parameters required 

to generate a random forests classifier. In our case, we use feature set based on 10 attributes to generate a tree and we set 

Algorithm: Post and Community Classification             
Input:     Ts-Train Set[] 
    Tes-Test Set[] 
               Cl-Class Label[] 
    St=Post classification=0, Community Classification =1 
Output:   Pc-Predicted Class [] 
Begin 
1    for i= 1: length(Ts) 
2        CleanData[i] = DataExtract (Ts [i]) 
3    end 
4    AnalysedComm [] = LIWC (CleanData[]) 
5    [ranked , weight ] = RELIEFF (AnalysedComm[]) 
6    FeatureSet [] = Top-10  ([ranked, weight]) 
7    nTrees = 50; 
8    model = RandomForest (nTrees, FeatureSet[], Cl) 
9    if (St == 0) 
10        Pc = model.predict (Tes[]) 
11  else 
12        for j = 1:length (Tes) 
13              ClassfiedLabel[j] = model.predict (Tes[j]) 
14       end 
15       Pc = MajVote (ClassfiedLabel[]) 
16  end  
End 

  



the total number of trees to 50. To classify a new feature set, each case is passed down to each of the 50 trees. The random 

forests classifier picks a class having the most votes for that class. The flow of whole classification process is shown in 

Figure 2. 

3.5. Depression Degree Analysis  

The content of each depressive post may differ and relevant mood tag helps us to identify the level of depression. 

Therefore, the focus of this section is to analyse the characteristics of depressed posts only and we use LiveJournal mood 

tags for this purpose. LiveJournal provides 132 pre-defined mood tags, thus providing a potential source to understand 

the affective aspect of a post.  We categorize mood tags into three major categories: (a) severe depression, (b) moderate 

depression, and (c) mild depression. We use the ANEW lexicon [28] to map the mood tags to depression level. In this 

research, ANEW lexicon is used as a valid and useful tool that allows to manipulate the affective properties of different 

words and our focus is to explore the pre-defined list of LiveJournal under 1034 words of ANEW lexicon, rated in terms 

of valence and arousal. 

We use the valence value for quantitative estimation of depression. Valence is a measure in psychology to categorize 

specific emotions. For example, the popular negative emotions such as anger and fear have low valences while positive 

emotions, events and situation such as joy and love have high valence values. The valence of ANEW words is on a scale 

of 1 (very unpleasant) to 9 (very pleasant). We use the scale of ANEW and set the range of valence for each level of 

depression: 1.0-3.5 (severe depression), 3.6-5.5 (moderate depression) and 5.6-9.0 (mild depression).  The sample of 

moods categorization with their relevant ANEW valence values is shown in Table 2. This illustrates that moods which 

belong to severe depression have very low valence value in comparison to moods which represent moderate and mild 

depression.  

Table 2. Moods categorization for depression degree analysis. 

Severe Depression Moderate Depression Mild Depression 

Mood Valence Mood Valence Mood Valence 

Rejected 1.50 Scared 3.62 touched 6.31 

Depressed 1.83 Listless 4.12 surprised 7.47 

Frustrated 2.48 Lazy 4.38 thoughtful 7.65 

aggravated 2.66 Indifferent 4.61 optimistic 7.59 

Thirsty 3.37 Sympathetic 5.33 loved 8.72 

 

3.6. Depression Degree Classification  

In classification of depression degree, the objective is to label each post identified as depressive with the level of severity 

of depression found in the content. For the classification of depression degree into one of the three severity types described 

earlier using ANEW scale, we consider the assignment of depression degree as a classification problem. Not all the 

depressive posts have mood tags in LiveJournal communities so first, we set the degree of depression for the posts with 

mood tags and then we infer the depression degree of posts with missed mood tags. The process for identification of 

depression degree after analyzing the depression intensity is shown in Figure 3. 

First, the algorithm is trained with given mood tags against three class labels: (a) severe depression, (b) moderate 

depression, and (c) mild depression by encoding them as 0, 1 and 2 respectively.  For this purpose, Hierarchical Hidden 

Markov Model (HMM) [40] [41] is applied to the values of moods and class labels after converting them to discretized 

set. We choose HMM as it is a generative probabilistic graph model that is based on the Markov chains process and well 

known for labeling discrete sequences. The training model is based on the number of states (depression level) and their 

transition weight parameters. Parameters are learned through observation (mood tags) and the following parameters are 

required to train the model: 

 𝜆 = {𝐴, 𝐵, 𝜋} (3) 



where λ is a graphical model for depression level, A is a transition probability matrix, B represents the output symbol 

probability matrix, and π is the initial state probability [36]. We use Baum-Welch algorithm to determine the states and 

transition probabilities during the training of HMM. The ith classification weight of a post is given in equation 4.  

 𝜆𝑖 = {𝐴𝑖 , 𝐵𝑖 , 𝜋𝑖}   𝑖 = 1, … , 𝑁  (4) 

Where 𝜆𝑖 is the classification weight for ith class that belongs to one of the three class lables: (a) severe depression, (b) 

moderate depression, and (c) mild depression.  

 

Figure 3. Algorithm for Depression Degree Analysis and Classification. 

4. Results and Discussion 

In this section, we present the results to evaluate and validate the feasibility of the proposed approach for classification of 

the depressive posts, depressive communities and assignment of depression degree. 

4.1. Dataset Description  

The experiments were performed on 10 communities from LiveJournal. We selected five depressive and five non-

depressive communities as shown in Table 3. We obtained and analyzed a total of 4,026 posts, consisting of 2,019 

depressive and 2,007 non-depressive posts. In Table 3, the ‘Community Name’ column shows official name of the 

community, ‘#Member’ column shows the total number of members for a community in the dataset, '#posts' column 

represents the total number of posts we collected from each community for the sake of experiments and ‘Description of 

the community' column shows general purpose of each community. 

4.2. Performance Evaluation Measures  

In order to evaluate the performance of the proposed system, the standard metrics of precision, recall, f-measure, and 

accuracy are used as performance evaluation measures.  Their values are calculated using the confusion matrix [42] and 

computed as: 

Algorithm :  Depression Degree Analysis and Classification       

Input:     Dp- Depressive posts with mood tags[] 

   Tes-Test set without mood tags[] 

Output:   Pdd-Predicted degree of depression [] 

Begin 

1     for i= 1: length (Dp) 

2        valence[i] = ANEW (Dp[i].mood-tag) 

3        if (valence[i] >= 1 && valence[i] <= 3.5) 

4 DepDeg[i] = 0     //severe-depression 

5        else if (valence[i] > 3.5 && valence[i] <= 5.5) 

6 DepDeg[i] = 1    //moderate-depression 

7        else 

8 DepDeg[i] = 2   //mild-depression 

9        end 

10   end 

11    model = HMM (Dp[], DepDeg[]) 

12    Pdd = model.predict (Tes)   

End 
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where 𝑄 is the number of posts, 𝑇𝑃 is the number of true positives, 𝑁𝐼 is the total number of inferred labels, 𝑇𝑁 is the 

total number of true negatives and 𝑁𝐺  is the total number of ground truth labels and 𝑇𝑜𝑡𝑎𝑙  is the total number of 

depressive and non-depressive posts (or communities) in the dataset. 

Table 3. Characteristics of the depressive and non-depressive communities of LiveJournal. 

Category Community Name #Members #Posts Description of the community 

D
e
p
re

ssive
 

alonendepressed 181 401 This community is for alone people suffering from depression. 

depression_uk 107 400 This is a community primarily for the discussion/support of 

depression sufferers in the UK. 

fightdepression 201 400 This community is meant to help those with depression. 

depressedteens 184 377 This is a community for depressed teenagers. 

imissmydad 163 441 This community supports people who have lost their fathers. 

N
o
n
-D

e
p
re

ssive
 

parenting101 162 396 This community is for advice/personal experiences from many 

different types of parents. 

computerhelp 225 401 This community provides free technical support for computer 

users. 

beauty101 219 410 This community helps to find answers of questions related to 

beauty. 

burning-man 186 400 This community supports LiveJournal Camp @ Burning Man 

dear-you 209 400 A place for unsent letters 

 

4.3. Experiments and Results 

To evaluate the performance of post classification, community classification, and depression degree classification, the 

dataset was split according to 10-fold cross-validation approach.  

For post classification, the algorithm was trained on 3,626 posts and tested on 200 depressive posts and 200 non-

depressive posts for each fold of the experiment. The confusion matrix of post classification is shown in Table 4. The 

results show that ratio of misclassification for depressive posts is lower in comparison to misclassified non-depressive 

posts.  

For community classification, in each fold of the 10-fold cross-validation experiment, 10 communities were arbitrarily 

constructed with each community taking 200 posts each from the depressive and non-depressive posts. We used the leave 

one community out approach for both depressive and non-depressive classes. Thus, the algorithm was trained on 18 

communities and tested on the remaining two communities for each fold of the experiment. For the computation of results, 

we considered a vote for each post as depressive and non-depressive and used the majority voting for assigning a final 

class for a community as depressive or non-depressive. The confusion matrix for community classification is shown in 

Table 5, which shows that there is not a single misclassified depressive community and only one non-depressive 

community is classified as a depressive community. 



Table 4. The confusion matrix for post classification. 

 
Predicted 

Non-depressive Depressive 

Actual 
Non-depressive 1787  220  

Depressive 190  1829  

 

Table 5. The confusion matrix for community classification. 

 
Predicted 

Non-depressive Depressive 

Actual 
Non-depressive 9 1 

Depressive 0 10  

 

Random forest (RF) is a powerful classifier with the natural ability to build an accurate model for multi-class 

classification. It is a computationally efficient algorithm credited to work well for a variety of classification problems. We 

compare the proposed RF based method with Support Vector Machines (SVM) [43] classifier, another well-known 

technique for text classification which is based on finding the maximum margin between the classes. The precision, recall, 

f-measure and accuracy of the post and community classification is shown in Table 6. For both post and community 

classification, RF performs better in comparison to SVM. The proposed approach achieved about 90% and 95% accuracy 

in classifying the depressive posts and depressive communities, respectively. The performance of RF classifier is 

favourably higher than the SVM for both post and community classification, as seen in Table 6. 

Table 6. Precision, Recall, F-Measure and Accuracy for post and community classification. 

Classification Model Classification Precision Recall F-Measure Accuracy 

Random Forests 
Post Classification 0.892 0.905 0.897 0.898 

Community Classification 0.900 1.000 0.947 0.950 

SVM 
Post Classification 0.818 0.783 0.799 0.820 

Community Classification 0.875 0.885 0.879 0.895 

  

Table 7. The confusion matrix for depression degree classification. 

 
Predicted 

Severe Depression Moderate Depression Mild Depression 

Actual 

Severe Depression 232  18  - 

Moderate Depression 11  224  23 

Mild Depression - 17  283 



 

For depression degree classification, only depressive posts were considered. First, the existing mood tags of the 

posts were mapped to either severe, moderate, or mild depression. Later, for the posts without mood tags, the mood 

tags of the post were automatically predicted as per the method described in Section 3.5. 
We extracted 800 depressive posts with 250 posts each for severe and moderate depression and 300 posts for mild depression. 

Similar to the previous experiments, 10-fold cross-validation was followed to avoid any biasedness. The results of depression 

degree classification are shown in Table 7. The precision, recall, f-measure and accuracy of depression degree classification is 

shown in Table 8. The classification accuracy of the proposed algorithm is 92%. These results show the good performance of 

the proposed method for depression degree classification. 

Table 8. Precision, Recall, F-Measure and Accuracy for depression degree classification. 

Classification Precision Recall F-Measure Accuracy 

Depression Degree Classification 0.927 0.922 0.924 0.923 

 

4.4. Discussion 

The post classification and community classification results from Tables 4, 5, and 6 demonstrate the promise of the 

proposed method which provided a high degree of precision, recall, and accuracy. These results show that the ratio of 

misclassification for depressive posts and depressive communities is lower in comparison to misclassified non-depressive 

posts and non-depressive communities, respectively. This is due to the reason that depressive communities mostly contain 

posts relevant to depression. However, non-depressive community users discuss various aspects of life and sometimes 

express their feelings of depression and thus potentially making the post a candidate for depressive class. The classification 

of such outliers is indeed a big challenge. Based on passive writing style and sentiments of these apparently non-depressive 

posts from non-depressive communities, the classifier labelled them as depressive posts that contradicted with the ground 

truth of the dataset. 

 

Figure 4.  Word cloud for moods of depressive posts. 

Tables 7 and 8 illustrate the high accuracy results obtained for depression degree classification to predict the severity 

of depression for depressive posts. It is observed from the confusion matrix in Table 7 that the proposed method is able 

to discriminate severe and mild depression with very high accuracy without confusing these two levels of depression. 

However, some cases of moderate depression are observed to be misclassified as either severe or mild depression. This 



can be attributed to the fact that relatively smaller difference exists between the valence of words in these classes since 

moderate depression has overlap in its descriptors with both severe and mild depression cases. It is a big challenge to 

accurately discriminate moderate depression cases from severe or mild depression cases and this can benefit from 

development of strongly discriminant descriptors in future work. 

The relative frequency of words, used as mood tags in the depressive posts is shown in word cloud in Figure 4, where 

bigger words denote higher frequency. A word cloud visualization of both depressive and non-depressive communities is 

shown in Figure 5(a) and Figure 5(b), respectively. It is observed from these word clouds that the linguistic style of 

depressive content was considerably different from non-depressive content. The depressive posts contained more self-

focused attention words in comparison to non-depressive posts. These word clouds depict that the depressive posts 

frequently contain words with depressive connotations which can be exploited by automatic prediction systems similar to 

the one proposed in this work. Such a system can facilitate the identification of users with depression symptoms at an 

early stage in order to avoid untoward incidents. 

This work demonstrated the use of linguistic analysis and sentiment analysis along with machine learning to 

discriminate depressive content from non-depressive content. However, the proposed approach has applications in other 

areas of user-generated content analysis on social media platforms. This may include analysis of social media communities 

like sports, religion, technology, news, and other categories. 

This work considered all depression categories as a single class to classify posts or communities. Future work will 

explore the classification of posts or communities in to depression category such as bipolar disorder, seasonal affective 

disorder, and postpartum depression before identifying the degree of depression. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Word cloud for depressive and non-depressive communities. 

5. Conclusion  

This paper presented a system which is able to accurately classify social media posts and communities in to depressive or 

non-depressive classes. For each depressive post, the proposed system can further determine the severity of depression of 

the user-generated content. The proposed system enabled the utilization of LIWC as a text analysis tool to convert LIWC 

data dimensions output into effective predictors. These discriminant predictors were employed by random forests classifier 

to accurately identify the depressive posts and communities from non-depressive ones. For each depressive post, the 

proposed method predicted the degree of depression (severe, moderate or mild) with high success on the basis of valence 

values for posts containing mood tags and using HMM for posts without mood tags. The experimental evaluation on 

dataset from LiveJournal community portal demonstrated the success of the proposed method achieving high classification 

accuracy of 90%, 95% and 92% for depressive posts, depressive communities and depression degree, respectively. The 

(a). Word cloud for depressive communities. (b). Word cloud for non-depressive communities. 



presented results clearly illustrated the predictive capability of the proposed system to efficiently identify the depressive 

posts, depressive communities and depression degree from user-generated content in online social communities. 

Notes 

1. https://www.ncbi.nlm.nih.gov/books/NBK44246/ 

2. http://www.dhhs.tas.gov.au/mentalhealth/about_mental_illness/types_of_mental_illness 

3. http://www.livejournal.com/  
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