

University of Birmingham

Mixed second order partial derivatives
decomposition method for large scale optimization
Li, Lin; Jiao, Licheng; Stolkin, Rustam; Liu, Fang

DOI:
10.1016/j.asoc.2017.08.025

License:
Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Li, L, Jiao, L, Stolkin, R & Liu, F 2017, 'Mixed second order partial derivatives decomposition method for large
scale optimization', Applied Soft Computing, vol. 61, pp. 1013-1021. https://doi.org/10.1016/j.asoc.2017.08.025

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 09. Apr. 2024

https://doi.org/10.1016/j.asoc.2017.08.025
https://doi.org/10.1016/j.asoc.2017.08.025
https://birmingham.elsevierpure.com/en/publications/cdd45e10-f850-4923-8d54-7db5e81010b8

Accepted Manuscript

Title: Mixed Second Order Partial Derivatives Decomposition
Method for Large Scale Optimization

Author: Lin Li Licheng Jiao Rustam Stolkin Fang Liu

PII: S1568-4946(17)30507-0
DOI: http://dx.doi.org/doi:10.1016/j.asoc.2017.08.025
Reference: ASOC 4415

To appear in: Applied Soft Computing

Received date: 11-12-2015
Revised date: 16-5-2017
Accepted date: 8-8-2017

Please cite this article as: Lin Li, Licheng Jiao, Rustam Stolkin, Fang Liu,
Mixed Second Order Partial Derivatives Decomposition Method for Large
Scale Optimization, <![CDATA[Applied Soft Computing Journal]]> (2017),
http://dx.doi.org/10.1016/j.asoc.2017.08.025

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

http://dx.doi.org/doi:10.1016/j.asoc.2017.08.025
http://dx.doi.org/10.1016/j.asoc.2017.08.025

Page 1 of 28

Acc
ep

te
d

M
an

us
cr

ip
t

1. A theoretical analysis of the interaction between variables is

developed.

2. Three theorems and three lemma are presented, as well as a theoretical

explanation of overlapping subcomponents.

3. A decomposition approach based on the mixed second order partial

derivatives of the analytic expression of the optimization problems is

proposed.

*Highlights (for review)

Page 2 of 28

Acc
ep

te
d

M
an

us
cr

ip
t

*Graphical abstract (for review)

Page 3 of 28

Acc
ep

te
d

M
an

us
cr

ip
t

Mixed Second Order Partial Derivatives Decomposition
Method for Large Scale Optimization

Lin Lia,∗, Licheng Jiaob,∗∗, Rustam Stolkinc, Fang Liub

aKey Laboratory of Information Fusion Technology of Ministry of Education, School of
Automation, Northwestern Polytechnical University, Xi’an, Shaanxi Province, 710072, PR China

bKey Lab of Intelligent Perception and Image Understanding of Ministry of Education, Xidian
University, Xi’an, 710071, China

cExtreme Robotics Lab, University of Birmingham, Edgbaston, Birmingham B152TT, U.K.

Abstract

This paper focuses on decomposition strategies for large-scale optimization prob-
lems. The cooperative co-evolution approach improves the scalability of evolu-
tionary algorithms by decomposing a single high dimensional problem into sev-
eral lower dimension sub-problems and then optimizing each of them individually.
However, the dominating factor for the performance of these algorithms, on large-
scale function optimization problems, is the choice of the decomposition approach
employed. This paper provides a theoretical analysis of the interaction between
variables in such approaches. Three theorems and three lemma are introduced to
investigate the relationship between decision variables, and we provide theoret-
ical explanations on overlapping subcomponents. An automatic decomposition
approach, based on the mixed second order partial derivatives of the analytic ex-
pression of the optimization problem, is presented. We investigate the advantages
and disadvantages of the differential grouping (DG) automatic decomposition ap-
proach, and we propose one enhanced version of differential grouping to deal with
problems which the original differential grouping method is unable to resolve. We
compare the performance of three different grouping strategies and provide the re-
sults of empirical evaluations using 20 benchmark data sets.

Keywords: Large-scale optimization, Evolutionary Algorithm, Cooperative

∗Corresponding author: Tel.: +86 02988431307; Fax: +86 02988431306
∗∗Corresponding author: Tel.: +86 029 8820 9786; Fax: +86 029 8820 1023.

Email addresses: linli@nwpu.edu.cn (Lin Li), lchjiao@mail.xidian.edu.cn
(Licheng Jiao)

Preprint submitted to Applied Soft Computing August 17, 2017

Page 4 of 28

Acc
ep

te
d

M
an

us
cr

ip
t

Co-evolution, Divide-and-Conquer, Decomposition Method, Nonseparability,
Curse of Dimensionality.

1. Introduction

1.1. Overview
The solution of large optimization problems has attracted increasing attention

from the evolutionary computation community in recent years [1, 2, 3]. A wide
variety of metaheuristic optimization algorithms have been proposed during the
past few decades, such as Genetic Algorithms [4, 5], Evolutionary Algorithms
(EAs) [6, 7, 8, 9, 10], Particle Swarm Optimization (PSO) [11, 12], Differential
Evolution (DE) [13, 14], Simulated Annealing [15, 16], Ant Colony Optimiza-
tion [17, 18], Evolutionary Programming (EP). While these methods have been
successfully applied to theoretical and real-world optimization problems, their
application to problems of large dimension (e.g. problems with more than one
hundred decision variables) remain problematic. This paper discusses techniques
for solving such large-scale optimization (LSO) problems.

The performance of many metaheuristic methods deteriorates rapidly with the
increase in dimension of the decision variables, referred to as the “curse of di-
mensionality” in much of the literature [19, 20]. There are two reasons for this
phenomenon [21]. Firstly, the search space grows exponentially with dimension,
engendering much greater computation time in algorithms which performed well
on low dimensional spaces. Secondly, the complexity of an optimization prob-
lem may change with high dimensions, making the search for optimal solutions
more difficult. For example, Rosenbrocks function is unimodal when there are
only two variables but it becomes multimodal when the dimension is larger than
four [22, 23]. An intuitive yet efficient way to deal with this predicament is to de-
compose the original large-scale optimization problem into a group of smaller and
less complex sub-problems, and then handle each sub-problems separately. This
is known as a “divide-and-conquer” strategy and it has been successfully applied
in many areas [19, 24, 25, 26, 27].

The cooperative co-evolution (CC) method, proposed by Potter and De Jong
in [28], provided a new way to solve more complex structures such as neural
networks and rule sets, and its performance has since been tested on well-studied
optimization problems. The scalability of CC to large-scale decision variables was
explored in [29], which suggested that the CC framework for large-scale problems
is very sensitive to the choice of decomposition strategy for grouping the different
subcomponents. This paper therefore focuses on the decomposition problem.

2

Page 5 of 28

Acc
ep

te
d

M
an

us
cr

ip
t

1.2. Motivation of this paper
The main contributions of this paper can be summarized as follows:

• A theoretical analysis of the interaction between variables is developed.
Three theorems and three lemma are presented, as well as a theoretical ex-
planation of overlapping subcomponents.

• A decomposition approach based on the mixed second order partial deriva-
tives of the analytic expression of the optimization problems is proposed.

• An investigation and discussion of the advantages and disadvantages of the
automatic decomposition approach DG [20] is presented, and we also pro-
pose an enhanced version of DG to address problems which the original DG
method is not capable of solving.

• Experimental results on 20 benchmarks are presented, which show the ef-
fectiveness of the proposed decomposition methods.

1.3. Layout of this paper
Section 2 surveys the various decomposition techniques employed within the

CC framework in the literature, and the techniques most related to our proposed
method (CCVIL [30] and DG [20]) are explained in detail. In section 3, the vari-
able interaction problems and the proposed theory and approaches are introduced
in detail. Experimental results and discussion are presented in section 4. Section
5 summarizes and provides concluding remarks.

2. CC decomposition methods

According to [20], decomposition strategies can be classified into four cate-
gories: random methods, perturbation methods, interaction adaptation, and model
building. In contrast, we suggest dividing CC grouping approaches into three de-
composition methods, based on their respective strategies for deciding the total
number and size of the sub-groups:

1) fixed-size grouping methods, e.g. CCGA, CCGA-1 [28], FEPCC [29], and
the random grouping strategy used by DECC-G [31];

2) adaptive-size grouping methods, e.g. correlation based adaptive variable
partitioning technique (CCEA-AVP) [32], delta grouping [33], MLCC [34];

3) automatic grouping methods, e.g. CCVIL [30] and differential grouping
(DG) [20].

3

Page 6 of 28

Acc
ep

te
d

M
an

us
cr

ip
t

Table 1: Comparison of grouping strategies between different algorithms based on CC framework

Decomposition
Categories Algorithms Grouping method

Fixed-size
grouping

CCGA,CCGA1 [28],
FEPCC [29] 1-D decomposition

DECC-G [31] Random groping (RG)
DECC-D [33] Delta grouping (DLG)

Adaptive-size
grouping

CCEA-AVP [32]
Correlation based adaptive
variable partitioning technique

MLCC [34]
RG with performance based
self-adaptive subgroup size

DECC-ML [35]
More frequent RG with random
self-adaptive subgroup size

DECC-DML [33]
DLG with random self-adaptive
subgroup size

Automatic
grouping

CCVIL [30] Variable interaction learning
DECC-DG,CBCC-DG [20] Differential grouping

2.1. Fixed-size grouping
Fixed-size grouping methods are those which divide an n-dimensional prob-

lem into k modules with m dimensions (m << n) and then solve each module
with a particular optimizer (such as, GAs, EAs, EP, PSO) separately and coopera-
tively. We refer to such methods as m-D decomposition throughout the remainder
of this paper. Algorithms CCGA, CCGA1 [28] and FEPCC [29] adopt a 1-D de-
composition strategy, which decomposes the original optimization problems into
n one dimension sub-problems and then optimize each sub-problem with GA and
Fast EP, respectively. CCGA and CCGA1 have shown poor performance on non-
separable problems with maximum of 30 decision variables [28]. FEPCC [29] has
previously been scaled successfully to 1000 dimension problems with separable
functions, but the performance on non-separable optimization problems remains
unclear.

m-D decomposition with m << n was employed in [36], which applied
PSO as the optimizer within a CC framework, known as the cooperative par-
ticle swarm optimizer (CPSO). CPSO has shown significant improvement over
traditional PSO on several benchmark optimization problems. However, CPSO
was not tested on large-scale problems. In [37], the cooperative co-evolutionary

4

Page 7 of 28

Acc
ep

te
d

M
an

us
cr

ip
t

differential evolution (CCDE) was proposed.
n

2
-D decomposition method was ap-

plied and the optimizer in the CC framework was DE. However, splitting up the
decision variables into two equally sized sub-groups arbitrarily does not improve
the scalability of the proposed method.

The main drawback for of the abovem-D decomposition methods are that they
are static decomposition strategies. If such a method does not correctly identify
the appropriate subgroups, then it can never find the right subcomponents of the
problems. This is one of the reasons why suchm-D decomposition strategies have
difficulty solving non-separable optimization problems. Here we refer to such m-
D decomposition methods as static m-D decomposition.

In contrast, a decomposition strategy known as random grouping was pro-
posed by Yang et al. [31] to improve the ability of CC framework for optimiza-
tion problems with interaction decision variables. Similar to the static m-D de-
composition, random grouping decomposes the problem into k m-dimensional
subcomponents, but the m decision variables are randomly selected in each cycle.
It can be shown that random grouping increaseses the probability of grouping two
non-separable variables into the same subcomponent for several cycles.

The proposed method (DECC-G) in [31] adopted random grouping and adap-
tive weighting for dividing the original optimization problems, and each subcom-
ponent was then optimized by a DE algorithm. The experimental results on a set
of benchmark problems up to 1000 dimensions, showed that random grouping
achieved good performance on detecting interacting variables. In [38], Li and Xin
proposed algorithm CCPSO2 by employing the random grouping within the CC
framework with PSO as the optimizer. CCPSO2 was tested on problems of up to
2000 decision variables to show the scalability of PSO. Although random group-
ing has shown advantages over previous proposed decomposition methods, it has
limited performance on problems with more than five interacting variables [33].

Delta grouping was proposed in [33] for identifying larger numbers of inter-
acting variables. This method measures the delta value (the amount of change) of
every variable in each iteration. Decision variables with smaller delta values are
considered likely to be interacting with other decision variables. The delta val-
ues are ranked and the decision variables with smaller delta values were put into
a common sub-group. Experimental results in [33] suggest that delta grouping
can deliver good performance on finding interactive variables. However, the main
drawback of delta grouping is that it can only group all the nonseparable variables
into a single sub-group and it has difficulty handling problems with more than two
nonseparable sub-groups.

5

Page 8 of 28

Acc
ep

te
d

M
an

us
cr

ip
t

2.2. Adaptive-size grouping
In algorithm CCEA-AVP [32], a correlation based adaptive variable partition-

ing technique (AVP) was proposed. In AVP, a correlation matrix is calculated
based on the top 50 percent individuals of the current population after every M
iterations (M was set to five in [32]). Then the correlation coefficient of each
variable is obtained by the correlation matrix and the decision variables with a
correlation coefficient greater than a user defined value (0.6 in [32]) are grouped
together in one sub-population. The main advantage of AVP is that it increases
the possibility to handle problems where separability of variables might vary with
different sub-regions of the overall decision space.

In [34], a multilevel cooperative coevolution (MLCC) for large scale optimiza-
tion was proposed. The main motivation for MLCC was to deal with the hard-to-
determine parameter, group size, in DECC-G. MLCC makes use of a decomposer
set S with different sizes of subcomponents instead of a specific decomposer. At
the beginning of each cycle, one decomposer is selected from the decomposer set
based on their previous performance. The selected decomposer is used to parti-
tion the original optimization problem into several sub-problems each of which
is optimized by an EA. At the end of each cycle, the performance record of this
chosen decomposer is then updated according to its performance in the current cy-
cle. Experimental results in [34] suggest that MLCC can self-adapt to appropriate
interaction levels during the evolution stage.

DECC-DML [33] employs delta grouping to decompose the original problems
into different subgroups but the size of each sub-group is decided by a random
self-adaptive subgroup size technique. Different from the self-adaptation mecha-
nism in MLCC, a simpler and more efficient technique is used to decide the size of
each sub-component. Similar to MLCC, a decomposer set S is designed to choose
a specific decomposer. Instead of using the sophisticated formula based on the
historical performance of each decomposer, a uniform random generator is used
to choose a decomposer from the set S when there is no improvement performance
between the current and the previous cycles.

Compared to fixed-size grouping, adaptive-size grouping methods are more
likely to find the interaction among decision variables. However, these techniques
are less efficient at decomposing problems with different sizes of sub-problems,
and more work is still needed to underpin such methods with a sound theoretical
basis.

6

Page 9 of 28

Acc
ep

te
d

M
an

us
cr

ip
t

2.3. Automatic grouping
Literature [30] proposed a new CC framework named cooperative coevolution

with variable interaction learning (CCVIL). This algorithm begins by treating all
decision variables as independent and puts all of them into a single separate group.
Then it determines the relation between pairs of variables iteratively and merges
the groups if the condition for interaction holds. The main contribution of CCVIL
is the interaction criterion it used for identifying the interaction between two vari-
ables:

CCVIL criterion: If two decision variables xi and xj are interactive, then there
exists ~x1 = (..., xi−1, a, ..., xj−1, b, ...), ~x2 = (..., xi−1, a + δa, ..., xj−1, b, ...),
~x3 = (..., xi−1, a, ..., xj−1, b+ δb, ...), ~x4 = (..., xi−1, a+ δa, ..., xj−1, b+ δb, ...)
such that, the following equation (1) holds.

f(~x1)− f(~x2) < 0 ∧ f(~x3)− f(~x4) > 0 (1)

CCVIL identifies the interactions between variables based on theoretical facts.
However, the interaction criterion in equation (1) is a sufficient but not necessary
condition for detecting two interacting variables, which means it is incapable of
finding all the possible interactions. We will explain this issue in more detail later
in section 3.5.

An automatic decomposition approach called differential grouping (DG) was
proposed in [20], which can automatically identify the interactive decision vari-
ables and partition the original problems into several sub-problems according to
the independence between variables. The interaction criterion of DE is derived
from the definition of partially additively separable problems and it provides a
theoretical foundation for determining interacting decision variables. The experi-
mental results show that this near-optimal decomposition is beneficial for handling
large-scale global optimization problems.

DG criterion: For a partially additively separable function f(~x), ∀a, b, δa 6=
0, δb 6= 0 ∈ R, such that the following condition holds:

f(~x1)− f(~x2) 6= f(~x3)− f(~x4), (2)

where ~x1 = (..., xi−1, a, ..., xj−1, b, ...), ~x2 = (..., xi−1, a + δa, ..., xj−1, b, ...),
~x3 = (..., xi−1, a, ..., xj−1, b+δb, ...), ~x4 = (..., xi−1, a+δa, ..., xj−1, b+δb, ...),
then variables xi and xj interact with each other.

7

Page 10 of 28

Acc
ep

te
d

M
an

us
cr

ip
t

3. Mixed second order partial derivatives decomposition method

3.1. Problem definitions
Definition 1 A global numerical optimization problem can be formulated as

follows,
argmin

~x
f(~x), such that ~L ≤ ~x ≤ ~U (3)

where ~x = (x1, ..., xi, ..., xn), ~L = (l1, ..., 1i, ...ln), ~U = (u1, ..., ui, ...un) ∈
Rn. ~x is called the decision variable vector and the domain of each variable is
defined by its lower and upper bounds respectively li ≤ xi ≤ ui. The space
S ∈ Rn formed by li ≤ xi ≤ ui, is called the decision space. The problem
is called a large scale global optimization problem when the dimensionality of
the decision variable is very high, such as problems with more than one hundred
variables.

Definition 2 A optimization function f(~x) is called fully-separable iff

argmin
~x
f(~x) =(argmin

x1
f(x1, ...), ...,

argmin
xi

f(.., xi, ...), ...,

argmin
xn

f(..., xn)).

(4)

It is obvious that a fully-separable function f(~x) defined by equation (4) can be di-
vided into n subcomponents and optimized respectively to obtain a globally opti-
mal solution. The n variables are referred to as independent, i.e. a fully-separable
function consists of n subcomponents, each of them with one independent vari-
able.

Definition 3 A function f(~x) is a partially separable function withm indepen-
dent subcomponents iff

argmin
~x
f(~x) =(argmin

~x1

f(..., ~x1, ...), ...,

argmin
~xi

f(..., ~xi, ...), ...,

argmin
~xm

f(..., ~xm, ...)).

(5)

Note that, each vector ~xi = (x1, ..., xdi), i = 1, 2, ...m in equation (5) is a
dis-joint sub-vector of ~x with di dimensions and denotes a subcomponent of the

8

Page 11 of 28

Acc
ep

te
d

M
an

us
cr

ip
t

original function. The variables in each vector ~xi interact with each other. Vari-
ables from different vectors, such as ~xi and ~xj, i 6= j, are independent. The total
number of independent subcomponents is m. Also note that the fully-separable
function is a special example of partially separable functions with n independent
subcomponents, each of which has only one decision variable.

Definition 4 A function f(~x) is called fully-nonseparable iff, every pair of its
variables ∀i 6= j ∈ {1, ..., n}, xi, xj are not independent of each other.

Definition 4 is also a special case of Definition 3 with one subcomponent of
d-dimensions.

Definition 5 A function f(~x) is called partially additively separable with m
subcomponents iff it can be written in the following form:

argmin
~x
f(~x) = argmin

~xi

m∑
i=1

fi(~xi), (6)

where ~xi ∈ Rdi are mutually exclusive decision vectors of fi and
∑m

i=1 di = n.
Partially additively separable functions are commonly found in real-world practice
and they can represent the modular nature [39] of many real-world optimization
problems. For this reason, most of the literature has focused on solving these
types of optimization problems.

Here, a specific example is given to explain the partially additively separable
fuction. Consider an optimization fuction, argmin~x f(~x) = x1

2 + x2
2 + x1x2 +

x3
2+x4

2+x5
2+2x3x4x5, which is a partially additively separable function with

2 subcomponents. It can be written as argmin~x f(~x) = argmin~xi

∑2
i=1 fi(~xi),

where f1(~x1) = x1
2 + x2

2 + x1x2, ~x1 = (x1, x2) and f2(~x2) = x3
2 + x4

2 + x5
2 +

2x3x4x5, ~x2 = (x3, x4, x5).
For the sake of convenience and clarity but without loss of generality, we

assume that the function f(~x) has m independent subcomponents denoted as
{S1, ..., Sm, m = {1, ..., n}}. Each subcomponent Si has di variables.

Definition 6 A function f(~x) has overlapping subcomponents iff, ∃i 6= j ∈
{1, ..,m}, such that, Si and Sj have the same subset Sij .

In other words, variables in Sij interact with any other variables in subcom-
ponents Si and Sj . But other variables in Si and Sj (not included in Sij) are
independent with each other (see Fig. 1). The elements in Sij are denoted as
overlapping decision variables.

9

Page 12 of 28

Acc
ep

te
d

M
an

us
cr

ip
t

jSiS

1 ,...,ij ij

k ij

S S
x x 1 ,...,j j

k j

S S
x x1 ,...,i i

ki

S S
x x

ijS

Independent

Nonindependent

Figure 1: Illustration of two subcomponents Si and Sj with overlapping variables, where Si =

{xSi
1 , ..., x

Si

ki
, x

Sij

1 , ..., x
Sij

kij
} and Sj = {xSj

1 , ..., x
Sj

kj
, x

Sij

1 , ..., x
Sij

kij
}. di = ki + kij is the dimen-

sion of subcomponent Si. Sj is dj-dimensional with dj = kj+kij . Sij is the set with overlapping
variables from Si and Sj . It is evident that: 1. every pair of decision variables in Si interact with
each other; 2. any two decision variables in Sj also interact with each other; 3. Sij ∈ Si and
Sij ∈ Sj . Any pair of elements in Sij also interact with each other; 4. however, variables in set
Si − Sij are independent of variables in set Sj − Sij .

3.2. Theoretical foundation for interaction and independence of variables
Theorem 1: For a partially additively separable function f(~x), if ∂2f(~x)

∂xi∂xj
=

0, then xi and xj are separable. (For clarity, we assume that the functions are
continuous and smooth and ∂2f

∂xi∂xj
= ∂2f

∂xi∂xj
).

Proof: f(~x) =
∑m

k=1 f(..., ~xk, ...). Let xi ∈ Sk0 , k0 ∈ [1, ...,m].
⇒ ∂f(~x)

∂xi
=

∑m
k=1

∂f(...,~xk,...)
∂xi

~xk, k = (1, ...,m) are mutually exclusive decision vectors of f(~x). So
∂f(...,~xk,...)

∂xi
= 0, k 6= k0.

⇒ ∂f(~x)
∂xi

=
∂f(...,~xk0

,...)

∂xi

⇒ ∂2f(~x)
∂xi∂xj

=
∂2f(...,~xk0

,...)

∂xi∂xj
= 0

⇒ xj /∈ Sk0
⇒ xi and xj are separable.

Theorem 1 can be rewritten as the following Lemma 1:
Lemma 1: If ∀a ∈ [li, ui], b ∈ [lj, uj], such that ∂2f(~x)

∂xi∂xj
|xi=a,xj=b = 0, then xi

and xj are separable with each other.
It is evident that the first order partial derivative in the direction of xi, fxi =

∂f(~x)
∂xi

, is very important for finding those variables that interact with xi from the
proof of Theorem 1. In fact, to detect all of the variables that interact with xi,
we only need to find out which variables are involved in the partial derivative in
direction xi or affect the value of fxi . This observation can be formulated as the
following lemma:

10

Page 13 of 28

Acc
ep

te
d

M
an

us
cr

ip
t

Lemma 2: ∀ xi ∈ [li, ui], if ∀ b, b+δb ∈ [lj, uj], fxi |xi,xj=b−fxi |xi,xj=b+δb =
0 (j 6= i, δb 6= 0), then xj is separate with xi; however, if ∃ b, δb, such that
fxi |xi,xj=b − fxi |xi,xj=b+δb 6= 0 (j 6= i, δb 6= 0), then xj belongs to the group
of variables intact with xi.

The above theorem and lemmas mainly show how to identify the indepen-
dence of two decision variables. In the following we will study the properties of
interaction between two variables from the perspective of the second order partial
derivatives of the functions.

Theorem 2: If ∂2f(~x)
∂xi∂xj

6= 0, then xi and xj interact with each other.
Proof: Theorem 2 is the contrapositive of Theorem 1. Theorem 1 holds ⇒

Theorem 2 holds.
Lemma 3: ∃a ∈ [li, ui], b ∈ [lj, uj], such that ∂2f(~x)

∂xi∂xj
|xi=a,xj=b 6= 0, then xi

and xj interact with each other.
The theoretical analysis described above mainly explains the relationship of

interaction and independence between two decision variables. From section 3.1,
two independent variables can interact with the same variables, which are known
as overlapping variables. We will now show theoretically how an overlapping
variable is identified.

Theorem 3: xk is an overlapping variable, if ∃i, j ∈ {1, ..., n} 6= k, such that,
∂2f(~x)
∂xk∂xi

6= 0, and ∂2f(~x)
∂xk∂xj

6= 0, but ∂
2f(~x)
∂xi∂xj

= 0.

Proof: ∂2f(~x)
∂xk∂xi

6= 0⇒ xk and xi are nonseparate.
∂2f(~x)
∂xk∂xj

6= 0⇒ xk and xj are nonseparate.
∂2f(~x)
∂xi∂xj

= 0⇒ xi and xj are independent.
⇒ From the definition for overlapping variables, we can obtain that xk is an

overlapping variable of subcomponents including elements xi and xj respectively.
Definition 7 Degree of interaction between two variables
For two decision variables xi and xj ,

∂2f(~x)
∂xi∂xj

shows the degree of interaction
between them.

∂2f(~x)
∂xi∂xj

shows the strength of non-separability between the two variables. The

larger |∂
2f(~x)
∂xi∂xj

| is, the stronger the interaction between these two variables; oth-
erwise, the two are more likely to be independent. In the extreme case, when
∂2f(~x)
∂xi∂xj

= 0, then xi and xj are separable. Otherwise, xi and xj are nonseparable

and ∂2f(~x)
∂xi∂xj

indicts how strongly they interact with each other.
We now give a specific example to show how the above theorems and lemmas

can be used. Consider an optimization problem f(~x) = x21 + λ1x1x2 + λ2x2x3 +

11

Page 14 of 28

Acc
ep

te
d

M
an

us
cr

ip
t

x22 + x23, λ1 6= 0, λ2 6= 0.
The first order partial derivative in each direction is fx1 = 2x1 + λ1x2, fx2 =

2x2+λ1x1+λ2x3, fx3 = 2x3+λ2x2 respectively. From lemma 2, we can draw the
following conclusions: 1) Because there are only two variables x1 and x2 involved
in fx1 , x1 interacts with x2 and x1 is separate with x3; 2) From the expression of
fx2 , x2 interacts with both x1 and x3; 3) From the expression of fx3 , x3 interacts
with x2 but separates with x1.

The mixed second order derivatives are ∂2f(~x)
∂x1∂x2

= λ1,
∂2f(~x)
∂x1∂x3

= 0, and ∂2f(~x)
∂x2∂x3

=
λ2 respectively. By using theorem 1 and theorem 2 we can reach the same conclu-
sions that were derived from lemma 1: 1) x1 and x3 are separate; 2) x2 interacts
with x1 and x3. Moreover, according to theorem 3, x2 is an overlapping variable
to x1 and x3. The degree of interaction between x1 and x2 is λ1 and the degree
of interaction between x2 and x3 is λ2. If we set λ1 = 0 then x1 and x2 become
separate; if λ2 = 0, then x2 and x3 are separate; if both λ1 = 0 and λ2 = 0, then
f(~x) becomes a fully-separable function.

3.3. Derived interaction criterion
The previous section 3.2 provided a theoretical foundation with respect to the

non-separability of optimization problems. In this section, we introduce an inter-
action criterion based on the above mentioned theorems and lemmas, and some
decomposition algorithms for detecting the interactive subcomponents of the op-
timization function.

In the previous section 3.2, we showed how ∂2f(~x)
∂xi∂xj

is of great importance in
determining the relationship between two variables xi and xj . Here we show how
an interaction criterion can be derived by considering such second mixed partial
derivatives.

Interaction and separability criterion (IS criterion):
If ∀ a, a+ δa ∈ [li, ui], b, b + δb ∈ [lj, uj], such that, (f(~x)|xi=a+δa,xj=b+δb −

f(~x)|xi=a,xj=b+δb) − (f(~x)|xi=a+δa,xj=b − f(~x)|xi=a,xj=b) = 0, then xi and xj
are separate with each other; If ∃a, a + δa ∈ [li, ui], b, b + δb ∈ [lj, uj], such that,
(f(~x)|xi=a+δa,xj=b+δb−f(~x)|xi=a,xj=b+δb)−(f(~x)|xi=a+δa,xj=b−f(~x)|xi=a,xj=b) 6=
0, then xi and xj interact with each other. Here we denote (f(~x)|xi=a+δa,xj=b+δb−
f(~x)|xi=a,xj=b+δb)− (f(~x)|xi=a+δa,xj=b − f(~x)|xi=a,xj=b) as5xi,xj .

Proof: We first prove that ∂2f(~x)
∂xi∂xj

⇒ 5xi,xj . Then according to the theorems
and lemmas in the previous section 3.2, we can obtain the conclusions in the
interaction criterion.

12

Page 15 of 28

Acc
ep

te
d

M
an

us
cr

ip
t

∂2f(~x)
∂xi∂xj

⇒
∫ b+δb

b

∫ a+δa

a

∂2f(~x)

∂xi∂xj
dxi dxj

⇒
∫ b+δb

b

∂f(~x)

∂xj
|a+δaa dxj

⇒ (f(~x)|xi=a+δa,xj=b+δb − f(~x)|xi=a,xj=b+δb)−
(f(~x)|xi=a+δa,xj=b − f(~x)|xi=a,xj=b)

The above derived criterion is useful in that it only requires the difference of
two decision variables, and does not require explicit knowledge of the derivatives
of the objective function, which will often be unavailable, e.g. in many real-world
problems for which there is no obvious overall analytic function.

3.4. Proposed algorithms based on IS criterion
Section 3.2, presented a theoretical foundation for understanding interaction

and this was then used in section 3.3, to derive a useful interaction criterion. The
main advantage of the derived criterion is that it only requires the difference of two
decision variables and does not require the derivatives of the objective function to
be explicitly known. This makes it more convenient and suitable for implementa-
tion, especially for problems without obvious analytical functions. In this section,
we propose a algorithm, random DG (RDG), for identifying the interactive vari-
ables and subcomponents according to the IS criterion given in section 3.3. RDG
is introduced in algorithm 2. For comparison, we also show the pseudocode for
the DG grouping method, based on the DG criterion, in algorithm 1.

Algorithm 2 finds the subcomponents of a function by detecting the interaction
between two variables xi and xj . Once these two variables are determined as non-
separable according to IS criterion, they are grouped into a single subcomponent
and xj is then deleted from the selection pool. After all dimensions in the selec-
tion pool dims have been compared with the ith variable for interaction detection,
the sub-component for all variables interacted with xi is formed. If no interaction
is detected, xi is considered to be separable and is placed into the Seps set. This
process is repeated until there is no element left in the selection pool. Note that
the main difference between the DG and RDG grouping algorithms is the method
for generating the two pairs of decision variable vectors ~x1, ~x2, and ~x3, ~x4 for
the interaction detection between ith and jth variables. In RDG, ~x1 is randomly
generated from the decision space. Then ~x2 is obtained through replacing the ith
dimension in vector ~x1 by a random number tempi inside the boundaries of the
ith variable. ~x3 and ~x4 are obtained by replacing the value of the jth variable
with a randomly generated tempj form [~L(j), ~U(j)]. Then5xi,xj is calculated to

13

Page 16 of 28

Acc
ep

te
d

M
an

us
cr

ip
t

determine if these two variables interact with each other.

Algorithm 1 DG grouping for detecting the subcomponents of an optimization
problem according to DG criterion

Input: optimization function func, dimension number n, upper and low bounds
~U and ~L
Initialization: dims = {1, 2, ...n}, Seps = {}, allgroups={}
for i ∈ dims do

group = i;
~x1 = ~L× ones(1, n)
~x2 = ~x1

~x2(i) = ~U(i)
for j ∈ dims ∧ i 6= j do

~x3 = ~x1

~x4 = ~x2

~x3(j) = 0
~x4(j) = 0
if | 5xi,xj | > ε then

gruop = group ∪ j
end if

end for
dims = dims− group
if length(group) = 1 then

Seps = Seps ∪ group
else

allgroups = allgroups ∪ {group}
end if

end for
Output: allgroups = allgroups ∪ {Seps}

3.5. Relationship between the proposed method, DG and CCVIL
In section 2.3, we provided a detailed explanation of two automatic grouping

methods, CVIL [30] and DG [20]. In this section, we discuss the properties of
these methods and their relationships with the criterion and theorems proposed in
this paper.

14

Page 17 of 28

Acc
ep

te
d

M
an

us
cr

ip
t

Algorithm 2 Random DG approach for detecting the subcomponents of a opti-
mization problem according to IS criterion

Input: optimization function func, dimension number n, upper and low bounds
~U and ~L
Initialization: dims = {1, 2, ...n}, Seps = {}, allgroups={}
for i ∈ dims do

group = i
tempi = ~L(i) + rand(1, 1)× (~U(i)− ~L(i))

~x1 = ~L+ rand(1, n)× (~U − ~L)
~x2 = ~x1

~x2(i) = tempi
for j ∈ dims ∧ i 6= j do

tempj = ~L(j) + rand(1, 1)× (~U(j)− ~L(j))
~x3 = ~x1

~x4 = ~x2

~x3(j) = tempj
~x4(j) = tempj
if | 5xi,xj | > ε then

gruop = group ∪ j
end if

end for
dims = dims− group
if length(group) = 1 then

Seps = Seps ∪ group
else

allgroups = allgroups ∪ {group}
end if

end for
Output: allgroups = allgroups ∪ {Seps}
Notation rand(1, n) stands for a 1-by-n matrix with random values drawn on the open interval (0, 1). rand(1, 1) is
a random value from (0, 1).

15

Page 18 of 28

Acc
ep

te
d

M
an

us
cr

ip
t

Chen et al. proposed a variable interaction learning algorithm CCVIL in [30].
The interaction is determined by the interaction criterion in equation (1). How-
ever, note that the interaction criterion in equation (1) only encodes one of the
possible scenarios defined by IS criterion. More specifically, if (1) holds, then
variables xi and xj interact with each other. But if (1) does not hold, there is no
guarantee that variables xi and xj are necessarily separate with each other. We
now provide proofs that equation (1) ⇒ IS criterion for iteration holds and IS
criterion for iteration holds ; equation (1).

Denote ~x1 = (..., xi−1, a, ..., xj−1, b, ...), ~x2 = (..., xi−1, a+δa, ..., xj−1, b, ...),
~x3 = (..., xi−1, a, ..., xj−1, b+δb, ...), ~x4 = (..., xi−1, a+δa, ..., xj−1, b+δb, ...).
Then 5xi,xj = (f(~x2) − f(~x1)) − (f(~x4) − f(~x3)). Therefore, the IS crite-
rion can be rewritten as ∀ a, a+ δa ∈ [li, ui], b, b + δb ∈ [lj, uj], such that
f(~x1) − f(~x2) = f(~x3) − f(~x4), then xi and xj are separate with each other; ∃
a, a+ δa ∈ [li, ui], b, b+ δb ∈ [lj, uj], such that f(~x1)− f(~x2) 6= f(~x3)− f(~x4),
then xi and xj interact each other.

If the condition for CCVIL holds then the IS criterion for identifying interac-
tion also holds. (equation (1)⇒5xi,xj 6= 0)

Proof:Because the condition for CCVIL holds, ∃a, b, δa 6= 0, δb 6= 0 ∈
R, such that f(~x1)−f(~x2) < 0∧f(~x3)−f(~x4) > 0⇒ f(~x1)−f(~x2) 6= f(~x3)−f(~x4).
So if equation (1) holds, we can derive that equation5xi,xj 6= 0 holds.

If the condition for 5xi,xj 6= 0 holds, there is no guarantee that CCVIL crite-
rion also holds. (equation5xi,xj 6= 0; equation (1))

Proof: If equation 5xi,xj 6= 0 holds, there are four scenarios for the relation
between f(~x1)− f(~x2) and f(~x3)− f(~x4): 1. f(~x1)− f(~x2) < 0 and f(~x3)− f(~x4) >
0; 2. f(~x1)− f(~x2) 5 0, f(~x3)− f(~x4) 5 0 and f(~x1)− f(~x2) 6= f(~x3)− f(~x4); 3.
f(~x1)−f(~x2) = 0, f(~x3)−f(~x4) = 0, and f(~x1)−f(~x2) 6= f(~x3)−f(~x4); 4. f(~x1)−
f(~x2) > 0 and f(~x3)− f(~x4) < 0. So equation5xi,xj 6= 0; equation (1). In other
word, if two variables are nonseparable, equation (1) does not necessarily hold.
Therefore the interaction criterion used in CCVIL cannot detect all nonseparable
variables.

Omidvar et al. investigated large scale optimization problems from a theoreti-
cal perspective and proposed the automatic grouping method DG in [20] to detect
interacting variables with high accuracy. The DG criterion to identify the interac-
tion between two variables is derived from the mathematical definition of partially
additively separable optimization problems (Definition 5 in section 3.1).

The equation (2) in the DG criterion is actually equivalent to the IS criterion
in terms of identifying the interaction 5xi,xj 6= 0. However, in the DG criterion,
if two variables are interactive, equation (2) holds for all a, a+ δa ∈ [li, ui], b,

16

Page 19 of 28

Acc
ep

te
d

M
an

us
cr

ip
t

b+δb ∈ [lj, uj]. In contrast, in the IS criterion, if there exits one a, a+ δa ∈ [li, ui],
b, b+ δb ∈ [lj, uj], such that5xi,xj 6= 0, then we can determine that the two vari-
ables are nonseparable. It is obvious that the DG criterion holds⇒ IS criterion for
variable interaction holds. However, IS criterion for variable interaction holds ;
DG criterion holds. Therefore, the DG criterion is a sufficient but not necessary
condition for detecting two interactive variables. As an example, consider a func-
tion f(~x) = x1x2(x1 − 1)(x2 − 1), where x1 and x2 are nonseparable variables.
However, not all a, a+ δa ∈ [li, ui], b, b+δb ∈ [lj, uj] such that equation (2) holds.
When ~x1 = (0, 0), ~x2 = (1, 0), x3 = (0, 1), ~x4 = (1, 1), equation (2) does not
hold.

4. Experimental results and discussion

The comparison results of our proposed grouping algorithm with two auto-
matic grouping methods from the literature, DG and CCVIL, are shown in Ta-
ble 2 on 20 benchmark functions [21]. Optimization functions G01 − G03 are
completely separable. G04 − G08 have only one nonseparable subcomponent
comprising 50 variables, and the other 950 variables are separate. G09 − G13
have 10 nonseparable groupings and each of them has 50 interacting variables.
G14−G18 are nonseparable functions with 20 subcomponents. G19 and G20 are
nonseparable functions with one subcomponent.

For separate functions G01 − G03, both RDG and DG found all the 1000
separate variables correctly. CCVIL erroneously placed some separable variables
into one group as nonseparable variables for G03. Moreover, CCVIL required a
greater number of fitness evaluations (FEs) than RDG and DG.

ForG04−G08, RDG and DG both achieved good results onG05 andG06. For
G07, RDG found the correct nonseparable groups and separable groups. CCVIL
also achieved good result on G07, only one separable variable was misplaced into
nonseparable group. However, DG was unable to correctly find the separable or
nonseparable groups for G07. For G04 and G08, both DG and RDG performed
poorly, while CCVIL found 43 nonseparable variables and only misplaced 7 non-
separable variables.

RDG and DG show similar performance on G09 − G13. They classified cor-
rectly on functions G09−G12. For G13, RDG identified 537 separable variables
and 463 nonseparable variables were grouped into 80 subcomponents. DG only
identified 131 separable variables and the non-separable variables were grouped
into 40 subgroups. CCVIL grouped all the variables into one non separable group
on G13.

17

Page 20 of 28

Acc
ep

te
d

M
an

us
cr

ip
t

Table 2: Comparison of grouping results by algorithms RDG, DG and CCVIL respectively.

RDG(ε = 10−3)/DG(ε = 10−3)/CCV IL

Fun Sep Vars
Non-sep

Vars
Non-sep
Groups

Captured Sep
Var

Formed Non-
sep Groups

FE

G01 1000 0 0 1000/1000/1000 0/0/0 1001000/1001000/69990
G02 1000 0 0 1000/1000/1000 0/0/0 1001000/1001000/69990
G03 1000 0 0 1000/1000/938 0/0/1 1001000/1001000/1798666

G04 950 50 1 3/33/957 9/10/1 3490/14564/1797614
G05 950 50 1 950/950/950 1/1/1 905450/905450/1795705
G06 950 50 1 950/950/910 1/1/22 906332/906332/1796370
G07 950 50 1 950/247/951 1/4/1 906822/7410/1796475
G08 950 50 1 10/135/1000 12/5/0 8630/23608/69842

G09 500 500 10 500/500/583 10/10/33 270802/270802/1792212
G10 500 500 10 500/500/508 10/10/10 272958/272958/1774642
G11 500 500 10 502/501/476 10/10/26 271662/270640/1774565
G12 500 500 10 500/500/516 10/10/11 271390/271390/1777344
G13 500 500 10 537/131/1000 80/40/0 468696/48470/69990

G14 0 1000 20 0/0/150 20/20/63 21000/21000/1785975
G15 0 1000 20 0/0/18 20/20/20 21000/21000/1751241
G16 0 1000 20 0/4/11 20/20/20 21000/21128/1751647
G17 0 1000 20 0/0/25 20/20/20 21000/21000/1752340
G18 0 1000 20 0/85/1000 20/49/0 21000/34230/69990

G19 0 1000 20 0/0/0 1/1/1 2000/2000/48212
G20 0 1000 20 10/42/972 22/16/14 8630/22206/17908708

18

Page 21 of 28

Acc
ep

te
d

M
an

us
cr

ip
t

Table 3: Comparison of different parameter ε on the grouping results.

RDG(ε = 10−1)/RDG(ε = 10−6)

Fun Sep Vars
Non-sep

Vars
Non-sep
Groups

Captured Sep
Var

Formed Non-sep
Groups

FE

G01 1000 0 0 1000/13 0/9 1001000/4302
G02 1000 0 0 1000/1000 0/0 1001000/1001000
G03 1000 0 0 1000/3 0/10 1001000/4910

G04 950 50 1 2/5 13/8 8840/3704
G05 950 50 1 950/950 1/1 905450/905450
G06 950 50 1 950/2 1/8 906332/3342
G07 950 50 1 950/2 1/13 906822/7410
G08 950 50 1 5/3 12/18 5570/9324

G09 500 500 10 500/2 10/11 270802/5994
G10 500 500 10 502/500 10/10 274972/272958
G11 500 500 10 509/1 10/15 315094/15228
G12 500 500 10 500/500 10/10 271390/271390
G13 500 500 10 550/5 173/23 636686/9990

G14 0 1000 20 0/3 20/11 21000/5254
G15 0 1000 20 1/0 20/20 21038/21000
G16 0 1000 20 20/0 74/20 53066/21000
G17 0 1000 20 0/0 20/20 21000/21000
G18 0 1000 20 79/4 359/18 383540/6844
G19 0 1000 20 0/0 1/1 2000/2000
G20 0 1000 20 0/11 500/18 501000/9202

19

Page 22 of 28

Acc
ep

te
d

M
an

us
cr

ip
tTable 4: Comparison of optimization results against other five algorithms on the CEC’s 2010

benchmark functions using 25 independent trials

Functions DECC-RDG DECC-DG MLCC DECC-D DECC-DML DECC-I

G01
Mean 8.26E+03 5.47E+03 1.53E-27 1.01E-25 1.93E-25 1.73E+00
Std 3.20E+04 2.02E+04 7.66E-27 1.40E-25 1.86E-25 2.55E+00

G02
Mean 4.44E+03 4.39E+03 5.57E-01 2.99E+02 2.17E+02 4.40E+03
Std 1.52E+02 1.97E+02 2.21E+00 1.92E+01 2.98E+01 1.90E+02

G03
Mean 1.67E+01 1.67E+01 9.88E-13 1.81E-13 1.18E-13 1.67E+01
Std 3.04E-01 3.34E-01 3.70E-01 6.68E-15 8.22E-15 3.75E-01

G04
Mean 4.35E+12 4.79E+12 9.61E+12 3.99E+12 3.58E+12 6.13E+11
Std 1.04E+12 1.44E+12 3.43E+12 1.30E+12 1.54E+12 2.08E+07

G05
Mean 1.49E+08 1.55E+08 3.84E+08 4.16E+08 2.98E+08 1.34E+08
Std 1.83E+07 2.17E+07 6.93E+07 1.01E+08 9.31E+07 2.31E+07

G06
Mean 1.64E+01 1.64E+01 1.62E+07 1.36E+07 7.93E+05 1.64E+01
Std 3.27E-01 2.71E-01 4.97E+06 9.20E+06 3.97E+06 2.66E-01

G07
Mean 8.02E+08 1.16E+04 6.89E+05 6.58E+07 1.39E+08 2.97E+01
Std 8.24E+08 7.41E+03 7.37E+05 4.06E+07 7.72E+07 8.59E+01

G08
Mean 1.03E+08 3.04E+07 4.38E+07 5.39E+07 3.46E+07 3.19E+05
Std 8.71E+07 2.11E+07 3.45E+07 2.93E+07 3.56E+07 1.10E+06

G09
Mean 5.63E+07 5.96E+07 1.23E+08 6.19E+07 5.92E+07 4.84E+07
Std 5.77E+06 8.18E+06 1.33E+07 6.43E+06 4.71E+06 6.56E+06

G10
Mean 4.54E+03 4.52E+03 3.43E+03 1.16E+04 1.25E+04 4.34E+03
Std 1.42E+02 1.41E+02 8.72E+02 2.68E+03 2.66E+02 1.46E+02

G11
Mean 1.03E+01 1.03E+01 1.98E+02 4.76E+01 1.80E-13 1.02E+01
Std 8.00E-01 1.01E+00 6.98E-01 9.53E+01 9.88E-15 1.13E+00

G12
Mean 2.65E+03 2.52E+03 3.49E+04 1.53E+05 3.79E+06 1.47E+03
Std 7.65E+02 4.86E+02 4.92E+03 1.23E+04 1.50E+05 4.28E+02

G13
Mean 3.56E+06 4.54E+06 2.08E+03 9.87E+02 1.14E+03 7.51E+02
Std 6.08E+05 2.13E+06 7.27E+02 2.41E+02 4.31E+02 3.70E+02

G14
Mean 3.47E+08 3.41E+08 3.16E+08 1.98E+08 1.89E+08 3.38E+08
Std 2.83E+07 2.41E+07 2.77E+07 1.45E+07 1.49E+07 2.40E+07

G15
Mean 5.85E+03 5.88E+03 7.11E+03 1.53E+04 1.54E+04 5.87E+03
Std 9.00E+01 1.03E+02 1.34E+03 3.92E+02 3.59E+02 9.89E+01

G16
Mean 7.01E-13 7.39E-13 3.76E+02 1.88E+02 5.08E-02 2.47E-13
Std 4.88E-14 5.70E-14 4.71E+01 2.16E+02 2.54E-01 9.17E-15

G17
Mean 4.11E+04 4.01E+04 1.59E+05 9.03E+05 6.54E+06 3.91E+04
Std 2.89E+03 2.85E+03 1.43E+04 5.28E+04 4.63E+05 2.75E+03

G18
Mean 6.73E+07 1.11E+10 7.09E+03 2.12E+03 2.47E+03 1.17E+03
Std 2.86E+07 2.04E+09 4.77E+03 5.18E+02 1.18E+03 9.66E+01

G19
Mean 1.82E+06 1.74E+06 1.36E+06 1.33E+07 1.59E+07 1.74E+06
Std 8.52E+04 9.54E+04 7.35E+04 1.05E+06 1.72E+06 9.54E+04

G20
Mean 1.28E+09 4.87E+07 2.05E+03 9.91E+02 9.91E+02 4.14E+03
Std 3.57E+08 2.27E+07 1.80E+02 2.61E+01 3.51E+01 8.14E+02

20

Page 23 of 28

Acc
ep

te
d

M
an

us
cr

ip
t

For G14−G18, RDG achieved the best performance and it correctly grouped
all the variables. DG was unable to find all the nonseparable variables (85 nonsep-
arable variables were misplaced as separable variables) on G18 and the number
of the subcomponents was not correctly chosen either. CCVIL cannot correctly
identity all the nonseparable groups on these functions compared to RDG and DG.

All three algorithms obtained good results on G19. However, none of the al-
gorithms were able to correctly group all variables into one nonseparable subcom-
ponent for G20. The main difference between the results with function G19 and
G20 is that the non-separable variables in G20 are overlapping variables. A de-
tailed explanation of why the current algorithms fail to capture the non-separable
variables of functions with overlapping variables is given later in this section.

Table 3 shows the effect of the parameter ε on the grouping performance of
the proposed method. It is apparent that a larger ε helps in finding the separable
variables, while some separable variables were misclassified as interacting vari-
ables with very small ε (ε = 10−6) values (which might be due to the precision
error in calculating5xi,xj). However, compared to CCVIL with different ε, RDG
had better performance on most of the 20 functions. In other words, RDG is not
very sensitive to the parameter ε as long as it is sufficiently small.

It is evident that RDG outperforms approaches DG and CCVIL on most of the
test problems and RDG can identify the separable subcomponents that DG and
CCVIL fail to find, which shows the advantages of the proposed decomposition
method. But, both RDG and DG had poor performance on G08, G13 and G20.
Moreover, it is very interesting to find that G08, G13 and G20 are instances of
the Rosenbrock function. So here we make an insight on the reason of the poor
performer on these functions. Based on the theritical analysis on the overlapping
variables, it is easy to know that these three optimization problems all contain
overlapping variables. Here we analyse the behaviour of RDG and DG when han-
dling problems with overlapping variables.

Once RDG or DG determines that xj interacts with xi, xj is then deleted from
the selection pool and grouped into a subcomponent with xi. This means that xj is
not compared with other variables that are dependent with xi. Consider a function
f(~x) with ~x = {x1, ..., , xn}. Let xp, 1 < p < n is a overlapping variable and
xp−1 interacts with xp, xp interacts with xp+1, but xp−1 and xp+1 are independent.
If we apply RDG to find the subcomponent of this problem. xp−1 and xp is put
into one subcomponent. Because xp is deleted after the interaction detection with
xp, xp never get the chance to detect the relationship between xp+1 and xp+1 is
grouped into another subcomponent as it is dependent with xp−1. In a conclu-
sion, these approaches cannot correctly identify the nonseparable groups when

21

Page 24 of 28

Acc
ep

te
d

M
an

us
cr

ip
t

deal with problems with overlapping variables.
In table 4, the optimization results under CC framework with RDG and other

algorithms with different grouping methods. The decomposition strategies used
are DG (applied in algorithm DECC-DG), random grouping (DECC-G, MLCC)[31],
delta grouping (DECC-D, DECC-DML) [33], and an ideal grouping that can be
derived by Theorem 1 and Theorem 2. DECC-RDG and DECCDG outperform
other algorithms on functions G05∼G09, G12, G15∼G17. DECC-RDG outper-
forms DECC-DG on functions G04, G05, G09, G16, and G18. (Note that the
results of the comparison algorithms were from [20].)

5. Concluding remarks

In this paper, we have set out a theoretical foundation for understanding de-
composition of LSO problems and we have proposed an automatic grouping algo-
rithm, RDG, for identifying separable and nonseparable groups automatically. Ex-
perimental results also show that the proposed methods outperform other group-
ing algorithms on the 20 benchmark problems. We conclude with remarks on two
more specific issues.

1) We have analyzed the behaviour of the proposed decomposition approach
on optimization problems with overlapping variables and the experimental results
also show that the proposed method cannot correctly group all the independent
variables when dealing with overlapping variables. Neither the proposed method
nor other decomposition methods have carefully investigated this issue. So, how
to deal problems with overlapping variables is one of our future works.

2) Although accurate decomposition to identify interacting decision variables
is very important for optimization, even a perfect decomposition strategy can not
guarantee a successful optimization stage. Future work will investigate which
decomposition methods most benefit the optimization stage, even if they do not
necessarily yield an accurate grouping result.

Acknowledgements

This work was supported by the National Natural Science Foundation of China
(Grant No.61603305), the China Postdoctoral Science Foundation (Grant No.
2016M602857).

22

Page 25 of 28

Acc
ep

te
d

M
an

us
cr

ip
t

References

[1] X. Li, K. Tang, M. N. Omidvar, Z. Yang, K. Qin, H. China, Benchmark
functions for the cec 2013 special session and competition on large-scale
global optimization, gene 7 (2013) 33.

[2] K. Tang, X. Yao, P. N. Suganthan, C. MacNish, Y.-P. Chen, C.-M. Chen,
Z. Yang, Benchmark functions for the cec2008 special session and compe-
tition on large scale global optimization, Nature Inspired Computation and
Applications Laboratory, USTC, China.

[3] S. Rahnamayan, G. G. Wang, Solving large scale optimization problems
by opposition-based differential evolution (ode), WSEAS Transactions on
Computers 7 (10) (2008) 1792–1804.

[4] M. Srinivas, L. Patnaik, Genetic algorithms: a survey, Computer 27 (6)
(1994) 17–26.

[5] D. E. Goldberg, K. Deb, A comparative analysis of selection schemes used
in genetic algorithms, in: Foundations of Genetic Algorithms, 1991, pp. 69–
93.

[6] Z. Michalewicz, M. Schoenauer, Evolutionary algorithms for constrained
parameter optimization problems, Evolutionary computation 4 (1) (1996) 1–
32.

[7] A. Eiben, Z. Michalewicz, M. Schoenauer, J. Smith, Parameter Control in
Evolutionary Algorithms, in: F. G. Lobo, C. F. Lima, Z. Michalewicz (Eds.),
Parameter Setting in Evolutionary Algorithms, Vol. 54 of Studies in Compu-
tational Intelligence, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007,
Ch. 2, pp. 19–46.

[8] J. Vesterstrom, R. Thomsen, A comparative study of differential evolu-
tion, particle swarm optimization, and evolutionary algorithms on numerical
benchmark problems, Congress on Evolutionary Computation (CEC2004) 2
(2004) 1980–1987 Vol.2.

[9] L. Li, X. Yao, R. Stolkin, M. Gong, S. He, An evolutionary multi-objective
approach to sparse reconstruction, IEEE Transactions on Evolutionary Com-
putation 18 (6) (2014) 827–844.

23

Page 26 of 28

Acc
ep

te
d

M
an

us
cr

ip
t

[10] L. Jiao, L. Li, R. Shang, F. Liu, R. Stolkin, A novel selection evolutionary
strategy for constrained optimization, Information Sciences 239 (2013) 122–
141.

[11] J. Kennedy, Particle swarm optimization, Springer US, 2010.

[12] Z.-H. Zhan, J. Zhang, Y. Li, Y. hui Shi, Orthogonal learning particle swarm
optimization, IEEE Transactions on Evolutionary Computation 15 (6) (2011)
832–847.

[13] J. Brest, S. Greiner, B. Boskovic, M. Mernik, V. Zumer, Self-adapting con-
trol parameters in differential evolution: A comparative study on numeri-
cal benchmark problems, IEEE Transactions on Evolutionary Computation
10 (6) (2006) 646–657.

[14] R. Storn, K. Price, Differential evolution–a simple and efficient heuristic for
global optimization over continuous spaces, Journal of global optimization
11 (4) (1997) 341–359.

[15] E. Aarts, J. Korst, Simulated annealing and Boltzmann machines: a stochas-
tic approach to combinatorial optimization and neural computing, Wiley,
1988.

[16] P. J. Van Laarhoven, E. H. Aarts, Simulated annealing, Springer, 1987.

[17] M. Dorigo, M. Birattari, Ant colony optimization, in: Encyclopedia of Ma-
chine Learning, Springer, 2010, pp. 36–39.

[18] M. Dorigo, T. Stützle, The ant colony optimization metaheuristic: Al-
gorithms, applications, and advances, in: Handbook of metaheuristics,
Springer, 2003, pp. 250–285.

[19] R. Descartes, J. Veitch, Discourse on method, Blue Unicorn Editions, 2002.

[20] M. Omidvar, X. Li, Y. Mei, X. Yao, Cooperative co-evolution with differen-
tial grouping for large scale optimization, IEEE Transactions on Evolution-
ary Computation 18 (3) (2014) 378–393.

[21] K. Tang, X. Li, P. N. Suganthan, Z. Yang, T. Weise, Benchmark Functions
for the CEC’2010 Special Session and Competition on Large-Scale Global
Optimization, Tech. rep., University of Science and Technology of China

24

Page 27 of 28

Acc
ep

te
d

M
an

us
cr

ip
t

(USTC), School of Computer Science and Technology, Nature Inspired
Computation and Applications Laboratory (NICAL): Héféi, Ānhuı̄, China
(2010).
URL http://www.it-weise.de/documents/files/
TLSYW2009BFFTCSSACOLSGO.pdf

[22] H. H. Rosenbrock, An automatic method for finding the greatest or least
value of a function, The Computer Journal 3 (3) (1960) 175–184.

[23] Y.-W. Shang, Y.-H. Qiu, A Note on the Extended Rosenbrock Function, Evo-
lutionary Computation 14 (1) (2006) 119–126.

[24] L. Li, R. Stolkin, L. Jiao, F. Liu, S. Wang, A compressed sensing approach
for efficient ensemble learning, Pattern Recognition 47 (10) (2014) 3451 –
3465.

[25] G. B. Dantzig, P. Wolfe, Decomposition principle for linear programs, Op-
erations research 8 (1) (1960) 101–111.

[26] A. van der Vaart, K. M. Merz, Divide and conquer interaction energy decom-
position, The Journal of Physical Chemistry A 103 (17) (1999) 3321–3329.

[27] M. Reimann, K. Doerner, R. F. Hartl, D-ants: Savings based ants divide
and conquer the vehicle routing problem, Computers & Operations Research
31 (4) (2004) 563–591.

[28] M. A. Potter, K. A. De Jong, A cooperative coevolutionary approach to
function optimization, in: Parallel Problem Solving from NaturePPSN III,
Springer, 1994, pp. 249–257.

[29] Y. Liu, X. Yao, Q. Zhao, T. Higuchi, Scaling up fast evolutionary program-
ming with cooperative coevolution, in: Proceedings of the 2001 Congress on
Evolutionary Computation, Vol. 2, IEEE, 2001, pp. 1101–1108.

[30] W. Chen, T. Weise, Z. Yang, K. Tang, Large-scale global optimization using
cooperative coevolution with variable interaction learning, in: R. Schaefer,
C. Cotta, J. Koodziej, G. Rudolph (Eds.), Parallel Problem Solving from
Nature, PPSN XI, Vol. 6239 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, 2010, pp. 300–309.

25

Page 28 of 28

Acc
ep

te
d

M
an

us
cr

ip
t

[31] Z. Yang, K. Tang, X. Yao, Large scale evolutionary optimization using co-
operative coevolution, Information Sciences 178 (15) (2008) 2985 – 2999,
nature Inspired Problem-Solving.

[32] T. Ray, X. Yao, A cooperative coevolutionary algorithm with correlation
based adaptive variable partitioning, in: Evolutionary Computation, 2009.
CEC’09. IEEE Congress on, IEEE, 2009, pp. 983–989.

[33] M. N. Omidvar, X. Li, X. Yao, Cooperative co-evolution with delta grouping
for large scale non-separable function optimization, in: 2010 IEEE Congress
on Evolutionary Computation (CEC), IEEE, 2010, pp. 1–8.

[34] Z. Yang, K. Tang, X. Yao, Multilevel cooperative coevolution for large scale
optimization, in: IEEE Congress on Evolutionary Computation, 2008. CEC
2008. (IEEE World Congress on Computational Intelligence), 2008, pp.
1663–1670.

[35] M. Omidvar, X. Li, Z. Yang, X. Yao, Cooperative co-evolution for large
scale optimization through more frequent random grouping, in: Evolution-
ary Computation (CEC), 2010 IEEE Congress on, 2010, pp. 1–8.

[36] F. Van den Bergh, A. Engelbrecht, A cooperative approach to particle swarm
optimization, IEEE Transactions on Evolutionary Computation 8 (3) (2004)
225–239.

[37] Y.-j. Shi, H.-f. Teng, Z.-q. Li, Cooperative co-evolutionary differential evo-
lution for function optimization, in: L. Wang, K. Chen, Y. Ong (Eds.), Ad-
vances in Natural Computation, Vol. 3611 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, 2005, pp. 1080–1088.

[38] X. Li, X. Yao, Cooperatively coevolving particle swarms for large scale op-
timization, IEEE Transactions on Evolutionary Computation 16 (2) (2012)
210–224.

[39] P. L. Toint, Test problems for partially separable optimization and results for
the routine pspmin, Technical report, The university of Namur, Department
of mathematics, Belgium.

26

