
 
 

University of Birmingham

A microscopic evaluation of railway timetable
robustness and critical points
Solinen, Emma; Nicholson, Gemma; Peterson, Anders

DOI:
10.1016/j.jrtpm.2017.08.005

License:
Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Solinen, E, Nicholson, G & Peterson, A 2017, 'A microscopic evaluation of railway timetable robustness and
critical points', Journal of Rail Transport Planning and Management. https://doi.org/10.1016/j.jrtpm.2017.08.005

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 10. Apr. 2024

https://doi.org/10.1016/j.jrtpm.2017.08.005
https://doi.org/10.1016/j.jrtpm.2017.08.005
https://birmingham.elsevierpure.com/en/publications/4348a012-2e72-45a4-b8cc-73a21526b814


 

 

A Microscopic Evaluation of Railway Timetable 

Robustness and Critical Points 

Emma Solinen 
ab, 1

, Gemma Nicholson 
c
, Anders Peterson 

b
 

a
 Trafikverket, SE-172 90 Sundbyberg, Sweden 

1
 E-mail: emma.solinen@trafikverket.se, Phone: +46707247038 

b
 Department of Science and Technology, Linköping University,  

SE-601 74 Norrköping, Sweden 
c
 Birmingham Centre for Railway Research and Education, University of Birmingham, 

Edgbaston, Birmingham, B15 2TT, UK 

 

Abstract 

One method to increase the quality of railway traffic flow is to construct a more robust 

timetable in which trains are able both to recover from delays and the delays are prevented 

from propagating. Previous research results show that the indicator Robustness in Critical 

Points (RCP) can be used to increase timetable robustness. In this paper we present the 

use of a method for RCP optimization: how it can be assessed ex-post via microscopic 

simulation. From the evaluation we learn more about how increased RCP values influence 

a timetable’s performance. The aim is to understand more about RCP increase at a 

localised level within a timetable in terms of effects to the pairs of trains that are part of 

the indicator. We present a case study where an initial timetable and a timetable with 

increased RCP values are evaluated. The ex-post evaluation includes the quantification of 

measures concerning train-borne delay and robustness of operations, as well as measures 

capturing the subsequent quality of service experienced by passengers to assess the 

broader effects of improved robustness. The result shows that it is necessary to use several 

key performance indicators (KPIs) to evaluate the effects of an RCP increase. The 

robustness increases at a localised level, but the results also indicate that there is a need to 

analyse the relationship between ex-post measures and RCP further, to improve the 

method used to increase RCP and thus its overall effect on timetable robustness. 
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This paper is based on the manuscript “A Microscopic Evaluation of Robustness in Critical 

Points” by E. Solinen, G. Nicholson and A. Peterson, presented at the 7th International 

Conference on Railway Operations Modelling and Analysis, RailLille 2017. 

 

1 Introduction 

The idealised railway runs its trains as specified in a pre-defined timetable; however, 

inevitable day-to-day disturbances mean that trains cannot meet their planned times of 

arrival at stations and other timing points and times for departure from stations. More 

severe disruptions lead to trains not being able to run in their planned timeslots and/or the 

propagation of delay from one train to others in the network.  

One method to increase the quality of railway traffic flow is to construct a more robust 



 

 

timetable, i.e. a timetable in which trains are able to keep their originally planned slots 

despite small disturbances and without causing unrecoverable delays to other trains. A 

robust timetable should also be able to recover from small delays. With a more robust 

timetable railway traffic delays can be reduced and punctuality can be improved. 

Previous research results presented in Andersson et al. (2013, 2015) show that the 

concept of critical points and the related ex-ante indicator Robustness in Critical Points 

(RCP) can be used to increase timetable robustness in a satisfying way. The general idea 

is that if the robustness in some points that are particularly sensitive to disturbances can be 

improved, the whole timetable will have an improved capability to recover from delay and 

provide a better quality of service.  

Performance measurements are essential for railway operations: the capture, 

processing and reporting of performance measures is a regulatory requirement of most 

established railway systems worldwide. There is an ongoing necessity to improve the 

quantity and quality of railway services to meet the demands of customers; this needs 

objective measurement. 

Across Europe a widely-used measure of operational performance is that of 

punctuality of trains arriving at their final destination. Some tolerance is given; in 

Sweden, for example, trains arriving at their destination station within 5 minutes of the 

timetabled time are considered to be punctual. In the UK a 5 minute threshold is also used, 

except for long distance services where the requirement is relaxed to a 10 minute 

threshold.  

However, such punctuality measures do not give an assessment of performance at 

intermediate stations and do not necessarily capture well the degree of delay propagation, 

especially in timetables where journeys are padded with most of their running time 

supplements towards the destination stations. This is connected to the experience of 

passengers not being well reflected by such punctuality measures. Passengers making 

journeys between intermediate stations are not interested in punctuality of the train itself, 

but rather in the reliability of their journey. They may miss connections at intermediate 

stations without this fact being reported and measured. 

Ensuring a high quality of service provision requires monitoring with a wide-ranging 

evaluation using KPIs (key performance indicators) considering the goals of both 

operators and passengers to check that improvement in one aspect of performance is not 

being made to the detriment of other important considerations, such as improvement in 

punctuality at destination stations at the expense of missed connections for passengers at 

intermediate stations. 

Methods to improve robustness of timetables are usually assessed using microscopic, 

i.e. detailed, simulation. Typically, ex-ante indicators of robustness, based on, for 

example, traffic heterogeneity and speed, time supplements and buffers, are optimized and 

the resulting level of performance is assessed through simulation. Together with a 

balanced and thorough evaluation of performance using ex-post performance measures, 

micro simulation can give a precise assessment of changes in performance. However, this 

type of simulation is time-consuming and complex. Understanding the link between ex-

ante robustness indicators and actual resultant performance may lead to improved ability 

to optimize operational performance and a reduced requirement for exhaustive micro 

simulation in the future.  

In this paper we address the relationship between ex-ante indicators and ex-post 

measures by evaluating a timetable improved with the use of the ex-ante robustness 

indicator RCP. We present the first steps towards an implementation of an RCP 

optimization model in reality, where a macroscopically generated improved timetable is 



 

 

assessed via microscopic simulation. It is adjusted to run without conflict, i.e. to become 

feasible, at the microscopic level and subsequently evaluated with several performance 

measures.  

The aim is to understand more about RCP increase at a localised level within a 

timetable in terms of the effects on the pairs of trains that are part of the indicator. We 

combine the information in the RCP indicator with knowledge of the current punctuality 

in the initial timetable and with other ex-post measures to gain a deeper knowledge of 

when and how to apply an increase in RCP. The main contributions of this paper are 

furthering knowledge of how RCP optimization can be used in reality, and of the 

problems that may occur when transferring a macroscopically generated timetable into a 

microscopic environment. The microscopic evaluation also gives us insights into when 

and how to apply an increase in RCP and hints at what can be improved in the 

optimization model so that it smooths the implementation process, and results in better 

performing timetable. Understanding more about the relationship between ex-ante 

indicators and ex-post measures is another important contribution. 

The paper is structured in the following way. First a review of related research is 

given in Section 2 and then a description of the macro to micro transformation made in 

this study is presented in Section 3. Section 4 includes the analysis of a real-world case 

study, followed by the evaluation results in Section 5. In Section 6 the results are 

discussed and finally, in Section 7, the main findings are summarized and directions for 

future research are given.  

2 Related Work 

Several aspects of railway timetable robustness have been assessed and analysed in 

previous research. The definition of a robust timetable is, however, ambiguous. In this 

paper we refer to a timetable as robust when trains are able to keep their originally 

planned slots despite small delays and without causing unrecoverable delays to other 

trains. In a robust timetable, we also require that trains have the capability to recover from 

small delays and that the delays are kept from propagating over the network.  

Measures of robustness can be categorised in different ways, e.g. ex-ante and ex-post, 

by level of detail (macroscopic and microscopic), stage of planning, or train- or 

passenger-focussed, in the aspects of robustness that they assess.  

 

2.1 Ex-post Robustness Measures 

 

The most commonly used timetable robustness measures are ex-post measures, i.e. 

measures that are based on performance, typically of traffic. These measures cannot be 

calculated unless the timetable has been executed, either in real life or in an experimental 

environment with fictive disturbances via simulation. Typically, ex-post measures are 

based on punctuality, primary and secondary delays, number of violated connections, or 

number of trains being on-time to a station (possibly weighted by the number of 

passengers affected). For more examples and references, we refer to, e.g., the survey by 

Andersson (2014).  

The most commonly used passenger-focussed measure in planning is the maintenance 

of scheduled connections, while generalised cost measures involving waiting time, time 

in-train, time buying tickets, etc. can also be quantified. Reduced variability in travel time 

is stated as highly preferential by passengers (Transport Focus, 2015). As highlighted in 

the recent literature review by Parbo et al. (2016), most studies have focussed on robust 



 

 

timetable design from the point of view of traffic flow, using train-oriented measures to 

quantify performance. We refer also to this review as a second source of examples and 

references of such measures. Parbo et al. (2016) go on to consider passenger perception of 

railway performance, including the associated attributes that can be quantified ex-post. 

The authors note that the passenger perspective is considered infrequently in optimization 

and planning studies, despite the fact that the on-time experience of passengers can be up 

to ten percentage points lower than the associated train-based measure. They conclude 

that to adequately capture the factors important to passengers, and thus be able to reliably 

improve performance from their perspective, measures of service reliability and provision 

as well as more traditional punctuality measures should be used. This should help reduce 

the gap in perception between operators and passengers of the level of service provided.  

In addition to references covered in the surveys by Andersson (2014) and Parbo et al. 

(2016), the following two references cover to some extent the perspective of passengers in 

their evaluation. Nicholson et al. (2015) describe the framework used for the ex-post 

evaluation of performance improvement achieved in the ON-TIME project (Quaglietta et 

al., 2016). They employ a robustness measure illustrating severity of delay and recovery 

time, alongside traditional punctuality measures, which make up the traffic performance-

related components. Indicators relating to passenger journey time, comfort and ability to 

realize planned connections represent the passenger-aspect.  

Warg and Bohlin (2016) present an approach to evaluate the quality of a timetable 

with the combined use of capacity analysis and economic assessment. A train’s total 

runtime consists of the minimum runtime, the added runtime margin and also the delay. 

By weighting them in different ways we can measure the passenger perspective and 

observe that delays are important when economic aspects of timetable quality are 

considered.  

A typical approach to increase robustness is to disrupt a timetable with stochastic 

disturbances, simulate the outcome and analyse one or more ex-post measures. Then the 

timetable is re-scheduled in a way that increases the robustness. This procedure is 

repeated several times, and after the iterative process, results in an improved timetable; 

see for example Kroon et al. (2008) and Fischetti et al. (2009). Such an iterative procedure 

is however time consuming since several timetables need to be executed before we 

achieve a more robust timetable. Another approach is to use ex-ante indicators to improve 

the timetable robustness. 

 

2.2 Ex-ante Robustness Indicators 

 

Ex-ante indicators, sometimes also referred to as measures, are based on timetable 

characteristics and can already be computed and compared at an early planning stage 

without knowledge of the disturbances that may occur. Generally ex-ante indicators 

involve margin time which can be added to the runtime and stopping time to prevent 

trains from arriving late despite small delays. Margin time can also be added to the 

headway, i.e. the time separation between two consecutive trains using the same 

infrastructural resource, which serves to reduce the effects of knock-on delay. 

Not only the amount of margin time, but also its allocation is important. There are, 

however, no clear results showing how the margin time should be allocated to achieve 

increased robustness. For example, Vromans (2005) shows that a uniformly distributed 

runtime margin allocation leads to poor results when it comes to delay recovery.  

Vromans (2005), Kroon et al. (2007) and Fischetti et al. (2009) use the measure Weighted 

Average Distance (WAD) and show that it is preferable to have the runtime margin 



 

 

concentrated early in a train’s journey along a line. They also mention that if the 

disturbances occur later along the line, the runtime margin located prior to the occurrence 

may be of no use. 

Robustness measures concerning headway margin time have been studied by e.g. 

Vromans et al. (2006) and Carey (1999). Vromans et al. (2006) develop the measure 

SSHR (sum of shortest headway reciprocals) which also considers the traffic 

heterogeneity and Carey (1999) studies the distribution of headway margin along train 

journeys and sections.  

Ex-ante indicators give us information about how to improve the timetable robustness 

before the timetable is executed. However, before the ex-ante indicators can effectively be 

used for this purpose, the relationship between them and the resulting ex-post measures 

needs to be clarified, an area not well covered by the literature. Jensen et al. (2014) 

identify a gap in the understanding of the semantics of robustness indicators, i.e. the link 

between ex-ante indicators and performance outcome. They perform an initial study 

investigating the link between established ex-ante robustness indicators and the results of 

micro simulation on the Danish North West line. They show that more complex indicators 

capture changes in performance and suggest further research in the area to better 

understand the relationships between ex-ante indicators and ex-post measures. 

 

2.3 Robustness in Critical Points, RCP 

 

Due to heterogeneous traffic and interdependencies between trains, there are points in a 

timetable that are particularly sensitive to disturbances. These points can be described as 

critical points. Critical points appear in a timetable for double track lines where it is 

planned that a specific train starts its journey after another already operating train, or 

where a train is planned to overtake another train. In case of a delay in a critical point, the 

involved trains are likely to require the same infrastructural resource at the same time 

which might affect the delay propagation significantly. Interactions that occur at crossings 

are not included as critical points since the trains only interact for a short time, nor 

interactions between trains running in the opposite direction on different tracks, since they 

do not normally influence each other. Refer also to Andersson et al. (2013) for more 

details. 

Each critical point is represented by a specific station and a pair of trains, the leader 

and the follower, which interact at this geographic location in such a way that a time-

dependency occurs. The follower refers to the train that starts its journey at the critical 

point behind another train (denoted the leader), or is overtaken in the critical point by the 

other train, i.e. the leader. The robustness in critical point 𝑝 is related to the following 

three margin parts, which are illustrated in Figure 1: 

 

𝐿𝑝 – The available runtime margin time before the critical point for the leader, i.e. 

the runtime margin for Train 1 between stations A and B in Figure 1. With a 

large 𝐿𝑝 the likelihood of the leader arriving on-time to the critical point 

increases. 

𝐹𝑝  –  The available runtime margin time after the critical point for the follower, i.e. 

the runtime margin for Train 2 between stations B and C in Figure 1. A large 𝐹𝑝 

increases the opportunity to delay the follower in favour of the leader, without 

causing any unrecoverable delay to the follower. 

𝐻𝑝 –  The headway margin, sometimes referred to as buffer time, between the trains’ 



 

 

departure times in the critical point, i.e. the headway margin between Train 1 

and Train 2 at station B in Figure 1. In the critical point the trains are separated 

by the headway margin plus the minimum technical headway. With a large 𝐻𝑝 

the chance to keep the scheduled train order in the critical point increases, even in 

a delayed situation.  

 

 

We compute 𝑅𝐶𝑃𝑝, the Robustness in Critical Point 𝑝, as 

 

𝑅𝐶𝑃𝑝 = 𝐿𝑝 + 𝐹𝑝 + 𝐻𝑝 . 

 

 
Figure 1: RCP is the sum of the three margin parts: 𝐻𝑝 , 𝐿𝑝 and  𝐹𝑝. 

 

When the RCP values increase, train slots will be modified in a way which quickly 

becomes manually untraceable. To handle the modifications, Andersson et al. (2015) 

present a MILP (Mixed Integer Linear Programing) model, which takes an initial 

timetable as input, re-allocates the already existing margin time in the timetable to 

increase RCP and finally returns an improved timetable. Time is a continuous variable, 

whereas the order in which various services use infrastructural resources is captured with 

sets of integer (binary) variables. The model includes several physical and logical 

restrictions for how the timetable can be re-organized. In short, train constraints control 

the trains’ events and ensure that runtimes are respected, whereas infrastructural 

constraints restrict the train order and how the trains can use the tracks, including 

minimum headway and clearance times.  



 

 

In the model all critical points are identified and 𝑅𝐶𝑃𝑝 for each point 𝑝 is calculated. 

When optimizing the timetable the trains’ event times are modified to fulfil the 

requirement that 𝑅𝐶𝑃𝑝 always is larger than or equal to some threshold value. In the 

objective function the difference between the new and the planned event times is 

minimized, which keeps the timetable changes at a minimum. A comprehensive 

explanation of the MILP model is beyond the scope of this paper, and interested readers 

are referred to the complete description by Andersson et al. (2015). 

In Andersson et al. (2015) a preliminary evaluation is presented in which an iterative 

optimization model is used for the simulation. In that model primary delays are given to 

certain pre-selected trains with some randomness. However, the inserted primary delays 

and the dispatching algorithms used in Andersson et al. (2015) cannot claim to represent 

real conditions and therefore it is also uncertain whether RCP optimization gives the same 

optimistic results in a more realistic environment or not. 

 

2.4 Macroscopic Data Used for Microscopic Simulation 

 

The MILP model referred to above is macroscopic, which means that there are some 

simplifications regarding train movements, infrastructure layout and dispatching 

strategies. Transferring a macroscopically valid timetable to microscopic simulation 

typically leads to some complications due to the difference in level-of-detail. A problem 

frequently arising is that the optimal macroscopic timetable is infeasible, i.e. not 

executable, at microscopic level due to details arising from train speed profiles and exact 

trajectories. This problem is well-known in the literature. 

A comparison of several macroscopic models with a state-of-the-art microscopic 

model of the Dutch national timetable is made by Kecman et al. (2013), who evaluate 

their performance with respect to the feasibility of the solution. 

Schlechte et al. (2011) present a bottom-up approach, where they start at the detailed 

microscopic level as it is described in the simulation tool, in their case OpenTrack, and 

transform the model to a macroscopic representation of the network. Running and 

headway times are then rounded by a special cumulative method. This method is further 

examined by Blanco and Schlechte (2014), who can prove it to satisfy route-wise 

optimality, such that the total time on each individual route is not underestimated and the 

corresponding (overestimating) error is minimal. Local optimality, such that the 

overestimating error on any sub-route does not exceed some given tolerance level, is 

presumably guaranteed. 

Goverde et al. (2016) present a performance-based railway timetabling framework 

integrating timetable construction and evaluation on three levels: microscopic, 

macroscopic, and a corridor fine-tuning level, where each performance indicator is 

optimized or evaluated at the appropriate level. The integration of macro and micro level 

is further studied by Bešinović et al. (2016) and Bešinović et al. (2017), who have 

developed an iterative scheme for adjusting train running and minimum headway times 

until a feasible and stable timetable has been generated at the microscopic level.  

The method for transforming the macroscopic timetable to a microscopic level used in 

this paper is described in Section 3. 

3 Macroscopic to Microscopic Transformation  

To evaluate a timetable where RCP values have been optimized, as is described by 



 

 

Andersson et al. (2015), we assess ex-post measures using the microscopic railway 

simulation tool RailSys (RMCon, 2015, Bendfeldt et al., 2000). RailSys is the standard 

simulation tool used by the Swedish Transport Administration (Trafikverket), which has 

provided the infrastructure model. For simplicity, we refer to the improved timetable as 

optimized throughout this paper.  

The first step in the evaluation in RailSys is to transform the macroscopically 

generated timetable into a microscopic format by adding more details and making 

necessary adjustments. For example, the infrastructure description used in the 

optimization model is aggregated. Stations are treated as nodes with one single stopping 

point, regardless of track layout. This means that the trains’ runtimes at a station are 

identical, regardless of track use and stopping location.  

The input data that are gathered from the timetable construction at Trafikverket are 

insufficient when it comes to track use, a consequence of track use having no impact for 

the runtimes. In the optimization model all trains must have a track allocated to each event 

at all sections and if there are conflicts in the track use, the trains are routed to different 

tracks, without affecting runtimes. In RailSys the level of detail is higher and a train’s 

runtime will differ depending on whether the train has to stop at a side track where the 

possible speed is lower or not. Therefore, when the optimized timetable is imported in 

RailSys, runtimes for some trains will be changed, leading to a changed amount of 

runtime margin time and possibly also infeasibility. In the optimization model, all tracks 

at a station are treated equally, even though some tracks are connected to a platform and 

some are not. In RailSys we get a warning if a train with passenger exchange stops at a 

track without a platform, which indicates that the timetable is to some extent infeasible.  

At some stations the tracks have several stop boards depending on e.g. train length and 

platform connection. Since the optimization model handles each station as a node with 

only one place to stop, the trains’ runtimes might change when the stopping place needs to 

be corrected to fulfil demands such as train length and platform connection. This problem 

is illustrated in Figure 2 using Kimstad station (Kms) as an example. Here the centre of 

the station is located 1 km south of the platforms at (2) in Figure 2. The aggregated 

runtimes used as input to the optimization model are based on running to the centre. For 

commuter trains that stop at the platforms the runtimes north and south of Kms will then 

be invalid in RailSys. 

 

 
Figure 2: Kimstad station (Kms) where the platforms 

(1) 

(2) 

↑ Nr 

↓ Lp 



 

 

(1) are located 1 km north of the station centre (2).  

 

 

Figure 3 illustrates an example of a train’s timetable that has to be modified in RailSys 

to make it feasible. In the optimization model the timetable is feasible, but it its infeasible 

when inserted in RailSys. The platform at Vikingstad, where the stop has to take place, is 

a distance from the station centre in a similar way as illustrated by Kimstad station in 

Figure 2. This means that the runtime between Linköping and Vikingstad becomes 

negative in RailSys; see the upper table in Figure 3. To make the timetable feasible the 

stop in Vikingstad can manually be scheduled 26 seconds later than requested and the 

runtime margin time after Vikingstad can be decreased to keep the arrival time at the next 

station after Vikingstad (Mantorp). The lower table in Figure 3 shows how the timetable 

has changed after it has been made feasible in RailSys.  

 

 
   

 

Figure 3: In RailSys the timetable is at first infeasible with 

negative runtime between Linköping C and Vikingstad (upper 

table) but it is made feasible by scheduling the stop in 

Vikingstad 26 seconds later (lower table). 
 

 

Also the headway may differ between the macro and micro representation of the 

network. In RailSys the minimum headway time between two trains depends on track use, 

signalling placement and also the trains’ speed. Locations of signals also affect the track 

occupancy and hence the minimum headway time. To make the timetable feasible in the 

microscopic model, departure and/or arrival times for some trains at some stations must be 



 

 

slightly changed in similar way as illustrated in Figure 3.  

Table 1: Example of how some RCP values (in seconds) in the initial timetable have 

changed between the macroscopic and microscopic model. 
Critical point Macroscopic values Microscopic values 

 
𝑯𝒑 𝑭𝒑 𝑳𝒑 𝑹𝑪𝑷𝒑 

 
𝑯𝒑 𝑭𝒑 𝑳𝒑 𝑹𝑪𝑷𝒑 

CP9 140 29 134 303 
 

164 46 93 303 

CP15 20 4 39 63 
 

60 0 43 103 
CP16 80 270 64 414 

 
55 270 56 381 

CP23 254 50 33 337 
 

332 52 24 408 

CP33 13 0 0 13 
 

18 0 0 18 

 

Since most of the minimum runtimes and headway times differ between RailSys and 

the optimization model, the RCP values will also differ. In Table 1 we present some 

examples for critical points in the macroscopic and microscopic model, respectively. This 

is a selection of critical points from the case study (see Section 4); microscopic values for 

all critical points are shown in Table 2. Some points, such as CP15, receive a higher RCP 

value and some points a lower value, as for CP16. In most cases the summarized RCP 

value differs less than its components. For most critical points the difference is however 

quite small and respective magnitudes are kept.  

When the timetable is optimized for better robustness subject to 𝑅𝐶𝑃𝑝 ≥ 𝑒. 𝑔. 360 s, 

departure and arrival times for some trains are changed. Since the difference from the 

initial timetable, as part of the objective, is being minimized, the changes are kept small. 

Typically runtimes and headways are adjusted when rescheduling the trains. When the 

optimized timetable is inserted into RailSys, where the minimum runtimes and headway 

times are given in more detail, the timetable easily becomes infeasible. In particular, 

freight trains have a different performance in the optimization model and in RailSys. The 

macroscopic model treats all freight trains the same, whereas in reality, and in the RailSys 

model, freight trains have a larger diversity in performance characteristics than passenger 

trains. For example, the freight trains’ different speed profiles often results in longer or 

shorter minimum headway times than the general values used in the macroscopic model, 

which might lead to infeasibilities. To keep the RCP values at a minimum of 360 seconds 

some manual adjustments in the timetable for these trains must be made. 

For points such as CP23, the optimization model would not need to improve the RCP 

value if the value from the microscopic model (408 s) were used instead of the 

macroscopic value (337 s). Now the RCP value is increased even though the value is in 

fact large enough in the initial timetable.    

4 Case Study 

A suitable approach to assess the robustness achieved after optimization is to simulate an 

initial and an optimized timetable and compare the result. This approach involves 

perturbing timetables with stochastic disturbances and using dispatching algorithms to re-

schedule the trains in real-time. In the simulation, trains run using all of their scheduled 

runtime in the case of no disturbances. If a train gets delayed it can run faster than in the 

undisrupted case since there are runtime margins in the timetable. This can sometimes 

lead to trains realising a shorter journey time than the planned one if the train departs late 

from a timing point.    

The evaluation concerns two macroscopically generated timetables, one initial 

timetable and one optimized. The first step is to transform these macroscopically 



 

 

generated timetables into a microscopic format, which requires some manual adjustments 

as described in Section 3. The two microscopically feasible timetables can then be 

assessed via simulation in RailSys. 

The evaluation of the initial versus the optimized timetable is divided into two 

experiments with different primary delay distributions. In the first experiment we have 

used the same primary delays as the ones in Andersson et al. (2015). This mainly captures 

the differences in dispatching strategies between the macroscopic MILP model and the 

microscopic simulation tool. In the second experiment we have used primary delays 

collected from statistics on the particular railway line that we study. 

 

4.1 Timetable Evaluation 

 

The timetable instance used for the evaluation covers the main part of the Swedish 

Southern mainline between the stations K and Hm. The selected time period is between 

8 a.m. and 11 a.m. and the total number of trains in that time period is 79. This line is 

circa 400 km long and includes both fast long-distance traffic as well as commuter trains 

and freight trains. In this timetable instance 33 critical points have been identified 

according to the method presented in pseudo code in Andersson et al. (2013). Figure 4 

shows the timetable – the triangles illustrate the 33 identified critical points. Upward 

pointing triangles illustrate critical points for northbound trains and downward pointing 

triangles illustrate critical points for southbound trains. Most of the critical points appear 

in Nr, My, N and Av where commuter trains and other passenger trains start their 

journeys. The critical points are both locations where trains start their journey after an 

already operating train (e.g. CP29) and locations where a train overtakes another train 

(e.g. CP33). 



 

 

 
Figure 4: The selected initial timetable instance with 33 critical points. 

 

 

In some points the headway between the trains is large, which indicates that the RCP 

value in this point is also high. However, this does not show the full picture. For example, 

CP16 seems like it should have a lower robustness than CP20 if we only compare the 

headways in Figure 4 and 𝐻𝒑 in the initial timetable in Table 2. But if we compare the 

initial RCP values in Table 2 we can see that CP16 has a higher total value than CP20 

because of the runtime margin for the following train (𝐹𝒑). This indicates that the total 

robustness as measured by RCP is higher in CP16 than in CP20. In Table 2 we can see 

that RCP varies considerably amongst the critical points, between 18 and 1238 seconds in 

the initial timetable. For this timetable instance the maximum possible value for a RCP 

increase is 380 seconds. To achieve higher RCP values than 380 for all critical points, the 

trains’ total runtimes have to be allowed to increase, which is assumed not to be desirable. 

This is explained further in Andersson et al. (2015). In that paper the minimum RCP value 

in the optimization model was chosen to 360 seconds (6 minutes), and the output 

timetable from that optimization is the optimized timetable that is evaluated in this paper. 

Therefore, in the optimized timetable all RCP values are at least 360 seconds but due to 

the modifications made, the RCP values for other critical points have also increased or 

decreased. That there are no critical points with very low values indicates that the 

timetable should be more robust.  



 

 

Table 2: RCP values in the microscopic model. Points refer to the numbering in Figure 4. 
Critical Initial timetable Optimized timetable 

point 𝑯𝒑 𝑭𝒑 𝑳𝒑 𝑹𝑪𝑷𝒑 𝑯𝒑 𝑭𝒑 𝑳𝒑 𝑹𝑪𝑷𝒑 

CP1 763 47 21 831 780 48 26 854 

CP2 241 60 21 322 247 113 29 389 

CP3 341 36 26 403 333 35 26 394 
CP4 224 117 73 414 360 117 228 705 

CP5 219 46 0 265 245 17 99 361 

CP6 328 14 67 409 325 50 67 442 
CP7 322 37 29 388 343 36 29 408 

CP8 678 37 240 955 688 36 113 837 

CP9 164 46 93 303 198 17 150 365 
CP10 328 29 67 424 375 28 67 470 

CP11 333 36 26 395 341 36 26 403 

CP12 354 22 13 389 346 56 13 415 

CP13 215 100 153 468 228 109 235 572 

CP14 228 95 179 502 228 111 119 458 
CP15 60 0 43 103 193 0 214 407 

CP16 55 270 56 381 75 285 0 360 

CP17 170 0 79 249 232 0 202 434 
CP18 1076 0 109 1185 1074 0 109 1183 

CP19 1187 0 51 1238 1210 0 26 1236 

CP20 212 0 68 280 218 0 166 384 
CP21 1074 0 109 1183 1068 0 109 1177 

CP22 151 0 80 231 170 0 251 421 

CP23 332 52 24 408 373 51 0 424 
CP24 324 88 55 467 341 88 75 504 

CP25 514 52 132 698 595 51 46 692 

CP26 661 67 67 795 666 62 67 795 
CP27 331 52 132 515 502 51 0 553 

CP28 401 44 57 502 401 43 57 501 

CP29 221 44 129 394 243 0 123 366 
CP30 221 44 129 394 250 8 129 387 

CP31 14 35 0 49 33 204 123 360 

CP32 45 149 2 196 36 307 17 360 

CP33 18 0 0 18 227 0 181 408 

 

4.2 Dispatcher Parameters for Microscopic Simulation   

  

For the dispatching, we have chosen parameter values that imitate real-world dispatcher 

decisions as closely as possible. Several parameters can be used to control the quality of 

the train dispatcher and also how the dispatcher should prioritize trains in conflict. In 

Sweden there is a dispatching rule that always gives priority to the train on-time in a 

conflict situation. However, this rule is not always applied and most of the time the train 

dispatchers try to solve conflicts with a larger perspective in mind. This means, for 

example, that a delayed fast long-distance train can be given a higher priority when it is in 

conflict with another train that is on-time, up to a certain point. When the negative 

consequences for the on-time train become too large if it is held back in favour of a 

delayed fast train, the on-time train will typically be given higher priority. In RailSys it is 

possible to assign different priorities to different train categories depending on how 

delayed they are. The chosen parameter value for the example above is that the fast long-

distance train has highest priority compared to all other trains until it is delayed by 6 

minutes. When the train is more than 6 minutes delayed its priority is decreased and the 

train then gets the same priority as other passenger trains that are running on-time. When 

compared to real dispatching decisions on the Southern mainline, this priority setting 

results in the simulated dispatching being executed in a way that is close to reality. Other 



 

 

parameters that affect the dispatching are, for example, minimum lateness for different 

kinds of routing choices and lengths of conflict prediction time. The parameters have also 

been set so as to closely represent real traffic dispatcher decisions. This is a large 

difference compared to the re-scheduling algorithm used in Andersson et al. (2015), where 

the model relies on optimal dispatcher decisions. From that, we can assume that the results 

from the evaluation presented in this paper do not give the minimum possible delays, as in 

an optimization model. The outcome from the RailSys simulations in the second 

experiment can be assumed to be more representative of the real world impact. 

At each station there are alternative tracks that can be used in the dispatching, e.g. in a 

delayed situation the dispatcher can re-route a train to a side track and let another train 

pass for an unplanned overtaking, if there is a train with higher priority that should run 

ahead. However, even though it is technically possible to reach a side track located on one 

side of the double-track from both of the tracks, trains are seldom re-routed to a side track 

accessed only via crossing the opposite direction of the mainline. Therefore, in the 

simulation model the alternative side tracks are limited to only be used by trains that do 

not have to cross opposite trains’ paths to reach the tracks. This is a limitation compared 

to the re-scheduling model used in Andersson et al. (2015) where there were no 

limitations in track usage. 

 

4.3 Primary Delays and Perturbations 

 

For the case study three types of perturbations are used: 

 Entry perturbations – the initial disturbances the trains may have when they enter 

the line, e.g. train T is 5 minutes late when it starts its journey at station A. 

 Dwell time perturbations – the disturbance that may occur if a scheduled stop 

takes a longer time than planned, e.g. train T stops at station B 2 minutes longer 

than planned. 

 Line perturbations – the disturbance that may occur on the line during the train 

run, e.g. the runtime for train T is increased by two minutes between station A and 

station B. 

 

With these perturbations we can capture the trains’ delays when they enter the line and 

also disturbances that are likely to appear during the run.  

In the first experiment the disturbances are based on controlled entry and line 

perturbations in a similar way as in Andersson et al. (2015). Six trains, on average, are 

delayed in each simulation run, three involved in a critical point and three not involved in 

a critical point. We use the same set of trains with possibility of delay and the same 

locations where they receive their delays. Also, the magnitude of the disturbances is 

between 5 and 10 minutes, just as in Andersson et al. (2015).  

For the second experiment data for the entry perturbations have been collected from 

the punctuality statistics from the Southern mainline in 2014. It is possible to get the data 

in the same empirical format as used in RailSys. As an example, the disturbance 

distribution for train 522 when the train enters the line in Linköping is; 42 trains delayed 

by 59 seconds, 7 trains by 120 seconds, 6 trains by 240 seconds, 2 trains by 360 seconds, 

5 trains by 660 seconds and 4 trains by 960 seconds.  

The dwell time and line perturbations are based on previously gathered information 

from Nelldal et al. (2008) of how much longer a stop for a train of a certain category may 

take and also how long disturbances on the line usually are. This information has then 

been used to create perturbations which in turn have been calibrated by comparing the 



 

 

model output and punctuality statistics from 2014.  

To get statistically significant data the number of simulation replications is 500 in the 

first experiment and 1000 in the second experiment. The reason for only having 500 runs 

in the first experiment is that the randomness is limited due to a small number of possible 

delayed trains. Also the magnitude and location of the delay is highly limited which 

reduces the need for a large number of simulation runs. 

 

5 Results from the Simulations 

In this section we first formulate the evaluation measures, and then give the results of the 

two experiments. 

 

5.1 The Evaluation Measures 

 

For the evaluation of the timetable quality we have chosen to assess the timetable 

robustness with measures of punctuality and delays at commercial stops from the 

perspective of the whole timetable’s performance, and, for experiment 2, with measures of 

arrival deviation and journey time at selected stations for the pairs of trains involved in 

each identified critical point.  

In the first experiment we repeat the evaluation made in Andersson et al. (2015), but 

with a different dispatching strategy that is more close to reality. Therefore the selected 

timetable robustness measures for experiment 1 match those presented in that paper: 

 Total delay at end station, minutes (TD) 

 The share of trains delayed less than 3/5 min at end station, % (TD+3 and TD+5) 

 Total delay at planned commercial stop, minutes (TDS) 

 The share of trains delayed less than 3/5 min at planned commercial stops, % 

(TDS+3 and TDS+5) 

 

For experiment 2 we study the trains’ overall punctuality and delays, but we have 

additionally calculated three critical point-specific measures for the pairs of trains 

involved in the critical points. These measures involve both of the trains in a critical point, 

the actual station and one or more subsequent stations: 

 the commercial station stop directly before the critical point, p-1  

 the commercial station stop at the critical point, p  

 the commercial station stop directly after the critical point, p+1  

 the destination station, d  

 

Some details of the CP-specific localised measures are given below:  

The first measure is punctuality per service involved in critical points, CPP
l
 and CPP

f
 

measures; for the leader/follower in each critical point, the percentage corresponding to 

the number of times that the service arrived at its destination, d, within a 5 minute 

threshold. The mean value over all simulations is given. 

The second measure, the 85
th

 percentile of lateness of services involved in critical 

points, is computed for the leader and follower, 𝑇𝑠,𝑙
85 and 𝑇𝑠,𝑓

85, respectively, at stations s. 

The term lateness is distinct from delay; it may take both negative (for arrivals earlier than 

scheduled) and positive (for arrival delays with respect to the schedule) values. It is 

defined at stations p-1, p, p+1 and d for the leader and at stations p+1 and d for the 



 

 

follower. 

The third measure is the 85
th

 percentile of percentage of scheduled journey time of 

services involved in critical points, (𝐽𝑗,𝑙
85 and 𝐽𝑗,𝑓

85) in a disturbed scenario is computed as a 

percentage of the scheduled journey time between: 

 station p-1 and p+1 for the leader 

 station p-1 and d for the leader 

 station p and p+1 for the follower 

 station p and d for the follower 
 

We have chosen to examine three of the critical points, in which interesting local 

effects of a range of magnitudes can be observed, in the context of CP-specific localised 

measures, namely CPs 17, 27 and 33. Table 3 shows the services involved in these critical 

points and the stations corresponding to those outlined above. 

Table 3: Services and stations at which measures are defined for CPs 17, 27 and 33. For 

CP27 the station p+1 and d for the leader is the same, Lp. 

Critical 

point 

Service number 

Leader/follower 

Station stop 

before CP 

(leader) 

Critical 

point 

station 

Station stop 

after CP 

leader/follower 

Destination 

station 

leader/follower 

CP17 524/8722 N My Lp/Mt K/Nr 

CP27 528/8736 Av N Lp/Any Lp/Bx 

CP33 3940/1956 Hm Hv Av/O Mo/Av 

 

The corresponding results of the CP-specific localised measures for the three chosen 

critical points are given in Table 5 and Table 6. 

 

5.2 Results from the First Experiment 

 

The overall result shows that the timetable robustness is improved when RCP values 

increase, even without optimal rescheduling algorithms. There are, however, some 

differences in the results, e.g. the decrease in TD is larger in the microscopic model but 

the decrease in TDS is larger in the macroscopic model. In Table 4 we can compare the 

results from the macroscopic and microscopic experiments and see that the robustness 

values between the initial timetable and the optimized timetable is improved at both the 

macroscopic and microscopic level. 

Table 4: Results from the first experiment at macroscopic level (from Andersson et al. 

2015) and microscopic level. 
 Initial timetable Optimized, 𝑹𝑪𝑷𝒑 ≥ 𝟑𝟔𝟎 

 Macroscopic Microscopic Macroscopic Microscopic 

TD (minutes) 16.0 23.7 14.4 18.8 

TD+3 (%) 96.8 96.7 97.1 97.0 

TD+5 (%) 98.9 98.0 98.9 98.4 

TDS (minutes) 115.2 105.8 98.7 92.8 

TDS+3 (%) 79.7 80.9 82.8 82.4 

TDS+5 (%) 88.0 88.4 88.9 89.5 

 

In the optimization model used in Andersson et al. (2015) the objective was to 

minimize the delays at the end station. The result of this objective can be seen in Table 4 



 

 

since the measures involving TD are better in the macroscopic experiment. However, the 

dispatching algorithm in the microscopic experiment tries to handle all conflicts with a 

more local perspective which results in the measures involving TDS being better in the 

microscopic experiment. 

 

 

5.3 Results from the Second Experiment 

 

In the second experiment we try to imitate real world conditions with both dispatching and 

initial disturbances. The aggregated punctuality for all trains combined indicates small 

changes between the initial and the optimized timetable (see columns 3 and 4 of Table 5). 

However, when considering individual trains there are some more significant differences; 

aggregated measures do not provide sufficient information on the differences between 

initial and optimized timetable. 

Trains involved in a critical point with a low RCP value in the initial timetable show 

significant improvement in the optimized timetable. For example, train 500 with very few 

scheduled stops realises an increased punctuality from 78.3 % to 84.7 %. Trains 3940 and 

1956, which are involved in CP33, both have an increased punctuality at their end stations 

Av and Mo; see Figure 5. The punctuality for train 1956 is however decreased at the first 

two stops after Hm which is an effect of the runtime margin having been re-allocated from 

before to after the critical point in Hv in the optimization model to fulfil  𝑅𝐶𝑃𝑝 ≥ 360 for 

CP33. We can see that the recovery is much larger after Hv with the optimized timetable 

compared to the initial. 

When large parts of the runtime margin are re-allocated from one location to another 

in a trains’ timetable to fulfil 𝑅𝐶𝑃𝑝 ≥ 360 s, the trains’ ability to recover from delays 

might vary considerably. In Figure 6 we can see the average lateness for train 528 where 

almost 3 minutes of runtime margin time is re-allocated from before N to after N in the 

optimized timetable to increase RCP in CP22 located between N and Lp. Therefore the 

lateness in the intermediate stations Av and N is much higher in the optimized timetable. 

Compared to the small increase in punctuality at the end station, the negative intermediate 

effect should outweigh it, in favour for the initial timetable. To assess robustness, 

therefore, the intermediate effects also need to be considered along with other KPIs; we 

should not only consider end station punctuality.  

 

 



 

 

Figure 5: Punctuality for train 3940 and 1956. The trains start their 

journeys in Hm and are involved in CP33 located in Hv; the 

intermediate stops are marked with a point. 

 
Figure 6: Average lateness for train 528 with the initial and optimized timetable. The train 

travels from Hm to Lp, the intermediate stops are marked with a point and the critical 

point CP22 is located between N and Lp. 

 

 

For some trains the punctuality between the initial and optimized timetable does not 

differ, even though the RCP values concerning these trains are higher in the optimized 

timetable. For example, this is the case for train 526 where RCP in CP20 is increased from 

280 to 384 seconds, as can be seen in Table 2. The reason for this is that train 526 has a 

high punctuality in My which implies that there is rarely a conflict even in the initial 

timetable. Solely considering the RCP value is hence insufficient to predict punctuality. 

Figure 7 shows the relationship between change in RCP and punctuality, respectively 

for all trains involved in the critical points. The measures clearly have a positive 

correlation, but with individual deviations. 

 



 

 

 
Figure 7: Change in punctuality at the final station against change in RCP value between 

initial and optimized timetables for experiment 2. 

 

The CP-specific measure values for the three chosen CPs, namely CPs 17, 27 and 33 

introduced in Subsection 5.1, are given in Table 5 and 6. The results corresponding to 

arrival lateness and actual/scheduled journey time in these CPs obtained over all 

simulations are shown in Figure 8 to Figure 10. In the first six of the subplots, (a)–(f), the 

arrival lateness in each simulation for both the initial and optimized timetables is plotted. 

The data have been sorted into ascending order of lateness; in this way the 85
th

 percentile 

(marked with a vertical dashed line) and the overall picture of lateness across the 

simulations can be visualised. Similarly the sorted ratio of the actual/scheduled journey 

time is plotted in subplots (g)–(j). 

Table 5: Critical point punctuality and 85
th

 percentile of arrival lateness in critical points 

for CPs 17, 27 and 33. 

 Critical 

point 

Critical 

point 

punctuality, 

CPP (%) 
 

85th percentile of arrival lateness (s) 

 

𝑻𝒑−𝟏
𝟖𝟓  𝑻𝒑

𝟖𝟓 𝑻𝒑+𝟏
𝟖𝟓  𝑻𝒅

𝟖𝟓 

Init Opt Init Opt Init Opt Init Opt Init Opt 

leader CP17 85.7 87.0 353 377 325 226 249 150 282 267 

follower  98.2 97.8     131 121 46 79 

leader CP27 94.1 94.9 304 346 224 396 121 123 121 123 

follower  97.5 97.6     156 157 60 60 

leader CP33 79.8 85.5 397 401 404 252 1032 254 995 291 

follower  87.6 89.7     288 217 229 187 

Table 6: 85
th

 percentile of actual/scheduled journey time in critical points 17, 27 and 33. 

Critical journey time actual/scheduled (%) of 85th percentile 



 

 

point (scheduled journey time, s) 

  𝑱𝒑−𝟏:𝒑+𝟏,𝒍
𝟖𝟓   𝑱𝒑−𝟏:𝒅,𝒍

𝟖𝟓  𝑱𝒑:𝒑+𝟏,𝒇
𝟖𝟓  𝑱𝒑:𝒅,𝒇

𝟖𝟓  

  
Init Opt Init Opt Init Opt Init Opt 

leader CP17 
99.5 

(2879) 

98.4 

(3004) 

103.7 

(5694) 

102.7 

(5737)     

follower  
    

100.0 
(316) 

100.0 
(316) 

98.6 
(2879) 

98.8 
(2819) 

leader CP27 
100.3 

(4920) 

99.9 

(4960) 

100.3 

(4920) 

99.9 

(4960)     

follower  
    

92.9 

(718) 

92.9 

(718) 

98.1 

(2227) 

98.2 

(2227) 

leader CP33 
108.7 
(2519) 

101.9 
(2580) 

124.9 
(3038) 

106.3 
(3039)     

follower  
    

126.9 
(353) 

100.0 
(351) 

100.5 
(2759) 

100.4 
(2716) 

 

In CP17 we see evidence that the leader, train 524, performed slightly better in the 

optimized timetable at the critical point station and at the following and final stations, the 

arrival lateness has decreased as can be seen in Table 5 and the punctuality has increased 

as can be seen in Figure 7. The effect of optimizing the timetable for the follower, train 

8722, was less significant. This train recorded very similar lateness values over all 

simulations at both the station after the critical point and the final station, where, in fact, 

the lateness was slightly worse, as reflected in the measure 𝑇𝑑
85 for the follower. The 

follower also experienced broadly similar journey times across all simulations, the main 

difference being that there were fewer instances of actual journey times being more than 

100% of scheduled between My and Mt. The leader (524) performed better in terms of 

consistency of journey time for both of the journeys assessed, N – Lp and N – K. 

Of the three critical points examined in more detail, CP27 showed the most similar 

results between the initial and optimized timetables for the localised lateness and journey 

time measures. The locations where differences of any significance between initial and 

optimized timetables were observed are stations p-1 (Av) and p (N) for the leader, where 

the 85
th

 percentile lateness value was slightly worse for the optimized timetable, 346s vs 

304s and 396s vs 224s, respectively. The margin re-allocation that led to the changed RCP 

value in CP27 is in fact an effect of the RCP increase in CP22, where train 528 also is 

involved. This shows that increased robustness in one critical point might lead to 

decreased robustness in another point. However, the actual/scheduled journey time value 

decreased very slightly between N and Lp for the leader (100.3% vs 99.9%).   

In CP33 𝑇𝑑
85 falls significantly for the leader (3940) at its final station, Av, from 995 s 

to 291s between initial and optimized timetables, while a less significant decrease is seen 

for the follower at its final station. From Figure 10 we see that overall fewer instances of 

severe lateness were recorded at the final station for train 3940, but that for simulation 

indices >916 the lateness value recorded was worse for the optimized timetable than the 

initial one. We may conclude that the optimized timetable performed on the whole better 

than the initial one in terms of lateness at the final station for train 3940; taking the 85
th

 

percentile measure captures this, but if we had taken, for example, the 95
th

 percentile, this 

value alone would suggest that the initial timetable performed better than the optimized 

one. This indicates that measuring values at a selection of percentiles, say 75
th

, 85
th

 and 

95
th

 may be prudent. In terms of journey times for the services involved in CP33, a 

passenger travelling from Hv to Av with train 3940 (see Figure 10 (g)) has a 1 minute 

longer scheduled journey time (2580 s vs 2519 s) as a result of the optimization, but on 



 

 

average passengers get a much more stable journey since the train is late less frequently 

and also less severely late on average. This is likely to be perceived positively by 

passengers, who typically highly value reliable journey provision. 

 

 
Figure 8: For CP17, the lateness of arrival for the leader, train 524 at (a) N, (b) My, 

(c) Lp, (d) K and for the follower, train 8722, at (e) Mt and (f) Nr; the actual journey 

time/scheduled journey time for the leader between (g) My and Lp and (h) My and 

K, and for the follower between (i) My and Mt, and (j) My and Nr. 

 

 
Figure 9: CP27, the lateness of arrival for the leader, train 528 at (a) Av, (b) N, (c) 

[intentionally blank], (d) Lp and for the follower, train 8736 at (e) Any and (f) Bx; the 

actual journey time/scheduled journey time for the leader between (g) [intentionally 
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blank] and (h) N and Lp, and for the follower between (i) N and Any, and (j) N and Bx. 

 

 

 
Figure 10: CP33, the lateness of arrival for the leader, train 3940 at (a) Hm, (b) Hv, (c) 

Av, (d) Mo and for the follower, train 1956 at (e) O and (f) Av; the actual journey 

time/scheduled journey time for the leader between (g) Hv and Av and (h) Hv and Mo, 

and for the follower between (i) Hv and O, and (j) Hv and Av. 

6 Discussion 

Actions taking in the optimal dispatching strategy always have the primary objective in 

mind. Since the objective in Andersson et al. (2015) is to minimize the end station delays, 

all decisions taken will lead to a minimum end station delay. In real-world dispatching 

situations, this is not the case, however. A more suitable method when trying to imitate 

real-world scenarios may be to use microscopic simulation with appropriately configured 

dispatching options where the dispatchers cannot always foresee the consequences for the 

end station and therefore solve the conflict with a more local perspective. 

In the second experiment real-world disturbances are used to disturb the trains and it is 

possible to analyse how the ex-ante indicator RCP performs in an environment that is 

close to reality. At first glance, the robustness does not seem to have improved much, 

since the overall punctuality is almost the same, but when studying individual critical 

points and the involved trains some interesting observations can be made. As expected, 

we cannot draw conclusions about the semantics of the RCP indicator as we only have 

one timetable variation to test.  

When studying the measure punctuality at the end station the overall robustness is 

slightly higher in the optimized timetable, but when analysing the punctuality at the 

intermediate stops the results differ. Since the runtime margin has been re-allocated in the 

RCP optimization, some trains have lost all runtime margin in some sections. This means 

that the trains cannot recover from a delay in these sections in the same way as in the 

initial timetable. If the punctuality decrease there is small, then it might be an acceptable 
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loss to make in order to achieve a greater robustness for the overall punctuality level. For 

some trains the punctuality at some intermediate stations decreases by up to 3–4 

percentage points in the optimized timetable, which indicates that the runtime margin is 

required for the robustness at their initial locations and it should not be re-allocated. It 

could therefore be of interest to prevent the optimization model from re-allocating all 

runtime margin from one location and to instead keep some of the runtime margin at that 

location to retain some of the capability to recover there. There is a need for adding more 

constraints in the optimization model to restrict how the model is allowed to re-allocate 

margin time. 

For some points, such as CP22, the interaction between the leader and the follower is 

short for this particular timetable instance. This means that the leader only has to run after 

the follower for a short time and will therefore not receive a large secondary delay in the 

case of a disturbance. For these situations it is not very important to seek a high RCP 

value and the runtime margin might be of better use elsewhere, especially if the 

intermediate consequences of an RCP increase are as negative as is shown for train 528, 

the leader, in CP22. 

Also, for some critical points where the RCP is increased in the optimized timetable, 

the punctuality for the involved trains does not increase. This is because the punctuality 

for the involved trains is already at such a high level in the initial timetable, so a conflict 

rarely occurs. These two examples indicate that the combination of the ex-ante indicator 

RCP with the ex-post measure punctuality is valuable in RCP optimization (and timetable 

optimization in general) to choose where and how to apply the optimization.  

7 Conclusions and Future Research 

In this paper we have presented the first steps towards a real implementation of a RCP 

optimization model. A macroscopically generated improved timetable has been assessed 

via microscopic simulation and subsequently evaluated with several performance 

measures. The results indicate that it is necessary to use several KPIs to effectively 

evaluate the effects of an RCP increase. If we only look at the punctuality we will get a 

limited view of the result from which it is hard to draw relevant conclusions. For most of 

the critical points with a higher RCP value in the optimized timetable, the punctuality 

increases, but there are also trains that are unaffected and trains that are affected 

negatively at some stations. The punctuality is highly related to where the initial 

disturbances occur. If too much runtime margin is allocated to the beginning of a train’s 

journey, this will already be consumed when disturbances occur later. We can get more 

detailed information by measuring the 85
th

 percentile lateness of the leader and follower in 

each critical point but the measure must be used carefully and perhaps even assessed 

more, based on precisely which percentile is selected for reporting.  

When assessing robustness with other KPIs such as journey time and lateness we can 

see that an RCP increase led to a slightly longer journey time for some trains on some 

parts of the line. However, since the results also show that lateness and the risk of 

becoming more delayed decrease, the longer journey time can be readily endured. 

Our experiments have verified the first steps towards a real world implementation and 

given examples of results. It is for the future to validate these results for other data sets, 

which is needed for significant results. From the fact that some trains are unaffected by 

the RCP increase and some trains even perform worse we can conclude that there is a 

need for further studies into how the optimization model should be allowed to re-allocate 

margin time. Future work should include analysis of the relationship between RCP and 



 

 

ex-post measures and the results should be used to set up rules for the advisable re-

allocation of margin time and re-distribution of 𝐻𝑝 , 𝐿𝑝 and 𝐹𝑝. The optimization model 

should also be updated with more detailed runtimes, headway times, etc. to give a closer 

representation of reality. For example, since the freight trains have a larger diversity in 

performance characteristics it might be a good idea to group them in to clusters with 

similar characteristics instead of using the same general values for all of them.   

It may be of interest to measure the consequences on connectivity and involve 

statistics on passenger numbers to see how many passengers are affected by the RCP 

increase. Then it might be possible to accomplish the improved robustness we get with 

increased RCP with the broadest positive consequences for both operators and passengers.  
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