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This paper presents analysis and evaluation of experimental results of chloride ingress and chloride-induced
corrosion resistance of concrete made with Portland limestone cement (PLC). The results were mined from 169
globally published studies from 32 countries since 1989, yielding a matrix of 20 500 data points. This review showed
that chloride ingress in concrete increases with increasing limestone (LS) content, within the range permitted in BS
EN 197-1:2011. However, this effect is less for PLC concrete mixes designed for strength equal to corresponding
Portland cement (PC) concrete mixes than those designed on an equal water/cement (w/c) basis. The results also
showed that Eurocode 2 specifications for chloride exposure, in terms of characteristic cube strength of concrete or
w/c ratio, may need to be reviewed for the use of LS with PC. This study also investigated other influencing factors
such as cement content, LS fineness, the method of producing PLC, aggregate volume content and particle size,
combined chloride and sulfate environment, curing and exposure temperature. A comparison was made for the
performance of PLC concrete in terms of pore structure and related properties, strength, carbonation and chloride
ingress. Procedures to improve the resistance of PLC to chloride ingress in concrete are proposed.

Introduction
The use of limestone (LS) as a building material dates back to
ancient times, when calcined LS or gypsum was used to make
mortar (Mayfield, 1990). LS has been used as a main raw
material in the production of Portland cement (PC) clinker
since 1824 and, over the last few decades, has also been used
in ground form as a filler aggregate as well as an addition to
PC to obtain cement combinations and Portland limestone
cements (PLCs) and Portland composite cements as per BS
EN 197-1:2000 (BSI, 2000).

The earliest attempt at the use of LS addition with PC was in
1965 in Germany. In 1979, French cement standards permitted
its use as an addition. This was followed by its recognition in
various other standards, such as the Canadian standard in
1983 (at 5% addition), the British standard in 1992 (up to 20%
addition) and European standard EN 197-1 in 2000 as PLCs
CEM II/A-L and CEM II/B-L with LS contents of 6–20% and
21–35%, respectively, as well as potential for its use in com-
bination with other cementitious materials. The highest per-
missible LS addition tends to vary according to national and
international standards, ranging from 10% to 35% (Table 1).

The use of PLC has been increasing steadily worldwide, with
sustainable construction focus enforcing reductions in energy
consumption and carbon dioxide emissions associated with PC
manufacture. It is generally accepted that 15% PC replacement
by LS can reduce the carbon dioxide footprint of concrete by
approximately 12% (Schmidt et al., 2010). In addition, about
1·4 t of primary raw materials are required to produce 1 t of

PC, while the production of PLC requires nearly 10% less
primary raw resources (TCC, 2010). Moreover, among all the
cement addition materials (e.g. ground granulated blast-furnace
slag (GGBS), fly ash (FA), silica fume (SF) and metakaolin
(MK)), LS is the most widely available natural material as cal-
cium carbonate (Thenepalli et al., 2015), and it is also typically
available in large amounts near PC manufacturing plants.

Consequently, a thorough understanding of the behaviour of
LS used in combination with PC for concrete production is
important, not only in terms of the general performance of
PLC as per BS EN 197-1:2011 (BSI, 2011), but also in terms
of the durability of concrete made with PLC. Resistance to
chloride ingress is crucial for the durability of reinforced con-
crete subjected to marine environments or de-icing salts. If
chloride penetrates concrete, it can cause severe corrosion of
the reinforcement. This threatens safety, reduces performance
and distorts the appearance of the concrete. Although PLC
has been commonly studied with respect to the durability of
concrete, the information available is disjointed and often
unhelpful in further understanding and developing the usage
of PLC in concrete construction.

A series of studies was undertaken by the authors to examine
the effect of LS use in combination with PC on the durability
of concrete. The first study in this series addressed the effect
of PLC on properties related to pore structure (Elgalhud et al.,
2016) and the second dealt with carbonation resistance
(Elgalhud et al., 2017). This study deals with chloride ingress
and chloride-induced corrosion in concrete made with PLC.
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Aim and objectives
The aim of this study was to analyse, evaluate and synthesise,
in a systematic manner, globally published experimental data
on chloride ingress and chloride-induced corrosion in concrete
made with PC and LS. For practical reasons, comparisons
with PC concrete were used to assess the potential effects of
LS addition on concrete performance.

Methodology
Extensive sourcing of published experimental results on the
subject was undertaken using different databases and citation
indices in order to ascertain the extent and quality of research
that has been undertaken and to obtain the available published
material. The total number of sourced publications, in the
English medium, was 169, originating from 32 countries
worldwide between 1989 and 2016 (Figure 1), with the most
significant contributions coming, in descending order, from
Italy, the USA, Canada, UK, China and France (Figure 2).

The sourced publications were categorised as shown in
Figure 3, and explained in more detail as follows.

& Narrative reviews summarise different studies, from which
conclusions may be drawn in general terms, contributed by
the reviewers’ own experience, and where the outcomes are
very much qualitative rather than quantitative. Ten of the
sourced publications were narrative reviews (ACI, 2015; Benn
et al., 2012; CSWP, 2011; Hawkins et al., 2003; Hooton
et al., 2007; Hooton, 2010; Kaur et al., 2012; Detwiler and
Tennis, 1996; Müller, 2012; Van Dam et al., 2010).

& Experimental results deal with laboratory testing work
undertaken using standard specimens (cubes, cylinders or

prisms) under controlled conditions (e.g. specified
temperature and duration).

& In situ measurements comprise studies undertaken on
concrete structures (new or old), where the concrete has
been subjected to site conditions and usually the tested
specimens are in the form of extracted cores. Only one
study dealt with in situ measurements (Hossack et al.,
2014).

& Modelling studies involve theoretical work to simulate
experimental conditions. Modelling work relating to
chloride ingress in PLC was undertaken in nine studies
(Aguayo et al., 2014; Attari et al., 2012, 2016; Climent
et al., 2002; Demis and Papadakis, 2011, 2012; Demis
et al., 2014; Faustino et al., 2014; McNally and Sheils,
2012). However, such work is outside the scope of the
present study.

The experimental works were further divided into Portland
composite cement mixes and PLC.

& Portland composite cement mixes consisted of ternary or
quaternary blends of PC, LS and other supplementary
cementitious materials, such as GGBS, FA, SF and MK.
In total, 31 studies using composite cement mixtures were
sourced (Abd-El-Aziz and Heikal, 2009; Alonso et al.,
2012; Attari et al., 2012; Badogiannis et al., 2015; Bentz
et al., 2013; Bjegovic et al., 2012; Chaussadent et al., 1997;
Dave et al., 2016; Dogan and Ozkul, 2015; Ekolu and
Murugan, 2012; Güneyisi et al., 2005, 2006, 2007; Holt
et al., 2009, 2010; Hu and Li, 2014; Kathirvel et al., 2013;
Katsioti et al., 2008; Lang, 2005; Li et al., 2013, 2014;
Lotfy and Al-Fayez, 2015; Mohammadi and South, 2016;

Table 1. LS contents permitted in PLC in some national and international standards

Country LS content: % Standard/source

Standards adopting maximum LS addition level of 35%
UK and Europe CEM II/A: 6 to 20

CEM II/B: 21 to 35
BS EN 197-1:2011 (BSI, 2011), EN 197-1:2011 (CEN, 2011)

South Africa CEM II/A: 6 to 20
CEM II/B: 21 to 35

SANS 50197-1:2013 (SABS, 2013)
(based on EN 197-1:2011 (CEN, 2011))

Singapore CEM II/A: 6 to 20
CEM II/B: 21 to 35

SS EN 197-1:2014 (SSC, 2014)

Mexico 6 to 35 NMX-C-414-ONNCCE-2014 (MS, 2014)
Standards adopting maximum LS addition level below 35%
USA >5 to 15 ASTM C 595-M-2016 (ASTM, 2016)

>5 to 15 Aashto M240-2016 (Aashto, 2016)
Canada >5 to 15 CSA A3001-2013 (CSA, 2013)
Australia 8 to 20 AS 3972-2010 (SA, 2010)
New Zealand Up to 15 SNZ 3125:1991 (SNZ, 1991) (amended in 1996)
China Up to 15 Hooton (2015)
Iran 6 to 20 Ramezanianpour et al. (2009)
Former USSR Up to 10 Tennis et al. (2011)
Argentina ≤20 Tennis et al. (2011)
Brazil 6 to 10 Tennis et al. (2011)
Costa Rica ≤10 Tennis et al. (2011)
Peru ≤15 Tennis et al. (2011)
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Pipilikaki and Katsioti, 2009; Shao-li et al., 2015;
Siad et al., 2015; Sideris and Anagnostopoulos, 2013;
Tanesi et al., 2013; Thomas et al., 2012; Villagrán
Zaccardi et al., 2010, 2013). However, the results of these
works could not be used in this study because the sole
effect of LS could not be clearly identified.

& The publications that studied the behaviour of PLC in
chloride-bearing exposure were divided into chloride
ingress measurements and chloride-induced corrosion

(Figure 3). Some of the studies did not provide results for
corresponding PC mixtures (Ahmad et al., 2014; Assie
et al., 2006; Audenaert and De Schutter, 2009; Audenaert
et al., 2007, 2010; Beigi et al., 2013; Bertolini and
Gastaldi, 2011; Bertolini et al., 2002, 2004a; Bolzoni et al.,
2006, 2014; Brenna et al., 2013; Carsana et al., 2016;
Chiker et al., 2016; Climent et al., 2006; Corinaldesi and
Moriconi, 2004; Figueiras et al., 2009; Franzoni et al.,
2013; Frazão et al., 2015; Kenai et al., 2008; Matos et al.,
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2016; Meira et al., 2014; Ramezanianpour and Afzali,
2015; Romano et al., 2013; Sánchez et al., 2008; Sfikas
et al., 2013; Sistonen et al., 2008; Tittarelli and Moriconi,
2011; Yüksel et al., 2016; Zhang et al., 2016). Some
publications contained duplicated data. Additionally,
some analyses were undertaken considering the type of
exposure (laboratory or field as marine environment) and
finally the type of cementitious mixture (paste and
mortar/concrete).

It is important to note that wherever the term water/cement
(w/c) ratio is used in this paper, ‘cement’ refers to the combi-
nation (binder) of PC clinker and LS addition.

Overview of the literature
Although limited in number and lacking in detailed analysis of
the data, the narrative reviews from both organisations and
individual researchers (Table 2) suggest that there is some
agreement among the studies in that chloride ingress in con-
crete is not significantly affected with the addition of LS up to
15–20% (i.e. the use of PLC such as a CEM II/A cement of
BS EN 197-1:2011 (BSI, 2011). However, some reviews suggest
that there are differences in opinion due to differences in the
concrete mixes tested and the test methods used to determine
the rate of chloride ingress.

A review of the experimental data in the literature, consisting of
123 studies summarised in Table 3, revealed that most results
(57%) showed that the use of LS with PC leads to a higher rate
of chloride ingress. A variety of reasons have been suggested for
this increase in chloride ingress in PLC concrete. In contrast,
17% of the results suggest that chloride ingress in PLC concrete
can be lower than that in corresponding PC concrete, with 2%
of the results indicating no change and 9% showing a variable
trend; there were no corresponding PC concrete mixes tested in
15% of the data and therefore the PLC data could not be com-
pared with corresponding PC concrete mixes.

Analysis of published data

Test methods and procedures employed
The test conditions employed to measure the effect of LS
on chloride ingress in concrete in the published studies are sum-
marised in Table 4. The main points to be noted are as follows.

& Chloride exposure. The vast majority of the studies
measured chloride ingress using a non-natural exposure,
with specimens tested in a laboratory using different
accelerated methods.

& Material. The majority of the investigations adopted
the use of mortar and concrete as test specimens.

& Specimen. The choice of test specimens in the form of
cylinders, prisms or cubes appeared to be influenced by the

Publications (169)a, b

Narrative reviews (10) Experimental results (154) In-situ measurements (1) Modelling (9)

PLC (123) Portland composite cement mixes (31)

Chloride ingress measurements (123) Chloride-induced corrosion (24)

Original data (78) Duplicated data (15)No PC reference mixture (30)

Source
Individual
Organisation

Exposure

Laboratory
Field

Mixture
Paste
Mortar/concrete

Notes
a Numbers in parentheses are the number of publications
b Some publications may appear in more than one category

Figure 3. Distribution of publication data from the literature search
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Table 2. Summary of the findings of narrative reviews regarding the performance of the PLC under chloride ingress

Published work
Number of cited

references Main observation

Organisations
ACI Committee 211, USA (ACI, 2015) 2 Rapid chloride permeability of PLC with 10–15% LS is equivalent to PC,

while other studies showed that PLC with 20% LS reduced the chloride
ion diffusion coefficient by about 20% compared with PC

Concrete Society, UK (CSWP, 2011) 3 LS will not produce any significant improvement in resistance to chloride
diffusion and may even reduce it slightly

Hawkins et al. (2003), Portland Cement
Association, USA

7 Mixed results of PLC when compared with PC

Hooton et al. (2007), Cement
Association of Canada, Canada

9 PLC (with LS up to 20%) and PC have similar durability to chloride ingress

Detwiler and Tennis (1996), Portland
Cement Association, Canada

2 PLC containing 15% LS and PC have equivalent performance with respect to
chloride permeability and chloride diffusion

Individual studies
Benn et al. (2012) 7 There appear to be differences of opinion in the published data that are

related to differences in the concrete mixes tested and the test methods
used to determine the rate of chloride ingress

Hooton (2010) 1 PLC (with LS up to 20%) and PC have similar durability to chloride ingress
Kaur et al. (2012) 1 Differences in diffusivity coefficient of concrete up to 15% LS, compared

with PC concrete, were relatively minor and increased slightly with w/c
ratio

Müller (2012) 3 PLC has a comparable performance to PC under chloride ingress
Van Dam et al. (2010) 1 PLC (with 10% LS) and PC show similar rapid chloride permeability

Table 3. Suggested causes of the behaviour of PLC concrete under chloride ingress

Observation of chloride
ingress in PLC mixesa Main suggested causes

Number of tested mixes

Laboratory Field Total

Higher (156) (laboratory, 154; field, 2)
Cement Reduction of PC 14 0 14

Reduced production of calcium silicate hydrate 2 0 2
Compounds of C3A in PLC concrete have a lower
binding capacity

5 1 6

Higher level of OH− ions presents in the pore fluid
of the concrete made with LS

8 0 8

Design Higher w/c ratio 18 0 18
Hardened
properties

Higher porosity/coarser pore structure 42 1 43
Higher permeability 15 0 15
Not given 50 0 50

Lower (49) (laboratory, 48; field, 1)
Cement Higher specific area of LS 1 0 1
Design Lower w/c ratio 1 0 1

Sufficient curing 1 0 1
Higher strength 6 0 6

Hardened
properties

Lower porosity 6 0 6

Not given 33 1 34
No change (5) (laboratory, 5)

Equal strength 1 0 1
Not given 4 0 4

Variable (26) (laboratory, 23; field, 3)
Cement Decreases with improved particle size distribution until

optimum level
(10–15% LS) and then increases due to dilution of PC

11 2 13

Not given 12 1 13
No reference mixture (44) (laboratory, 44)

Not applicable 44 0 44

aHigher/lower/no change/variable chloride ingress in PLC mixture with respect to corresponding reference PC mixture
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Table 4. Test parameters of PLC chloride ingress measurements in the published literature

Parameter Variable Numbera Parameter Variable Numbera

1. Chloride exposure Laboratory 275 2. Material Cement paste 3
Field 5 Mortar/concrete 277

3.1 Specimen type Cylinder/disc 161 3.2 Specimen preparation Sealed 68
Prism 46 Unsealed 14
Cube 49 Unspecified 198
Column/slab 4
Not given 20

4. Test method Electrical indication (RCPT) 120 5. Standard/reference ASTM C1202 (ASTM, 2012b) 100
ASSHTO T277 (ASSHTO, 2015) 14
Not given 6

Steady-state migration 25 Dhir et al. (1990) 4
Page et al. (1981) 2
Truc et al. (2000) 3
Not given 16

Non-steady-state migration 106 NT Build 492 (Nordtest, 1999) 49
Luping and Nilsson (1993) 1
Nanukuttan et al. (2006) 3
SIA 262/1; SS, 2003 4
Gehlen and Ludwig (1999) 2
BAW, 2004 6
Not given 41

Chloride profile 25 UNI 7928 (UNI, 1978) 8
ASTM C1218 (ASTM, 2015) 2
ASTM C1152 (ASTM, 2012a) 3
Aashto T260 (Aashto, 2009) 2
NT Build 443 (Nordtest, 1995) 6
Not given 4

Chloride conductivity 4 Streicher and Alexander, 1995 4
Non-steady-state immersion 2 NT Build 443 (Nordtest, 1995) 2
Chronoamperometry 1 Aït-Mokhtar et al. (2004 ) 1

6. Curing 7. Pre-conditioning
6.1 Exposure Moist 210 7.1 Preparation Omitted 27

Air 5 Applied 201
Not given 65 Not given 52

6.2 Duration: d 1–14 32 7.2 Duration: db 1–7 142
15–28 112 14–28 25
56–91 66 Not given 34
>91 22
Not given 48

6.3 Temperature: °C 20–30 218 7.3 Temperature: °Cb 20–30 138
>30 4 35–50 8
Not given 58 Not given 55

6.4 Humidity: % 80–100 215 7.4 Humidity: %b 45–85 68
40–80 5 Not given 133
Not given 60

8. Laboratory conditions 9. Field conditions
8.1 Chloride solution: % <3 11 9.1 Exposure Submerged in sea 1

3–5 152 Tidal exposure site 4
10–15 60 Marine aerosol 1
>15 8 9.2 Chloride solution: % 3–4 1
Not given 44 Not given 5

8.2 Duration: d ≤1 150 9.3 Duration: years 2 4
2–30 16 3 1
31–90 11 >3 1
91–180 10
>180 33
Not given 55

8.3 Temperature: °C <20 2 9.4 Temperature: °C 2–20 1
20–30 194 Not given 5
>30 1 9.5 Humidity: % >95 4
Not given 78 Not given 2

aNumber is the sum of tested mixes
bData compiled from studies where pre-conditioning is applied
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relevant specifications of the standard adopted in each
specific study. The largest number of tests was carried out
on cylinder/disc specimens.

& Test method. While various test methods have been
used to measure chloride ingress, the two most commonly
used methods were electrical indication based as on
ASTM C1202 (ASTM, 2012b)/Aashto T277 (Aashto, 2015)
(commonly referred to as the rapid chloride permeability
test (RCPT) method) and non-steady-state migration, NT
Build 492 test method (Nordtest, 1999).

& Curing. With few exceptions, and with the impact of
the local standard specifications, most specimens were
moist-cured at a relative humidity of 80–100% and
temperature of 20–30°C for up to 28 d.

& Pre-conditioning. Although this information was generally
lacking, in the studies that did provide this information the
commonly adopted treatment was carried out at a
temperature of 20–30°C and relative humidity of 45–85%
for 1–7 d duration.

& Laboratory and field exposure conditions. The most
commonly used laboratory exposure consisted of a chloride
solution concentration of up to 5% for a duration of ≤30 d
and temperature of 20–30°C, while field exposure
(e.g. submerged in the sea or tidal exposure site) was
generally for up to 3 years.

LS effect
Given that a large number of test parameters were involved in
the test results (Table 4), the effect of LS inclusion on chloride
ingress can best be analysed and evaluated in relation to the
corresponding PC used as reference in the study. The reported
results are plotted collectively in Figure 4. To visualise the data
distribution and identify outliers, box and whisker plots are
used. In developing Figure 4, the data points were dispersed
slightly to prevent overlapping in order to provide a better
view of the results. However, some of the data were not con-
sidered further. The excluded data were those

& with outliers at each LS replacement level using box and
whisker plots

& where the corresponding value for reference PC concrete
was not available to calculate the relative chloride ingress
results required for the plot

& with excessively high relative values (greater than 200%)
resulting from low chloride ingress measurements that were
considered to be unrealistic

& where chloride ingress data were reported for paste
specimens.

In addition, the same data reported in more than one publi-
cation were considered once only.

The best-fit relationship, showing the effect of LS on chloride
ingress in concrete, using the mean values, is shown as a

solid line up to 50% LS content having a coefficient of corre-
lation R2= 0·84, with another best-fit curve plotted as a broken
line covering the results up to 35% LS content (the maximum
limit permitted in BS EN 197-1:2011 (BSI, 2011) for structural
concrete), having a coefficient of correlation R2 =0·72.
Although the latter curve has a lower coefficient of correlation,
it is considered to present a more realistic performance of PLC
up to the upper limit permitted for structural concrete.

For convenience of reference, the range of BS EN 197-1:2011
(BSI, 2011) common cements with LS addition is also shown
in Figure 4. It can be seen that, at 35% LS addition, chloride
ingress in PLC concrete could be about 60% higher than that
in the corresponding PC concrete, with performance compar-
able to that of PC at 5% LS content.

The results plotted in Figure 4 were separated in terms of
strength and w/c ratio, and these are shown in Figures 5(a) and
5(b). The effect of LS addition for the mixes of equal strength
(Figure 5(a)) shows that, although the results available are
limited (compared with the equal w/c ratio results in
Figure 5(b)), 10% LS addition may be used without adversely
affecting the chloride ingress resistance of concrete; thereafter
it starts to increase gently with further increases in LS content.
An increase of 12% was found for 35% LS content. The mixes
with equal w/c ratio (Figure 5(b)) show a similar trend (two
trend lines are shown – the solid line for results up to 50% LS
content and the broken line for results up to 35% LS content)
to that for the overall results plotted in Figure 4, suggesting
that, at 35% LS content, chloride ingress can be expected to
increase by about 65%.

Curing effects
The influence of moist curing duration has been studied with
LS contents of 0–35%, for durations of 1–360 d. The results
are shown in Figures 6(a) and 6(b) for mixes with equal
strength and equal w/c ratio. Recognising that the coefficients
of correlation are generally low, the trend lines observed can
only be considered qualitative. However, the following points
of practical relevance can be noted.

& On an equal strength basis, the results are limited but show
that PLC concrete with up to 15% LS (CEM II/A cement)
can be expected to develop resistance to chloride ingress
similar to a corresponding PC concrete.

& On an equal w/c ratio basis, the results show that the
resistance to chloride ingress of PLC concrete in
comparison to PC concrete can be expected to improve with
moist curing duration, particularly with initial moist curing.
While higher chloride ingress values were obtained, the
difference between the two concretes decreases with time.

In addition, studies on the effect of curing on chloride ingress
in PLC concrete (w/c ratio of 0·5, cement content of
350 kg/m3, LS contents of 0%, 9% and 18%, 28 d of moist

7

Magazine of Concrete Research Chloride ingress in concrete: limestone
addition effects
Elgalhud, Dhir and Ghataora

Downloaded by [ University of Birmingham] on [28/09/17]. Copyright © ICE Publishing, all rights reserved.



and air curing, specimens immersed in 3% sodium chloride
(NaCl) solution for up to 1 year (Bonavetti et al., 2000;
Irassar et al., 2006)) showed that chloride ingress increases
with air curing and also that the rate of chloride ingress is
greater for PLC concrete relative to PC concrete.

Exposure temperature
Studies investigating how the temperature of the chloride-bearing
environment may affect the penetration of chlorides into PLC
concrete relative to PC concrete are limited. The data available

from the two studies, with different test conditions (Moukwa,
1989; Yamada et al., 2006), came to similar conclusions, namely
that (a) at lower temperatures, chloride ingress in concrete is
adversely affected with the inclusion of PLC and that (b) this is
due to increased dissolution of calcium hydroxide (Ca(OH)2).

LS fineness and type of PLC (inter-grinding
or blending)
The effects of LS fineness on chloride ingress in PLC concrete
have been investigated over a range of fineness values
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Figure 4. LS addition effect on chloride ingress in concrete. Data taken from Aguayo et al. (2014), Alunno-Rosetti and Curcio (1997),
Assie et al. (2007), Barrett et al. (2014), Batic et al. (2010, 2013), Bentz et al. (2015), Bertolini et al. (2004b, 2007, 2011), Bonavetti
et al. (2000), Bonneau et al. (2007), Boubitsas (2004, 2001), Calado et al. (2015), Cam and Neithalath (2010, 2012), Celik et al. (2014a,
2014b, 2015), Cochet and Jesus (1991), Cost et al. (2013), Courard and Michel (2014), Courard et al. (2005), Deja et al. (1991), Dhir
et al. (2004, 2007), Fornasier et al. (2003), Gesoğlu et al. (2012), Ghiasvand et al. (2015), Ghrici et al. (2007), Githachuri and Alexander
(2013), Güneyisi et al. (2011), Hooton et al. (2010), Hornain et al. (1995), Hossack et al. (2014), Howard et al. (2015), Irassar et al.
(2006, 2001), Juel and Herfort (2002), Kaewmanee and Tangtermsirikul (2014), Kobayashi et al. (2016), Kuosa et al. (2008, 2014),
Leemann et al. (2010), Lemieux et al. (2012), Li and Kwan (2015), Livesey (1991), Lollini et al. (2014, 2015, 2016), Loser and Leemann
(2007), Loser et al. (2010), Meddah et al. (2014), Menadi and Kenai (2011), Menéndez et al. (2007), Moir and Kelham (1993, 1999),
Matthews (1994), Moukwa (1989), Müller and Lang (2006), Palm et al. (2016), Pavoine et al. (2014), Persson (2001, 2004),
Pourkhorshidi et al. (2010), Ramezanianpour et al. (2009, 2010, 2014), Ranc et al. (1991), Selih et al. (2003), Shaikh and Supit (2014),
Shi et al. (2015), Siad et al. (2014), Silva and de Brito (2016), Sonebi and Nanukuttan (2009), Sonebi et al. (2009), Sotiriadis et al.
(2014), Tezuka et al. (1992), Thomas et al. (2010a, 2010b, 2010c), Thomas and Hooton (2010), Tsivilis and Asprogerakas (2010), Tsivilis
et al. (2000), Uysal et al. (2012), Van Dam et al. (2010), Wu et al. (2016), Xiao et al. (2009), Yamada et al. (2006), Younsi et al. (2015)
and Zhu and Bartos (2003)
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(200–1500 m2/kg), LS contents (8·4–50%), w/c ratios
(0·40–0·50), cement contents (292–500 kg/m3) and moist
curing durations (28–90 d). The results obtained were analysed
and are plotted separately in terms of equal 28 d strength and
equal w/c ratio of the concrete in Figures 7(a) and 7(b),
respectively.

Figure 7 shows that, in general terms, regardless of whether
the mixes were designed in terms of equal strength or equal
w/c ratio, the effect of LS fineness on chloride ingress is insig-
nificant up to 35% LS content. The influence of fineness can
be observed to be consistent with the compressive strength
results, with finer LS resulting in slightly improved strength.

For the concretes of equal strength (Figure 7(a)), the LS con-
tents used ranged from 8·4 to 13%, which although relatively
low, shows that the relative chloride ingress in PLC is close to
that in PC and there is a slight enhancement in chloride
ingress resistance of concrete due increased LS fineness. On the
other hand, although the equal w/c ratio results (Figure 7(b))
at times appear to be conflicting, and in contrast to the equal
strength results, there is some evidence to suggest that chloride
ingress in PLC concrete decreases to some extent with increas-
ing LS fineness.

In addition, Ghiasvand et al. (2015) examined PLC produced
by two different methods (inter-grinding and blending) with

10% LS content. The fineness of the PLC varied from 3640 to
5980 cm2/g and the results suggested that, for this difference in
LS fineness, chloride ingress resistance was not significantly
different, irrespective of whether the PLC was produced by
inter-grinding or blending.

Cement content
The effect of total cement content on chloride ingress in
PLC concrete was studied by Bertolini et al. (2007) and Lollini
et al. (2014, 2016) using LS up to 30%, a w/c ratio of
0·46, cement contents of 300–350 kg/m3 and moist curing
for 28 d. The chloride diffusion results for PLC concrete
(13·6–23·5�10−12 m2/s) were considerably higher than those
for PC concrete (7·0–8·0� 10−12 m2/s) for all the mixtures
studied. As expected, due to the narrow range of cement
content employed, its effect on chloride ingress was found to
be negligible in both PC and PLC mixes.

Combined chloride and sulfate environment
Sotiriadis et al. (2014) and Yamada et al. (2006) studied chlor-
ide ingress in PC and PLC mixtures exposed to a combined
chloride- and sulfate-bearing environment. The experimental
conditions were LS content of 0–35%, w/c ratio of 0·50–0·52,
moist curing for 7 d, exposure temperature of 5–20°C and
immersion for 6–18 months. The test solutions were (a) artifi-
cial seawater with 0·28% SO4

2− and 1·89–2·11% Cl− and
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Figure 5. Influence of LS on chloride ingress in concretes of (a) equal 28 d strength and (b) equal w/c ratio. Data taken from Figure 4
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(b) a solution containing 0·00–0·10% SO4
2− and 1·89–2·11%

Cl−. The following results were obtained.

(a) The chloride measurements of PC and PLC with LS
contents up to 15% were comparable.

(b) The PLC with 35% LS content had the highest chloride
ingress.

(c) In the presence of lower sulfate contents, high chloride
contents were recorded due to the greater amount of
dissolved calcium hydroxide in comparison with seawater,
with the sulfate ions suppressing the dissolution of
calcium hydroxide.

Aggregate content and particle size
The effects of aggregate content and particle size were exam-
ined by Wu et al. (2016). The variables in this study were
LS contents of 0, 5 and 10%, w/c ratio of 0·45, standard
curing for 56 d, with samples with varying aggregate content
(0–1468 kg/m3) and mean aggregate size (0·00–2·88 mm). In
general, the chloride ingress results of the PC and PLC mixes
showed similar trends. In comparison with PC, the inclusion of
5% LS resulted in a minor reduction in chloride migration (by
5–9%), and, although hard to justify and possibly due to

experimental error, chloride migration increased noticeably (by
40–45%) with 10% LS. Increases in aggregate volume content
and particle size led to slight increases in chloride ingress in
both the PC and PLC mixtures, due to a coarser pore structure
and the sizeable presence of an aggregate–matrix interface.

Chloride ingress: effect of concrete strength
To study the relationship between compressive strength and
chloride ingress in PLC concrete, the results used in Figures 4
and 5 are plotted in terms of chloride ingress of PLC concrete
as a percentage of the corresponding PC concrete against
characteristic cube strength in Figure 8. This figure was devel-
oped in the following way.

& Characteristic cube strengths were calculated from the
measured strengths using a variation coefficient of 6% given
in ACI 301-05 (ACI, 2005) for fair laboratory control class.

& The reported results where the test mixes did not comply
with the mix limitations of BS EN 206:2013 (BSI, 2013)
for chloride exposure class XS1 were not considered
further in developing the figure.

& For convenience, linear regression was applied in the
analysis of the data. As the coefficients of correlation were

y = –0·0662x + 6·5295
R2 = 0·5548
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Figure 6. Influence of moist curing duration on chloride ingress in PLC concretes of (a) equal strength design and (b) equal w/c ratio
with respect to PC concrete. Data taken from Aguayo et al. (2014), Bertolini et al. (2011), Cam and Neithalath (2010, 2012), Ghiasvand
et al. (2015), Ghrici et al. (2007), Githachuri and Alexander (2013), Güneyisi et al. (2011), Hooton et al. (2010), Hossack et al. (2014),
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generally poor, the trend lines obtained can only be
considered of qualitative value.

& For comparison purposes, the minimum characteristic
strength of 37 MPa for XS1 exposure class recommended
in Eurocode 2 (BSI, 2004) was chosen. This is shown by
the dotted vertical line.

Figure 8 reveals the following important points.

& Chloride ingress increases with decreasing compressive
strength and increasing LS content. The relative chloride
ingress for both CEM II/A (6–20% LS) and CEM II/B
(21–35% LS) concretes can exceed the minimum cover of
35 mm specified in Eurocode 2 at the minimum
characteristic strength of 37 MPa for exposure class XS1
(considering the design working life is 50 years) (BSI,
2004).

& For chloride ingress similar to that of PC concrete at
37 MPa, the compressive strength of PLC concrete may
have to be increased from 37 MPa to 50 MPa and 60 MPa
for cements such as CEM II/A (6–20% LS content)
and CEM II/B (21–35% LS content), respectively.
Alternatively, the required minimum cover for PLC
concrete at 37 MPa would have to be increased for
concrete made with CEM II/A (6–20% LS) and CEM II/B
(21–35% LS) cements.

Chloride ingress in concrete specified in terms
of w/c ratio
Looking from another perspective, chloride ingress in PLC
concrete specified in terms of w/c ratio is shown in Figure 9.
The base data used in this figure are those used in Figures 4
and 5 and were subjected to the same screening process as
adopted for Figure 8. The recommended maximum w/c ratio
of 0·50 for XS1 exposure class given in BS EN 206:2013 (BSI,
2013) was selected and is shown as the vertical dotted line.

Figure 9 shows that, for a given w/c ratio, chloride ingress
increases with LS content and the chloride ingress behaviour
of concrete is similar to that in Figure 8, but at a slightly
greater rate. Additionally, for a similar chloride ingress to
CEM I concrete at w/c = 0·50, mixes made with CEM II/A
and CEM II/B with LS addition would need to be designed
with a reduced w/c ratio, of about 0·40 and 0·35, respectively.
Alternatively, the required minimum cover (i.e. 35 mm) of PLC
concrete at w/c = 0·50 would need to be increased for both
CEM II/A (6–20% LS) and CEM II/B (21–35% LS) cements.

In situ chloride ingress measurements
Published research on situ chloride ingress is limited. Hossack
et al. (2014) studied the in situ chloride content of concrete
pavements constructed in two different locations in Canada
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during 2008 and 2009. The test conditions were as follows:
age at the time of measurements, 3 and 4 years; LS content,
0% and 12%; w/c ratio, 0·37 and 0·44; in situ core strength
43–59 MPa. Although the effect of LS on the strength varied,
chloride measurements at both locations showed, in general,
that PLC concretes had on average 20% higher chloride
penetration than PC concrete. This was attributed to the lower
alumina content of PLC due to the dilution of C3A and C4AF
with the addition of LS, which reduces the capacity for chlor-
ide binding.

Influence of LS on chloride-induced corrosion
of reinforcement
The effect of LS addition on chloride-induced corrosion,
although important, is not widely reported. However, as the
use of LS is known to increase the susceptibility of concrete to
chloride ingress, it is necessary to determine how this may
influence the corrosion of steel reinforcement in PLC concrete.
Only 13 studies have reported on the chloride-induced

corrosion of PLC concrete. The results showed that chlorides
can reach the steel reinforcement in sufficient concentrations
(i.e. higher than 0·4% by cement mass, BS EN 206 (BSI,
2013)) and consequently the corrosion process could, in prin-
ciple, be considered to have initiated. Additionally, due to the
complexity of the test methodology and the nature of measure-
ments, the data obtained could only be examined in a qualitat-
ive manner, as presented in Table 5.

The reported research suggests that, in general, the test speci-
mens used had cement blends of 0–35% LS, with w/c ratios of
0·42–0·72, and were subjected to chloride exposure for up to
5 years. The corrosion of steel reinforcement was measured
using different methods, such as corrosion potential (mV),
weight loss of reinforcement (g/m2), corrosion current/density
(mA/m2) and corrosion rate (μm/year).

In the studies that assessed PLC concretes with respect to refer-
ence PC concretes, the rate of corrosion in PLC concrete was
generally higher than that of the corresponding PC concrete.
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It has also been reported that an increase in w/c ratio reduced
the difference between the corrosion results of the two mixtures
and that the type of curing did not produce a significant
change except for mixtures with a higher w/c ratio and in
specimens cured with lime water (Batic et al., 2010, 2013). It
has also been suggested that the corrosion of reinforcement in
PLC concrete principally depends on the cement content, w/c
ratio and LS fineness (Diab et al., 2015, 2016).

In addition, some researchers have assessed the corrosion
behaviour of PLC concrete without testing PC concrete. These
studies involved LS contents of 10–20%, w/c ratios of
0·46–0·65, exposure durations of up to 8 years and chloride
concentrations of 3·5–10·0% (Bertolini et al., 2002, 2004a;
Bolzoni et al., 2006, 2014; Brenna et al., 2013; Fayala et al.,
2013; Garcés et al., 2006; Meira et al., 2014; Ormellese et al.,
2006; Romano et al., 2013; Sistonen et al., 2008;

Table 5. Summary of influence of LS addition on chloride-induced corrosion

Reference Main points

Batic et al. (2010) & Corrosion rate of PLC mixture higher than that of PC mixture and increase in w/c ratio
minimised the differences between the corrosion results of the two mixtures

& Reinforcement corrosion unit: corrosion rate i (μA/cm2)
& Cylinder specimen, 50�100 mm; concrete cover, 22 mm; LS contents, 0 and 22%; w/c

ratios, 0·50 and 0·65; moist curing, 28 d; exposure, immersion in a 3% sodium chloride
solution; duration, 9 months; equal w/c mixes

Batic et al. (2013) & Concrete made with PLC showed greater corrosion rate than PC concrete and increase in w/c
ratio reduced the differences between the two mixtures. Moreover, the type of curing did not
introduce significant change except for mixture with the higher w/c and cured in lime water

& Reinforcement corrosion unit: corrosion rate i (μA/cm2)
& Cylinder specimen, 50�100 mm; concrete cover, 22 mm; LS contents, 0 and 35%; w/c

ratios, 0·50 and 0·65; air and wet (lime water) curing, 28 d; exposure, immersion in a 3%
sodium chloride solution; duration, 9 months; equal w/c mixes

Bertolini et al. (2011), Lollini et al. (2015) & Corrosion activity of PLC concrete is higher than that of PC concrete
& Reinforcement corrosion unit: rebar corrosion potential (mV)
& Prism specimen, 60�250�150 mm; concrete cover, 15 mm; LS contents, 0, 15 and 30%;

w/c ratio, 0·61; moist curing, 28 d; exposure, ponding using 3·5% sodium chloride solution;
duration, 2 years; equal w/c mixes

Deja et al. (1991) & Rate of reinforcement corrosion of PLC concrete lower than that of PC concrete
& Reinforcement corrosion unit: rebar weight loss (g/m2)
& Prism specimen, 40�40�160 mm; concrete cover, 22 mm; LS contents, 0 and 5%; w/c

ratio, 0·50; moist curing, 56 d; exposure, immersed in 23% sodium chloride solution;
duration, 12 months; equal 28 d strength mixes

Diab et al. (2015), Diab et al. (2016) & In general, corrosion rate of PLC concrete higher than that of PC concrete until a certain level
of LS replacement (15%); after that started to decrease until it became similar or lower than
that of PC concrete at 20% and 25% LS additions. Furthermore, corrosion activity of PLC
concrete principally depended on the cement content, w/c ratio of the mix and LS fineness

& Reinforcement corrosion unit: corrosion rate (mm/year)
& Cylinder specimen, 75�150 mm; concrete cover, 31 mm; LS contents, 0, 10, 15, 20 and

25%; w/c ratios, 0·48, 0·55 and 0·65; curing, lime water for 6 d then in air for 21 d;
exposure, immersion in 5% sodium chloride solution; duration, 9 months; equal 28 d
strength only for 10% LS mixtures

Moir and Kelham (1993), Matthews
(1994), Livesey (1991)

& Corrosion rate of PLC (5% LS) concrete similar to PC concrete. Corrosion results of PLC (25%
LS) concrete varied over time compared to PC concrete

& Reinforcement corrosion unit: percentage rebar weight loss (%)
& Prism specimen, 100�100�300 mm; concrete cover, 10 mm; LS contents, 0, 5 and 25%;

w/c ratio, 0·60; moist curing, 28 d; exposure, tidal zone; duration, up to 5 years; equal w/c
mixes

Pavoine et al. (2014) & Corrosion rate of PLC concrete higher than that of PC concrete
& Reinforcement corrosion unit: corrosion current (mA)
& Specimen, four concrete elements 1 m long, 100 mm thick and 200 mm high sealed

together to form a closed container; concrete cover, 25 mm; LS contents, 0 and 10%; w/c
ratios, 0·40 and 0·55; moist curing, 6 weeks; exposure, container subjected to 5% sodium
chloride solution; duration, up to 3 months; equal 28 d strength mixes

Tsivilis et al. (2000), Tsivilis et al. (2002) & Corrosion rate of PLC concrete lower than that of PC concrete
& Reinforcement corrosion unit: rebar weight loss (g/m2)
& Prism specimen, 80�80�100 mm; concrete cover, 20 mm; LS contents, 0, 10, 15, 20 and

35%; w/c ratios, 0·62 and 0·72; moist curing, 28 d; exposure, partially immersion in a 3%
sodium chloride solution; duration, 12 months; equal w/c only for 35% LS mixture
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Zacharopoulou et al., 2013). The overall outcome of these
studies suggests that the use of PLC concrete leads to moderate
to high increases in the corrosion rate.

PLC performance in terms of pore structure
and related properties, strength, carbonation
rate and chloride ingress
To facilitate a meaningful comparison of the durability per-
formance of PLC concrete, Figure 10 was constructed to col-
lectively analyse the effect of LS content on porosity and
related properties (i.e. water absorption and sorptivity),
strength, carbonation rate and chloride ingress relative to cor-
responding PC concretes.

In developing Figure 10, to make it easier for the research
to be adopted in practice, some simple modifications were
carried out to the trend lines observed in the studies reported
previously in this paper (Figure 4) and two previous studies
of the current authors (Elgalhud et al., 2016, 2017). These
modifications were based on the concept that the physical
and chemical effects of the inclusion of LS are mainly as a
filler (better packing of the pore matrix), heterogeneous
nucleation (improving early strength) and dilution (increasing
the effective w/c), as suggested by Irassar (2009), although
these effects rely on the amount and fineness of LS used in a
mix (Sezer, 2012). The main change adopted was the use
of simple linear regression as opposed to polynomial

regression. Although a degree of accuracy may have been lost
in this process, the outcome has been to produce a useful tool
that should allow estimation of the changes that may be
expected with the use of LS on the pore structure of hardened
concrete, its strength, carbonation and chloride ingress
resistance.

Figure 10 suggests that, for practical purposes, it is feasible to
accept that

& up to 15% LS content, its effect may be considered
constant and almost neutral

& beyond 15% LS content, an increase in LS content gives
rise to a progressive reduction in all the properties of
concrete and, in this case, pore structure (in the form of
porosity, water absorption and sorptivity) strength and
durability (as carbonation and chloride ingress).

Table 6 shows that the trends of sorptivity and water absorp-
tion are mainly the same and are influenced by LS slightly
more than the porosity, which reflects the variance in the
working mechanism of each. In addition, the sensitivity of
PLC to carbonation exposure is higher than that of chloride
ingress. This could be attributed to the pH of LS/calcium car-
bonate (CaCO3), which is between 8·5 and 10 (Chen et al.,
2009; Hua and Laleg, 2009; Phung et al., 2015) and is lower
than the pH of PC (i.e.12·5–12·8), and this is considered to
decrease the pH of the resultant PLC (particularly at high LS
contents such as 35%).

In summary, it is proposed that although the use of LS gener-
ally has some impact on the properties of concrete, this can be
insignificant up to a maximum of 15% LS content, which is
below the maximum limit of 20% for CEM II/A PLC (BSI,
2011) and which thus may need to be revised.

Improving PLC performance in practice
The effect of LS addition on chloride ingress in concrete
can be lessened in a number of ways. Although extending the
moist curing duration will certainly help greatly to improve the
resistance of PLC concrete against chloride ingress by develop-
ing a less porous and less permeable concrete, accomplishing
this in practice can be difficult due to present construction
practices. The other options for enhancing the resistance of
PLC concrete to chloride ingress could be realised by the
following.

(a) Restricting LS addition to a smaller proportion (i.e. a
maximum of 15%). Such a cement would be in part
compliance with PLC of type CEM II/A (6–20% LS)
in BS EN 197-1:2011 (BSI, 2011). Although this option
may be used, because it limits the replacement of PC
content in cement, it would negatively impact on the
carbon dioxide footprint of the cement industry.
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(b) Enhancing the porosity of the concrete by
(i) optimising particle packing by revising the

proportions of coarse and fine aggregates and/or
introducing the use of fillers (Dhir and Hewlett,
2008)

(ii) developing more effective use of LS by adopting
other additions such as small proportions of SF and
MK (Elgalhud et al., 2016).

(c) Increasing the specified characteristic strength of concrete
by reducing its w/c ratio through the use of a high-range
water reducing admixture. This option should enhance
the durability and sustainability of concrete (Dhir et al.,
2000, 2004, 2006).

(d ) Increasing the thickness of concrete cover could be
considered as an additional obvious option. However, this
will influence structural design and sustainability aspects
and this solution is unlikely to be chosen by design
engineers.

Conclusions
For combinations of LS and PC within the bands of CEM
II/A (6–20% LS) and CEM II/B (21–35% LS) cements speci-
fied in BS EN 197-1:2011 (BSI, 2011), the results show that, in
general, the chloride ingress of concrete increases at an increas-
ing rate as the LS content is increased and that the rate of this
increase and the significance thereof can vary depending on
whether the PLC mixes are designed on the basis of equal
strength or equal w/c ratio, with the latter showing a greater
effect than the former. Likewise, the duration and type of
curing (in terms of relative humidity and temperature),
exposure conditions and LS fineness also tend to affect the
magnitude and rate of the LS effect on chloride ingress.

Accordingly, these effects have been found to be more sensitive
and significant with CEM II/B PLC than with CEM II/A
PLC. This appears to support the approach adopted in BS
8500-1:2006+A1:2012 (BSI, 2006), in which CEM II/B does
not appear to be suggested for use in conditions subject to
chloride exposure. Additionally, compliance with mix

limitations for chloride exposures as per BS EN 206-1:2013
(BSI, 2013) may have to be revised upwards for PLC.

The limited in situ chloride ingress measurements of concrete
structures made with PC and PLC (12% LS) over a period of 3–
4 years showed that PLC concrete had a higher chloride ingress
rate than the corresponding PC concrete. Additionally, the
results showed that, due to depassivation of reinforcement, the
rate of corrosion in PLC concrete, upon chlorides reaching the
reinforcement, was generally higher than that in PC concrete.

The results of this study considered together with two previous
studies (Elgalhud et al., 2016, 2017) show that the effects of
LS addition on concrete pore structure (in terms of porosity,
absorption and sorptivity), strength and resistance to carbona-
tion and chloride ingress are similar, but their magnitudes may
be different.

For practical purposes, and in view of the findings of two
previous studies in this series (Elgalhud et al., 2016, 2017), it is
proposed that the effect of LS up to a content of 15% on con-
crete performance may be assumed to be negligible but increases
thereafter at a constant rate with increasing LS content. In light
of this, the maximum limit on LS content of CEM II/A may be
considered for revision from 20% down to 15%.
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