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Abstract 

In this paper we report an investigation into the phases formed on dehydration of 

Na2M(SO4)2-x(SeO4)x·2H2O (0≤x≤1; M = Mn, Fe, Co and Ni). For the Fe series, all attempts 

to dehydrate the samples doped with selenate resulted in amorphous products, and it is 

suspected that a side redox reaction involving the Fe and selenate may be occurring leading 

to phase decomposition and hence the lack of a crystalline product on dehydration. For M = 

Mn, Co, Ni, the structure observed was shown to depend upon the transition metal cation and 

level of selenate doping. An alluaudite phase, Na3M1.5(SO4)3-1.5x(SO4)1.5x, was observed for 

the selenate doped compositions, with this phase forming as a single phase for x≥0.5 M = Co, 

and x = 1.0 M = Ni. For M = Mn, the alluaudite structure is obtained across the series, albeit 

with small impurities for lower selenate content samples. Although the alluaudite-type phases 

Na2+2y(Mn/Co)2-y(SO4)3 have recently been reported [1,2], doping with selenate appears to 

increase the maximum sodium content within the structure. Moreover, the selenate doped Ni 

based samples reported here are the first examples of a Ni sulfate/selenate containing system 

exhibiting the alluaudite structure. 
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Introduction  

There is growing interest in the structures and properties of mineral systems constructed from 

metal octahedra and oxoanion tetrahedra. This research interest has been driven by potential 

applications in a number of technologically important areas, including  applications as battery 

electrodes [3–7], fuel cell materials [8–13], medical applications [14]
,
[15] and pigments[16]. 

Recently the Na transition metal sulfate hydrate systems, Na2M(SO4)2.2H2O (M = transition 

metal) have attracted interest following reports on the use of Na2Fe(SO4)2·2H2O as a 

potential electrode material for Na ion batteries [2]. In a recent paper, we investigated the 

partial substitution of SeO4
2-

/PO3F
2-

 for SO4
2-

 in these Na2M(SO4)2.2H2O (M = transition 

metal) systems, and showed how the incorporation of these alternative tetrahedral units could 

cause significant alterations to the structure obtained[17]. Of further interest is the effect this 

doping strategy has on the resultant products obtained from the dehydration of these 

dihydrates. For example, dehydration of Na2M(SO4)2.2H2O (M = Fe) has been shown to 

produce a material with the alluaudite-type structure, which also shows good performance as 

a Na ion battery electrode material[18]. Reports regarding the alluaudite system often refer to 

off-stoichiometric behaviour, with compositions such as Na2+2yFe2-y(SO4)3 (y ≤ 0.3) common 

for this material.[19,20] Similar formation of an alluadite-type phase has been observed on 

dehydration of the Mn based system[2], while for the M = Ni, Co systems dehydration leads 

to the formation of the simple bimetallic sulfate Na2M(SO4)2 [6].We have therefore extended 

our studies on Na2M(SO4)2-x(SeO4)x/(PO3F)x .2H2O systems to determine whether there are 

any differences in the phases (Na2M(SO4)2-  or alluaudite-type) formed on dehydration of 

these doped systems. Furthermore, the synthesis of such Na2M(SO4)2-  or alluaudite-type 

phases via the dehydration of  Na2M(SO4)2-x(SeO4)x/(PO3F)x .2H2O prepared by a simple 

initial solution step not only reduces the synthesis time, by avoiding the need for prolonged 

milling and/or lengthy heating times, but also offers a low temperature route to obtain these 



phases, which are prone to decomposition at elevated temperatures. Unfortunately, in the case 

of the PO3F doped samples, the dehydration experiments led to significant impurities, 

suggesting decomposition of the fluorophosphate unit after thermal treatment. In contrast, 

dehydration of the selenate doped samples were successful, and in this paper we present the 

results from the dehydration of the Na2M(SO4)2-x(SeO4)x·2H2O (M = Fe, Co, Mn, Ni; 

0≤x≤1.0) materials, illustrating the significant effect of the incorporation of selenate on the 

products obtained. 

Experimental 

For ease of preparation and high purity of the resultant samples, the sodium transition metal 

sulfate hydrates were synthesized via a wet chemical route, as described earlier [17]. Briefly, 

stoichiometric amounts of MSO4·yH2O (Sigma Aldrich, 99%) (where M = Mn, Fe, Co, Ni 

and Cu, y = 1 for Fe and Mn, 5 for Cu, 6 for Ni and 7 for Co) and sodium sulfate (Sigma 

Aldrich, 99%) were dissolved in water (for the Fe samples, ascorbic acid was added to the 

solutions in order to prevent oxidation of Fe
2+

 to Fe
3+

). After mixing at 60°C for 30 minutes, 

the samples were then placed in an oven and evaporated to dryness at 60-110°C for Mn, Fe, 

and Co samples and 130°C for Ni. The Na2M(SO4)2-x(SeO4)x·2H2O samples (where M = Mn, 

Fe, Co, Ni)  were synthesized using the same solution method, where sodium selenate was 

used in place of Na2SO4 as the selenate source (the maximum level of doping examined was 

50% substitution (i.e. x = 1)). Dehydration of the obtained dihydrates was performed by 

heating the samples at a rate of 0.5°C min
-1

 to 300-350°C, and holding at this temperature for 

12 hours in air (or nitrogen for air sensitive samples (M = Fe)).  

Thermogravimetric studies were conducted using a Netzsch STA 449 F1 Jupiter 

thermogravimetric analyser coupled with a Netzsch 403C mass spectrometer (heating rate of 

0.5°C min-1 under a nitrogen atmosphere). Sample purity and unit cell parameters were 



determined from powder X-ray diffraction using a Bruker D2 phaser (Co Kα radiation) 

operating in reflection mode. Structural determination was performed using X-ray diffraction 

data, with one system analysed through neutron diffraction (data collected using HRPD (High 

Resolution Powder Diffractometer, ISIS Facility, Rutherford Appleton Laboratory, UK)).  

Structure refinements were carried out using the GSAS suite of programs using the structural 

models proposed by Tarascon et al. for Na2M(SO4)2 and Barpanda et. al for the alluaudite 

phases[6,18,21,22]. Further characterisation of these systems was performed using Raman 

spectroscopy (Renishaw in Via Raman microscope equipped with a He-Ne 633 nm laser). 

Results 

The results of the thermogravimetric study (see supplementary information – Figure 1) show 

that all samples exhibit the ~10% mass loss associated with the loss of two moles of water, as 

expected for these dihydrates. For both cobalt and nickel systems, the TG results indicated 

that the dehydration temperature of the selenate doped systems increased with increasing 

selenate concentration (an increase of 50°C from x=0 (~200°C) to x=1.0 (~250°C) in the Ni 

system). Samples which are doped with selenate are, however, not as thermally stable at 

elevated temperatures when compared to the undoped sulfates. The sulfates appear to be 

stable up to at least 600°C, whereas selenate doped samples decompose in the region of 450-

500°C. The mass losses in this region for the latter samples are believed to be attributed to 

the decomposition of the selenate oxoanion. From the results of the TG studies, samples were 

heated to 350°C to ensure complete removal of structural water. 

The structures resulting from dehydration differ significantly to those of the starting hydrated 

phases, as the structure directing water molecules are lost. For the sulfate endmember 

Na2M(SO4)2·2H2O, dehydration of both Co and Ni systems resulted in the bimetallic sulfate 

Na2M(SO4)2 (M=Co, Ni) as shown previously by Tarascon et al. [6] (Figure 1). In contrast, 



dehydration of Na2M(SO4)2·2H2O (M=Mn, Fe), led to the formation of an alluaudite type 

phase along with some impurities, as recently shown by Marinova et al[23].  For the Fe 

series, all attempts to dehydrate the samples doped with selenate resulted in amorphous 

products, and so the phase composition of the selenate doped Fe samples could not be 

analysed by X-ray diffraction. It is suspected that a side redox reaction involving the Fe and 

selenate may be occurring within the material, due to the oxidising power of selenate (Se
VI
 

Se
IV

), which may be leading to phase decomposition and hence the lack of a crystalline 

product on dehydration.   

We discuss here in detail the structural properties of the dehydrated phases for selenate-doped  

Na2M(SO4)2-x(SeO4)x·2H2O (M = Co, Mn, Ni; 0 ≤x ≤1.0). 

Dehydration results for Na2Co(SO4)2-x(SeO4)x·2H2O (0≤x≤1.0) 

While dehydration of the sulfate endmember led to the formation of the simple bimetallic 

sulfate Na2Co(SO4)2, samples containing selenate, Na2Co(SO4)2-x(SeO4)x, showed a two 

phase mixture for selenate concentration up to 25% (x = 0.5). This mixture consisted of the 

sulfate phase Na2Co(SO4)2, and a second new phase, whose X-ray diffraction pattern 

resembled that of alluaudite-type Na2+2yMn2-y(SO4)3. The second phase Bragg peaks 

increased in intensity with increasing selenate content, and for x0.5, a single phase 

alluaudite-type phase was obtained. (Figure 2). Notably, this is the first reported alluadite-

type phase for bimetallic mixed sulfate selenates. A further key feature to note is the high 

Na:Co ratio of 2:1 in the present samples, whereas normally (for alluaudite) the ratio of the 

metal cations is closer to 1:1. Therefore, in order to clarify this difference, the structure of 

Na2Co(SO4)(SeO4) was elucidated using neutron diffraction.  

Initially the occupancies of all Na and Co sites were freely refined to confirm the 

stoichiometry of this new alluaudite-type phase. In these initial refinements, the occupancy of 



the Co1 site, in particular, showed a significant increase above 1. This suggested some Na 

was present on these sites due to the larger neutron scattering length of Na compared with 

Co. The presence of Na on the cobalt sites was checked by a further structure refinement 

where Na (total site occupancy constrained to 1) was allowed to be present on both Co1 and 

Co2 sites. This refinement indicated an approximate 50:50 occupancy of Co and Na on the 

Co1 site (Co:Na occupancy = 0.46:0.54). In contrast, the Co occupancy on the Co2 site did 

not substantially deviate from 1 with the refinement indicating negligible Na on this site. 

Therefore, the occupancy of the Co1 site was fixed at 0.5Co:0.5Na, while the Co2 occupancy 

was constrained as fully occupied by Co.  The refinement of the occupancies of the Na1 and 

Na2 sites, gave values which did not deviate significantly from 1.0, suggesting both sites 

were fully occupied by Na. A third partially occupied Na site, Na3, has also been reported for 

the alluaudite structure, and the occupancy of this Na site refined to ≈0.5. The S/Se 

occupancies were also refined but these did not deviate significantly from the nominal 

expected composition of 0.5:0.5 S:Se for each site. Therefore the composition for this 

structural model is Na3Co1.5(SO4)1.5(SeO4)1.5, which is consistent with the Na:Co:Se:S ratio of 

2:1:1:1 of the starting Na2Co(SO4)(SeO4).2H2O hydrated phase. Hence the observation of the 

alluaudite structure with this high Na:Co ratio appears to be related to significant additional 

occupancy of one of the Co sites by Na. The final refined structural parameters are shown in 

Table 1 (the resulting observed, calculated, and difference plots for the separate X-ray and 

neutron diffraction structure refinements using this structural model are shown in Figure 3).  

Both Na2Co(SO4)2 and alluaudite-type Na3Co1.5(SO4)1.5(SeO4)1.5 structures are built of a 

network of distorted metal octahedra and sulfate/selenate tetrahedra. In Na2Co(SO4)2, the 

framework is constructed of metal octahedra that corner and edge share with the sulfate 

tetrahedra (Figure 1). The sodium ions are dispersed throughout the structure in the cavities 

created by the framework. The structure of alluaudite-type Na3Co1.5(SO4)1.5(SeO4)1.5 differs 



significantly from the Na2Co(SO4)2 phase (Figure 4). In the alluaudite case, the metal 

octahedra bond to the sulfate/selenate tetrahedra through only corner-sharing. The metal 

octahedra form chains bridged by the sulfate/selenate tetrahedra along the b-axis (S1/Se1 

bridge Co2, S2/Se2 bridge Co1). These chains then stack and alternate along the a-axis, 

separated by the third sulfate/selenate tetrahedra (S3/Se3). The Co1 site, which is half 

occupied by sodium, shows a large degree of distortion from the ideal octahedral geometry, 

which can be related to the mixed cation occupancy of this site. The remaining sodium ions 

are located within channels in the framework (Na2 and Na3), or between the tetrahedra that 

bridge the metal octahedra bi-units (Na1).  

After successfully solving the structure of this new phase with neutron diffraction, the 

structural model was applied to the rest of the series to analyse the X-ray diffraction data. As 

noted earlier, the samples of Na2Co(SO4)2-x(SeO4)x with x<0.5 consisted of two phases, and 

so a two phase refinement was performed to determine the cell parameters of the individual 

phases, and the approximate phase fraction. The results from these structure refinements are 

summarized in Table 2 (Observed, calculated and difference X-ray diffraction plots are 

shown in supplementary information). The data show an increase in cell parameters on 

selenate doping across the alluaudite series as expected due to the larger size of the selenate 

versus the sulfate tetrahedron. 

 

Dehydration results for Na2Ni(SO4)2-x(SeO4)x·2H2O (0 ≤ x ≤ 1.0) 

For the Ni series, Na2Ni(SO4)2-x(SeO4)x·2H2O (0≤x≤1.0), a slightly different series of 

products was observed on dehydration. In this system, at low selenate levels (x≤0.25), 

dehydration led to the formation of the simple bimetallic sulfate Na2Ni(SO4) 2-x(SeO4)x. On 

increasing the selenate content further (x=0.5 and 0.75 samples), a two phase mixture was 



observed as for the selenate doped Co systems. For the highest selenate level analysed 

(x=1.0), a single phase alluaudite sample was then observed (Figure 5). Using the structural 

models for the alluaudite-type phase from the Co-based system and that for Na2Ni(SO4)2, 

dual phase refinements (X-ray diffraction data) were conducted for this Ni series (Table 3; 

observed, calculated and difference X-ray diffraction plots are shown in supplementary 

information). The results indicate that at low selenate levels, the selenate is successfully 

accommodated in the simple 212 structure, Na2Ni(SO4) 2-x(SeO4)x ((x≤0.25), with the cell 

parameters shown to increase as expected with increasing selenate content. On further 

increase, the alluaudite phase starts to appear and a dual phase mixture is observed. The cell 

parameters of the alluaudite phase increase with increasing selenate content, up to x=1.0 

when a single phase alluaudite sample is obtained.  

Dehydration results for Na2Mn(SO4)2-x(SeO4)x·2H2O (0≤x≤1.0) 

As noted earlier, dehydration of undoped Na2Mn(SO4)2·2H2O leads to the formation of an 

alluaudite-type phase. Thus, contrary to the Co, Ni based systems, the dehydrated 

“Na2Mn(SO4)2
”
 phase, appears to naturally adopt the alluaudite framework without the need 

for selenate doping. However, the resultant X-ray diffraction pattern showed the presence of 

impurity phases after dehydration (identified by black diamonds in Figure 6). Of note, 

however, is that, when the concentration of selenate is increased, the impurity phases appear 

to decrease until these impurities are no longer present once the selenate dopant level reaches 

x = 0.5 in the starting dihydrate. Cell parameters obtained from structure determination (X-

ray diffraction data) using the alluaudite structural model are summarized in Table 4 

(observed, calculated and difference X-ray diffraction plots generated from the structure  

refinement for these dehydrated phases can be found in supplementary information).  



The cell volumes for these alluaudite phases are plotted against the selenate concentration in 

the starting dihydrate phases in Figure 7. For the Mn series, for which the alluaudite structure 

is observed for all compositions, the cell volume increases with increasing selenate content 

across the series. However, the variation is not quite linear, with a small change in slope 

apparent at x=0.5. This is consistent with phases, which have a selenate content lower than 

this value showing the presence of small unidentified impurities, while samples with higher 

selenate content were single phase. Similar increases in cell volume with selenate content 

were observed for the Co, Ni containing alluaudite phases, albeit with small variations from 

linearity associated with the formation of mixed phases for some of the lower selenate 

content samples.  

Raman data for dehydrated Na2M(SO4)2-x(SeO4)x·2H2O  (M = Mn, Co and Ni)  

The samples obtained through the dehydration of the dihydrates were also analysed by 

Raman spectroscopy to observe the nature of the oxoanion (sulfate/selenate) bonding in the 

material (Figure 8). The undoped Na2Ni(SO4)2 sample shows a much more complicated 

Raman spectrum compared with that of a sample that has adopted the alluaudite structure.  

The origin of the additional peaks could be due to the bonding of the sulfate oxoanion; in 

Na2M(SO4)2, two oxygens in the sulfate tetrahedron edge share with the metal octahedra. 

This bonding leads to a decrease in the overall symmetry of the sulfate anion, leading to the 

formation of four bands in the Raman spectrum in the region of 950-1050 cm
-1

[24],[25]. The 

Raman spectra for the alluaudite phase shows a single broad band in this region, which can 

be seen clearly for the Mn systems which naturally adopts the alluaudite structure, both with 

and without selenate doping. A similar band at lower wavenumber (800-900 cm
-1

), which 

increases in intensity with increasing selenate content, is observed for the selenate group.
 

Although still behaving as bidentate ligands, the sulfate/selenate in the alluaudite structure 

now bridges the octahedra through corner-sharing, as opposed to edge-sharing. This 



difference in spectra provides additional evidence of the formation of a single phase material 

with the alluaudite structure with increasing selenate content for M=Ni, Co.  The Raman data 

are in good agreement with the diffraction data obtained for these phases; in particular the Co 

system shows very little evidence of the Na2M(SO4)2 phase when x>0.25-0.5. The Ni spectra 

not only show the transformation from a Na2M(SO4)2 type phase to Na3M1.5(SO4)1.5(SeO4)1.5, 

but also provide evidence that the (SeO4)
2-

 anion has entered the Na2Ni(SO4)2 structure as the 

peaks in the selenate region appear to, although broad, mimic those of the sulfate region of  

Na2Ni(SO4)2; i.e. at least two peaks can be distinguished in this range for the x = 0.25 sample 

whereas the (SeO4)
2-

 band in the alluaudite phase appears to be singular and very broad. A 

very subtle shift of the (SO4)
2-

 peaks to lower wavenumber is also observed, suggesting 

weakening of the S-O bond in the alluaudite phase with increasing selenate concentration 

from x=0.5 to x=1.0, consistent with selenate incorporation. 

Discussion 

The products observed after dehydration of Na2M(SO4)2·2H2O (M = Mn, Fe, Co and Ni) 

indicate that smaller cations such as Co
2+

 and Ni
2+

 favour formation of the Na2Co(SO4)2 

structure, whereas larger cations such as Mn
2+

 and Fe
2+

 prefer to adopt the alluaudite 

framework, Na2M2(SO4)3. The origin of this structural preference may be a consequence of 

the bonding in Na2M(SO4)2, in which edge-sharing of metal octahedra and sulfate tetrahedra 

are utilized to form the structure. Such edge-sharing means that the central cations of the two 

sites are closer to each other than for a structure containing only corner linked octahedra and 

tetrahedra. For larger cations, it could be suggested that doping the tetrahedral site with the 

larger selenate oxyanion causes edge sharing to become unfavorable in the Na2M(SO4)2 

structure under standard conditions and therefore formation of the alluaudite structure is 

preferred. In this respect, to date, there appears to be no literature reporting the synthesis of 

Na2Mn(SO4)2 and only one report of  Na2Fe(SO4)2, indicating the difficulty in synthesizing 



these phases, with formation of the alluaudite preferred [6]. The adoption of the alluaudite 

framework in Co and Ni systems after doping the system with selenate suggests that the edge 

sharing between the larger selenate on the tetrahedral site and the metal octahedra becomes 

even more unfavourable and therefore selenate doping favours the alternative alluaudite-type 

structure. To support this theory, the sum of the ionic radii of M (where M = Mn, Co and Ni) 

and the weighted average ionic radii of X (where X = S/Se) has been plotted against the 

selenate content in the starting dihydrate phase. Labels indicating the phases formed after 

dehydration have also been added to the plot. The plot (Figure 9) shows a good correlation 

between this sum of the sizes of the transition metal and the weighted average S/Se size, and 

the subsequent phase obtained after dehydration.  From these results it is apparent that it is 

both the size of the transition metal and the selenate content that dictates the structure 

obtained. In order to obtain the alluaudite phase after dehydration, a greater selenate 

concentration is required as the size of the transition metal decreases (Co (0.745 Å) forms 

alluaudite for x = 0.5, whereas Ni (0.69 Å) forms alluaudite for x=1.0).  Notably this 

indication that the size of the tetrahedral cation can be exploited to stabilise the alluaudite 

structure suggests further work is warranted in this area to access new alluaudite systems. 

A further significant result from this study is the higher Na content achievable in these 

selenate-doped alluaudite phases. The dehydration of the simple sulfate Na2Mn(SO4)2.2H2O 

leads to the observation of impurities in addition to the alluaudite-type phase. The presence of 

these impurities can be related to the high Na:Mn ratio (2:1) in the parent dihydrate, which is 

significantly higher than the ideal Na:Mn (1:1) ratio in ideal stoichiometric alluaudite 

Na2Mn2(SO4)3. It should be noted, however, that recent work on such Mn, Fe, Co containing 

alluaudite systems have indicated that the alluaudite structure may accommodate a degree of 

non-stoichiometry with a tendency towards higher Na:Mn/Fe/Co ratios, such that the formula 

should be written Na2+2y(Mn/Fe/Co)2-y(SO4)3 (0<y<0.26). Nevertheless, the Na content limit 



reported so far in the literature, for M = Mn, Fe and Co, has been <2.52[1,26–28] 

Significantly, the results presented here show that, on selenate doping, the impurity phases 

are eliminated leading to the formation of the very high Na content alluaudite systems 

Na3M1.5(SO4)3-x(SeO4)x.  

Therefore, the results indicate that phases formed in these mixed metal oxoanion series can 

be manipulated through both changes on the metal and oxoanion sites, indicating multiple 

avenues for the design of new chemical systems. In particular, selenate incorporation appears 

to raise the Na content achievable for these alluaudite systems, and allow the formation of 

alluaudite systems for smaller transition metals.  

Conclusions 

In this paper we have reported the successful synthesis of a range of phases resulting from the 

dehydration of Na2M(SO4)2-x(SeO4)x·2H2O (M=Mn, Co, Ni; 0≤x≤1.0). The structure 

observed was shown to depend upon the transition metal cation and level of selenate doping. 

An alluaudite phase was observed in selenate doped compositions, with this phase forming as 

a single phase for x≥0.5 Co and x = 1.0 Ni. For M=Mn, the alluaudite structure is obtained 

across the series, albeit with small impurities for lower selenate content samples. Although 

the undoped Mn phase has been reported in the literature recently[2], doping with selenate 

appears to increase the maximum sodium content within the structure. Moreover, the selenate 

doped Ni based samples reported here are the first examples of a Ni sulfate containing system 

exhibiting the alluaudite structure. Overall the results show that doping on the oxoanion site 

can allow the stabilisation of new alluaudite systems with higher Na contents and smaller 

transition metals.  
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Table 1a. Structural parameters for alluaudite-type Na3Co1.5(SO4)1.5(SeO4)1.5 

Cell parameters: a =11.5822(2) Å, b =12.9486(3) Å, c = 6.6465(1) Å, β = 96.418(2)˚  

Cell volume = 990.56(2)Å
3 

χ
2
 = 1.892, wRp = 2.71%, Rp = 3.03% 

Atom type Site multiplicity X y z Occupancy Uiso*100 (Å
2
) 

Na1 4 0.245(2) 0.5178(5) 0.511(2) 1.0 1.9(2) 

Na2 4 0.760(1) 0.2486(9) 0.289(2) 1.0 4.2(3) 

Na3 4 0.248(4) 0.265(1) 0.014(5) 0.5 3.0(5) 

Co1/Na 4 0.485(1) 0.091(1) 0.315(2) 0.5/0.5 2.7(2) 

Co2 4 0.0274(1) 0.410(1) 0.159(2) 1.0 1.4(2) 

S1/Se1 4 0.0106(8) 0.1425(7) 0.152(1) 0.5/0.5 1.5(2) 

O11 4 0.8816(9) 0.1658(9) 0.064(1) 1.0 2.9(3) 

O12 4 0.0791(9) 0.0905(9) 0.990(1) 1.0 2.6(3) 

O13 4 0.0164(9) 0.0798(9) 0.342(1) 1.0 1.9(3) 

O14 4 0.0690(6) 0.2505(8) 0.192(1) 1.0 3.0(3) 

S2/Se2 4 0.4879(8) 0.3532(6) 0.3634(9) 0.5/0.5 0.3(2) 

O21 4 0.4827(9) 0.4226(9) 0.164(1) 1.0 2.5(3) 

O22 4 0.4169(7) 0.2559(8) 0.291(1) 1.0 3.7(3) 

O23 4 0.425(1) 0.4134(9) 0.517(2) 1.0 3.6(3) 

O24 4 0.611(1) 0.3349(9) 0.44(1) 1.0 2.5(3) 

S3/Se3 4 0.251(1) 0.5283(3) 0.991(1) 0.5/0.5 0.52(8) 

O31 4 0.1605(8) 0.6061(7) 0.894(1) 1.0 3.2(3) 

O32 4 0.1981(7) 0.4521(5) 0.142(1) 1.0 1.8(2) 

O33 4 0.3039(7) 0.4621(5) 0.8289(9) 1.0 1.8(2) 

O34 4 0.3413(8) 0.5977(7) 0.134(1) 1.0 3.0(3) 



Table 1b. Bond lengths for Na3Co1.5(SO4)1.5(SeO4)1.5 

Na-O bond distances 

Bond Bond distance (Å) Bond Bond distance (Å) Bond Bond distance (Å) 

Na1-O11 2.431(2) Na2-O11 2.416(2) Na3-O12 2.989(3) 

Na1-O12 2.372(2) Na2-O11 2.447(1) Na3-O14 2.51(4) 

Na1-O23 2.483(2) Na2-O24 2.354(2) Na3-O14 2.82(4) 

Na1-O24 2.529(2) Na2-O24 2.957(1) Na3-O22 2.53(4) 

Na1-O31 3.054(2) Na2-O31 2.875(1) Na3-O22 2.60(4) 

Na1-O32 2.597(1) Na2-O31 2.473(2) Na3-O23 3.091(3) 

Na1-O33 2.266(2) Na2-O34 2.365(2) Na3-O32 2.647(2) 

Na1-O34 3.034(1) - - Na3-O33 2.931(2) 

Average 

Na1-O 
2.596 

Average 

Na2-O 
2.555 

Average 

Na3-O 
2.764 

S/Se-O bond distances 

Bond Bond distance (Å) Bond Bond distance (Å) Bond Bond distance (Å) 

S/Se1 -O11 1.570(1) S/Se2 -O21 1.595(1) S/Se3-O31 1.538(1) 

S/Se1 -O12 1.557(1) S/Se2-O22 1.553(1) S/Se3-O32 1.576(1) 

S/Se1 -O13 1.500(1) S/Se2-O23 1.528(1) S/Se3-O33 1.557(1) 

S/Se1 -O14 1.564(1) S/Se2-O24 1.474(1) S/Se3-O34 1.611(1) 

Average 

S/Se1 -O 
1.548 

Average 

S/Se2 -O 
1.538 

Average 

S/Se3 -O 
1.571 

Co/Na – O and Co – O bond distances 

Bond Bond distance (Å) Bond Bond distance (Å) 

Co1/Na-O21 2.220(2) Co2-O12 2.217(2) 

Co1/Na -O21 2.334(2) Co2-O13 2.253(2) 

Co1/Na -O22 2.270(2) Co2-O13 2.099(2) 

Co1/Na -O23 2.025(2) Co2-O14 2.130(2) 

Co1/Na -O33 2.224(2) Co2-O31 2.175(1) 

Co1/Na -O34 2.001(2) Co2-O32 2.067(1) 

Average 

Co1/Na-O 
2.179 

Average 

Co2-O 
2.157 

 

 

 

 

 



Table 2. Cell parameters of phases resulting from the dehydration of  

Na2Co(SO4)2-x(SeO4)x·2H2O 

212 = Na2M(SO4)2-type and 223 = alluaudite type phase 

 

 

 

 

 

 

 

 

Dopant Level (x) a (Å) b (Å) c (Å) α (°) β (°) γ (°) 

Cell vol. 

(Å
3
) 

Weight % of phase 

212 223 

0 23.311(2) 10.3064(8) 17.406(1) 90.0 98.945(4) 90.0 4131.1(6) 100 0 

0.1 

23.306(2) 10.3249(9) 17.446(2) 90.0 98.880(6) 90.0 4147.9(6) 

78 22 

11.476(2) 12.705(2) 6.493(1) 90.0 95.68(3) 90.0 942.2(3) 

0.25 

23.28(1) 10.306(3) 17.454(9) 90.0 98.81(3) 90.0 4156.0(21) 

15 85 

11.487(1) 12.751(1) 6.5227(7) 90.0 95.76(1) 90.0 950.6(3) 

0.5 11.5237(5) 12.8269(6) 6.5703(2) 90.0 96.000(4) 90.0 965.9(1) 0 100 

0.75 11.5510(5) 12.8790(5) 6.6050(2) 90.0 96.197(4) 90.0 976.8(1) 0 100 

1.0 11.5822(2) 12.9487(3) 6.6466(1) 90.0 96.417(2) 90.0 990.57(2) 0 100 



Table 3. Cell parameters of phases resulting in the dehydration of  

Na2Ni(SO4)2-x(SeO4)x·2H2O 

Dopant 

Level (x) 

a (Å) b (Å) c (Å) α (°) β (°) γ (°) 

Cell vol. 

(Å
3
) 

Weight % of phase 

212 223 

0 23.196(2) 10.2577(9) 17.339(2) 90.0 98.932(6) 90.0 4075.6(7) 100 0 

0.1 23.248(1) 10.2665(6) 17.374(1) 90.0 98.806(4) 90.0 4098.0(4) 100 0 

0.25 23.342(2) 10.289(1) 17.420(2) 90.0 98.645(6) 90.0 4136.4(7) 100 0 

0.5 

23.427(4) 10.299(2) 17.468(3) 90.0 98.5(1) 90.0 4168.3(13)
 

75 25 

11.556(3) 12.689(3) 6.504(2) 90.0 96.27(5) 90.0 947.9(4) 

0.75 

23.37(1) 10.311(5) 17.441(9) 90.0 98.49(4) 90.0 4158.5(24)
 

29 71 

11.5605(1) 12.760(1) 6.5490(7) 90.0 96.489(6) 90.0 959.8(3) 

1.0 11.5876(7) 12.8217(8) 6.5918(4) 90.0 96.736(5) 90.0 972.6(1) 0 100 

 

*The high errors in the cell parameter data, especially for Na2M(SO4)2 in bi-phasic samples, reflects 

the complexity of the resultant structures.  

 

 

 

 

 



Table 4. Cell parameters of phases resulting from the dehydration of  

Na2Mn(SO4)2-x(SeO4)x·2H2O (all phases obtained adopted the alluaudite-type structure) 

 

 

 

 

 

 

 

 

 

Dopant Level (x) a (Å) b (Å) c (Å) α (°) β (°) γ (°) Cell vol. (Å
3
) 

0 11.545(2) 12.935(2) 6.570(1) 90.0 95.051(5) 90.0 977.4(5) 

0.1 11.5677(8) 12.9627(8) 6.5908(4) 90.0 95.155(4) 90.0 984.3(1) 

0.25 11.5936(8) 13.0197(9) 6.6320(4) 90.0 95.330(5) 90.0 996.7(2) 

0.5 11.6241(7) 13.0814(8) 6.6781(4) 90.0 95.591(4) 90.0 1010.6(2) 

0.75 11.6498(5) 13.1337(6) 6.7132(3) 90.0 95.792(4) 90.0 1021.92(8) 

1.0 11.6785(7) 13.1861(7) 6.7470(3) 90.0 95.981(4) 90.0 1033.3(1) 



Figure 1. Crystal structure of Na2Co(SO4)2  (tetrahedra =SO4; Co at the centre of octahedral, 

spheres = Na) 
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Figure 2. X-ray diffraction patterns obtained after the dehydration of 

Na2Co(SO4)2-x(SeO4)x·2H2O (Co Kα X-rays) showing the formation of Na2Co(SO4)2 (x=0), a 

mixture of Na2Co(SO4)2 and an alluaudite phase for 0.1 ≤ x ≤ 0.25, and a single phase 

alluaudite-type material for 0.5≤x≤1.0. 

 

 

 

 

 



Figure 3. Observed, Calculated and Difference plots for Rietveld analysis of 

Na3Co1.5(SO4)1.5(SeO4)1.5 (Neutron (above), X-ray (Below)/(Co Kα). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 4. The refined crystal structure of alluaudite-type Na3Co1.5(SO4)1.5(SeO4)1.5 

(Tetrahedra = S/SeO4; Co (and mixed Co/Na site) at the centre of octahedra, Spheres = Na) 
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Figure 5. X-ray diffraction patterns obtained from the dehydration of 

Na2Ni(SO4)2-x(SeO4)x·2H2O (Co Kα1/ Kα2). Additional peaks in the undoped system are 

attributed to Na6Ni(SO4)4 (10wt%), which is not present in any of the selenate doped 

samples. The X-ray diffraction patterns show the formation of Na2Ni(SO4)2 (x=0), a mixture 

of Na2Ni(SO4)2-x(SeO4)x and an alluaudite phase for 0.1 ≤ x ≤ 0.75, and a single phase 

alluaudite-type material for x=1.0. 

 

 

 

 



 

Figure 6. X-ray diffraction patterns resulting from the dehydration of 

Na2Mn(SO4)2-x(SeO4)x·2H2O (Cu Kα),  showing the formation of an alluaudite phase across 

the series.  

 

 

 

 

 



 

Figure 7.  Cell volumes of alluaudite phases plotted against the precursor hydrated material's 

selenate content (Na2M(SO4)2-x(SeO4)x·2H2O).  

 

 

 

 

 

 

 

 

 



Figure 8. Raman data for phases resulting from the dehydration Na2M(SO4)2-x(SeO4)x·2H2O 

(Where x = 0-1.0 and M = Mn (Top), Co (Middle) and Ni (Bottom)) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 9. Plot of sum of the ionic radii of  M and the weighted average ionic radius of S/Se 

(where M = Mn, Fe, Co and Ni) vs selenate content in the starting dihydrate. Note only the 

undoped (no selenate) Fe phase resulted in a crystalline product after dehydration, therefore 

only one data point is available for this series. 

 

 

  



 

Graphical abstract 

 

 

The refined crystal structure of alluaudite-type Na3Co1.5(SO4)1.5(SeO4)1.5 (Tetrahedra = 

S/SeO4; Co (and mixed Co/Na site) at the centre of octahedra, Spheres = Na) 

 

  



 

 

Highlights: 

 The highest reported sodium content for an alluaudite phase constructed from 

sulfate/selenate tetrahedra  

 The first report of a nickel alluaudite phase  

 




