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Abstract 20 

The technical mixture of 1,2-Dibromo-4-(1,2-dibromethyl)cyclohexane (TBECH or DBE-DBCH) 21 

and the pure β-TBECH isomer were subjected to in vitro biotransformation by human liver 22 

microsomes (HLM) for the first time. After 60 mins of incubation, 5 potential metabolites of 23 

TBECH were identified in microsomal assays of both the TBECH mixture and β-TBECH using 24 

UPLC- Q-Exactive Orbitrap™ mass spectrometry. These include mono- and di-hydroxylated 25 

TBECH, mono- and di-hydroxylated TriBECH as well as an α-oxidation metabolite bromo-(1,2-26 

dibromocyclohexyl)-acetic acid. Our results indicate potential hepatic biotransformation of 27 

TBECH via Cyctochrome P450-catalyzed hydroxylation, debromination and α-oxidation. Kinetic 28 

studies revealed the formation of monohydroxy-TBECH, dihydroxy-TBECH and monohydroxy-29 

TriBECH were best fitted to a Michaelis-Menten enzyme kinetic model. Respective estimated 30 

Vmax values (maximum metabolic rate) for these metabolites were: (11.8 ± 4), (0.6 ± 0.1) and 31 

(10.1 ± 0.8) pmol/min/mg protein in TBECH mixture and (4992 ± 1340), (14.1 ± 4.9) and (66.1 ± 32 

7.3) pmol/min/mg protein in β-TBECH. This indicates monohydroxy-TBECH as the major 33 

metabolite of TBECH by human liver. The estimated intrinsic clearance (Clint) of TBECH mixture 34 

was slower (P<0.05) than that of pure β-TBECH. While the formation of monohydroxy-TBECH 35 

may reduce the bioaccumulation potential and provide a useful biomarker for monitoring 36 

TBECH exposure, further studies are required to fully understand the levels and toxicological 37 

implications of the identified metabolites.  38 

 39 

 40 
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Introduction 41 

Brominated flame retardants (BFRs) are anthropogenic chemicals incorporated into materials 42 

to increase their resistance to fire. Polybrominated diphenyl ethers (PBDEs) were extensively 43 

used in consumer products such as textiles, furniture, electrical devices, plastics and many 44 

other applications. However due to their toxicity, bioaccumulation, persistence and long-range 45 

atmospheric transport, commercial mixtures of Penta-BDE and Octa-BDE have been banned by 46 

the UNEP Stockholm Convention in 2009. Deca-BDE, another PBDE commercial mixture, has 47 

also been banned in Europe and voluntarily phased out in the USA. These regulations have 48 

paved the way for novel/emerging brominated flame retardants (NBFRs/EBFRs) introduced to 49 

the market as replacements for PBDEs
1
. 50 

1,2-Dibrom-4-(1,2-dibromethyl)cyclohexane (TBECH or DBE-DBCH) is an additive EFR produced 51 

by Albermarle Corp., U.S.A under the trade name Saytex BCL-462. The flame retardant is used 52 

in extruded polystyrene and polyurethane foam, electrical cable coatings, adhesive in fabric and 53 

construction materials
2,3

. In the U.S, TBECH production volume in 2002 was 230 tons
4
. The 54 

technical mixture of TBECH contains equimolar concentrations of two diasteroisomers, named 55 

α and β-TBECH.  Although no other isomers could be detected in the technical mixture, thermal 56 

conversion into γ- and δ-TBECH was reported during incorporation into flame-retarded 57 

products at temperature of 123
o
C or higher

2
. TBECH isomers have been globally detected in 58 

environmental samples including indoor air and dust
5–7

, outdoor air
8
, herring gull eggs

9,10
, 59 

blubber of Canadian Arctic whale
3
 and toddler’s faeces

11
. Recently, Tao et al. reported TBECH as 60 

the predominant emerging flame retardant (EFR) detected in all indoor air (n=35) and dust 61 

(n=92) samples from UK houses (mean = 173 pg/m
3
 and 21.4 ng/g in air and dust) and offices 62 
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(mean = 320 pg/m
3
 and 41 ng/g in air and dust)

12
. TBECH also showed the highest levels of all 63 

detected EFRs in Norwegian (mean = 209 pg/m
3
) and Swedish (mean = 43 pg/m

3
) indoor air 64 

samples
 5,6

 indicating its wide application, especially in Europe. This is of concern due to its 65 

potential toxicological effects on humans and wildlife. Several toxicological in silico, in vitro 66 

(human and chicken cell lines) and in vivo (birds, fishes and rats) studies show TBECH is a strong 67 

androgen receptor agonist and endocrine disruptor
13–21

. TBECH also displayed potential to 68 

disrupt thyroid and sex hormones in American kestrels
20

, modulate thyroid axis in juvenile 69 

Brown Trout
14

 and alter androgen receptor regulation in human ductal breast cancer and 70 

prostate cancer cell lines
21

. However, very little is known about the biotransformation and fate 71 

of TBECH in humans. 72 

Previous studies have shown some BFRs can be metabolized to more toxic lower brominated 73 

congeners
23–25

. Two of the primary in vivo debrominated metabolites of decabromodiphenyl 74 

ether (BDE-209) in rainbow trout were identified as BDE-47 and BDE-99
23

, which are more 75 

bioaccumulative and showed much higher toxic potential than the parent compound in goldfish 76 

and zebrafish liver cell lines 
25,26

. Similarly, hexabromocyclododecane (HBCD) was metabolized 77 

by rat and trout liver S9 fractions into pentabromocyclododecenes (PBCDs), which showed 78 

higher affinity for binding to the thyrotropin receptor (TSH) than the parent compound
24

. 79 

Therefore, improved understanding of the biotransformation pathways, rates and products of 80 

TBECH is essential for assessment of the risk arising from human exposure to this flame 81 

retardant.  82 

To our knowledge, only one study has investigated the potential metabolites of TBECH and 83 

moreover used in vitro rat liver microsomes (RLM)
22

. Results revealed that after 60 min, 40% of 84 
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the exposure dose was metabolized by Cytochrome P450 enzymes into mono and 85 

dihydroxylated TBECH, together with some unidentified metabolites
22

. However, this study did 86 

not provide information on the metabolic/hepatic clearance rate of TBECH. Moreover, 87 

extrapolation of results from metabolic studies in rat to human is subject to uncertainty due to 88 

inter-species variations in metabolic pathways and products. To illustrate, bioconversion from 89 

α-, β- and γ-hexabromocyclododecane (HBCD) mixture into δ-HBCD was observed in trout but 90 

not rat S9 fractions
24

. Furthermore, 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) was 91 

metabolized significantly faster in RLM compared to HLM
27

.   92 

Against this background, the aims of the current study are to: (a) investigate the phase I 93 

metabolic pathways and products of TBECH following in vitro exposure to human liver 94 

microsomes (HLM); (b) compare the in vitro HLM metabolic profile of the TBECH technical 95 

mixture to that of the pure β-isomer and (c) assess the in vitro metabolic rate and intrinsic 96 

clearance of TBECH by HLM. 97 

 98 

Materials and Methods 99 

Chemicals and Standards 100 

All solvents and reagents used in this study were purchased from Fisher Scientific 101 

(Loughborough, UK) and were of HPLC grade or higher. Technical TBECH was obtained as a neat 102 

powder from Accustandard, Inc. (New Haven, CT, USA). A dosing solution was prepared by 103 

dissolving technical TBECH in dimethyl sulfoxide (DMSO). High purity standards of β-TBECH, α- 104 

and β- TBECH mixture (equimolar concentrations), PBDE-77, and 
13

C12-BDE100 were purchased 105 

from Wellington Laboratories (Guelph, ON, Canada). RapidStart NADPH regenerating system 106 
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was purchased from XenoTech (Kansas, KS, USA) while human liver microsomes and William’s E 107 

medium were obtained from Thermo Fisher Scientific (Paisley, UK). 108 

In Vitro Incubation Experiments 109 

Pre-incubations were performed at different HLM concentrations and different times. After 110 

optimization of the reaction parameters, the following general exposure protocol was applied: 111 

0.5 mg of human liver microsomes, William’s E medium and 10 µL of TBECH dosing solution 112 

(final concentration 10 µM) were pre-incubated for 10 minutes at 37 
o
C. NADPH regenerating 113 

system (final concentration: 2.0 mM nicotinamide adenine dinucleotide phosphate, 10.0 mM 114 

glucose-6-phosphate and 2 units/mL glucose-6-phosphate dehydrogenase) was added to make 115 

a final volume of 1 mL. The samples were then incubated at 37 
o
C, 5 % CO2 and 98 % relative 116 

humidity for 60 min. At the end of the incubation, 1 mL of ice-cold methanol was added to stop 117 

the reaction prior to sample extraction. In all incubation experiments, experiment blanks 118 

including a non-enzymatic blank in which no NADPH regenerating system was added, a heat-119 

inactivated blank featuring liver microsomes heated above 80 
0
C for 10 min and a solvent blank 120 

which contained only William’s E medium were performed and analyzed alongside the sample 121 

batch. 122 

Sample extraction 123 

Due to the unavailability of isotopically-labelled TBECH, incubated samples were spiked with 20 124 

ng of 
13

C-BDE-100 as internal standard and extracted according to a previously reported 125 

method.
24

 Briefly, samples were mixed with 3 mL of hexane:DCM mixture (1:1 v/v) by vortexing 126 

for 30 s, followed by ultrasonication for 5 min and centrifuged at 4000 g for 5 min. The organic 127 

layer was collected and the extraction procedure was repeated twice. The combined extracts 128 
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were evaporated to dryness under a gentle stream of nitrogen then reconstituted in 100 µL of 129 

methanol containing 20 ng of BDE-77 as a syringe standard for QA/QC purposes. Full details are 130 

provided in the SI section. 131 

Instrumental analysis 132 

Samples were analyzed on a UPLC-Orbitrap-HRMS system (Thermo Fisher Scientific, Bremen, 133 

Germany) composed of a Dionex Ultimate 3000 liquid chromatography equipped with a HPG-134 

3400RS dual pump, a TCC-3000 column oven and a WPS-3000 auto sampler coupled to a Q 135 

Exactive Plus Orbitrap mass spectrometer. Chromatographic separation was performed on an 136 

Accucore RP-MS column (100 x 2.1 mm, 2.6 µm) with water (mobile phase A) and methanol 137 

(mobile phase B). A gradient programme at 400 µL/min flow rate was applied as follows: start 138 

at 20 % B; increase to 100 % B over 9 min, held for 3 min; then decrease to 20 % B over 0.1 min; 139 

maintained constant for a total run time of 15 min.  140 

The parent compound was analyzed in negative atmospheric pressure chemical ionization 141 

(APCI) mode. The Orbitrap parameters were set as follows: (-) APCI full scan mode, resolution 142 

17500, AGC target 1e
6
, maximum injection time 100 ms, scan range 75 to 700 m/z, sheath gas 143 

flow rate 25 AU, aux gas flow rate 5, discharge current 30 µA, capillary temperature 250°C and 144 

S-lens RF level 50. Accurate masses of 80.91629, 512.73847 and 420.78975 were used to 145 

monitor TBECH, 
13

C12-BDE-100 (internal standard) and BDE-77 (syringe standard), respectively. 146 

The more universal, softer electrospray ionisation (ESI) mode was used for screening and 147 

identification of the produced metabolites. The optimised parameters were: (-) ESI full scan 148 

mode, resolution 17500, AGC target 1e
6
, maximum injection time 100 ms, scan range 75 to 750 149 

m/z, sheath gas flow rate 20 AU, discharge voltage 2.5 kV, capillary temperature 320 
0
C. 

 
150 
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Compound Discoverer 2.0 software (Thermo Fisher Scientific, Bremen, Germany) was used to 151 

detect potential metabolites and elucidate their chemical formulae while quantification of 152 

target compounds was performed using Quan Browser 3.0 (Thermo Fisher Scientific, Bremen, 153 

Germany). 154 

QA/QC 155 

 Quality control samples where the William’s E medium was spiked with TBECH at all dosing 156 

concentration levels were analyzed, with recoveries of TBECH falling between 96 to 113 % of 157 

the theoretical dosing concentration. In incubation experiments, internal standard recoveries 158 

were within 60-110 %. Metabolite identification was achieved via 4 successive filters 159 

established within the compound discoverer 2.0 software. Specifically, these were: 160 

i. Peak signal to noise ratio (S/N) must exceed 10:1. 161 

ii. m/z value of the molecular ion peak must be within 5 ppm of its theoretical value at 162 

resolution power of 17500 FWHM (full width at half mass). 163 

iii. Br isotope pattern must match within 5 % of the theoretically predicted abundances of 164 

the predicted chemical formula. 165 

iv. log2 fold change (calculated as log2 of the peak area ratio between in vitro samples and 166 

experiment blanks) to be > 1. 167 

Instrument blanks (10 µL methanol) were run before and after analysis of incubation 168 

experiment and experiment blank samples. No parent compounds or metabolites were found in 169 

instrument and solvent blanks. Additionally, no metabolites were found in the non-enzymatic 170 

and heat-inactivated blanks. Principal component analysis results from Compound Discoverer 171 

Page 8 of 28

ACS Paragon Plus Environment

Environmental Science & Technology



2.0 software also showed very distinctive separation between LC/MS chromatograms of in vitro 172 

samples compared to those of experimental and instrument blanks (Figure SI-1).  173 

 174 

Results and Discussion 175 

Metabolite identification 176 

Compound Discoverer 2.0 software (Thermo Fisher Scientific, Bremen, Germany) was used to 177 

interpret our data. The software workflow implemented in this study is shown in Figure S2. 178 

Briefly, the software extracted spectra from raw LC/MS files and aligned the retention times of 179 

detected peaks based on mass tolerance and maximum time shift criteria. To narrow down the 180 

hits reported by the software and confirm metabolite identity, we added the filters mentioned 181 

in the QA/QC section as pre-requisite features. The detected compounds were then grouped 182 

based on their retention times across all files and subjected to elemental composition 183 

prediction, online ChemSpider library search and offline mass list search. With this approach, a 184 

total of 5 TBECH metabolites were identified, including both hydroxylated and debrominated 185 

products (Table 1).  186 

Hydroxylated metabolites 187 

Analysis of the obtained UPLC-Orbitrap™ MS chromatograms revealed a minimum of three 188 

monohydroxylated and three dihydroxylated metabolites of the parent TBECH following 189 

exposure of HLM to 10 µM of the technical mixture for 1 h (Figure 1). Bearing in mind the lack 190 

of reference standards for these metabolites, the isobaric nature of TBECH isomers in the 191 

technical mixture and the large number of theoretical isomers, co-elution of one or more 192 

metabolites in the same group (e.g. monohydroxylated TBECHs) could not be excluded. 193 
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Similarly, the specific position of the hydroxyl groups could not be elucidated.  It is well known 194 

that Cytochrome P450-catalyzed hydroxylation usually retains the stereochemical configuration 195 

at the substrate’s reaction site
28

. Therefore, we carried a parallel strand of experiments, where 196 

HLM were exposed to pure β-TBECH (the only purified isomer available commercially) in order 197 

to gain further information on the metabolic hydroxylation process.  Comparisons of LC/MS 198 

chromatograms between β-TBECH and technical TBECH exposure experiments (Figures 1a and 199 

1b) revealed peak M1-2 as monohydroxy-β-TBECH (β-OH-TBECH). Since the applied commercial 200 

mixture contained α- and β-TBECH isomers, it can be concluded that peaks M1-1 and M1-3 are 201 

α-OH-TBECH isomers (Figures 1a and 1b). Similarly, peak M2-4 was identified as α-(OH)2-TBECH, 202 

while peaks M2-5 and M2-6 originated from the β-isomer (Figures 1c and 1d). 203 

Our findings are generally in agreement with those reported using rat liver microsomes (RLM), 204 

where two monohydroxy- and two dihydroxy- isomers were identified following exposure to 205 

the TBECH technical mixture
22

. While the difference in the number of isomers in each 206 

metabolite group may be attributed to inter-species variations, this hypothesis cannot be 207 

confirmed in the absence of authentic metabolite standards. 208 

Debrominated metabolites 209 

In addition to the hydroxylated metabolites of the parent TBECH, we also identified 210 

hydroxylated biotransformation products of debrominated TBECH with the formulae: C8H13Br3O 211 

(M3), C8H13Br3O2 (M4), C8H11Br3O2 (M5), C9H16Br2O4 (M6) and C9H15Br3O3 (M7) (Table 1).  212 

Metabolites M3 and M4 were assigned the chemical structures of mono- and dihydroxy- 213 

triBECH (table 1). While dihydroxy-triBECH (M4; (OH)2-triBECH) was previously reported in in 214 

vitro RLM experiments
22

, this is the first study to identify monohydroxy-triBECH (M3; (OH)-215 
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triBECH). It is reasonable to believe that M3 can be formed by direct debromination of M1 216 

and/or through debromination of parent TBECH followed by hydroxylation (Figure 3). This is 217 

similar to previously reported in vitro metabolic pathways for hexabromocyclododecane 218 

isomers (HBCDD) in rat
24

 and human
29

, where both hydroxylation and debromination were 219 

observed.   220 

Interestingly, two separate peaks were identified for M3 following HLM exposure to technical 221 

TBECH (Figure 2a), while one peak (M3-7) was observed upon exposure to pure β-TBECH. 222 

Therefore, peak M3-7 was assigned as β-OH-triBECH and peak M3-8 was attributed to α-OH-223 

triBECH. We hypothesized that the observed M3 metabolites may be produced – at least 224 

partially - from hydroxylation of a tribrominated metabolite (i.e. a tribromoethyl cyclohexane 225 

derivative or triBECH) with a molecular formula of C8H13Br3. However, such triBECH metabolites 226 

could not be detected in our samples even using the ultimate high separation and resolution 227 

power of a GC x GC-ToF/MS platform in an independent analysis dedicated specifically to 228 

identify this potential metabolite (Figure SI-3). Similar observations were reported in muscle 229 

and liver samples of juvenile brown trout exposed to β-TBECH in their diet
30

, where no 230 

debrominated metabolites were detected. While our experimental approach could not confirm 231 

the formation of triBECH, the hypothesis cannot be refuted as triBECH might be produced then 232 

transformed quickly to its hydroxylated metabolites (M3, Figure 2a) before the reaction is 233 

stopped after 60 min.  234 

Four distinctive peaks of M4 (Figure 2c) were detected when HLM were exposed to either 235 

technical TBECH or pure β-TBECH. However, two additional peaks, designated as M4-13 and 236 

M4-14 were observed upon exposure to pure β-TBECH only (Figure 2d). Hence, M4-13 and M4-237 
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14 were identified as β-(OH)2-triBECH. Due to the lack of a pure authentic standard for α-TBECH, 238 

it was not possible to address the stereochemistry of peaks M4-9, M4-10, M4-11 and M4-12 239 

(Figure 2c).  240 

Peaks 15 and 16 of metabolite M5 were detected in both technical TBECH and β-TBECH assays 241 

at an accurate mass of 378.81864 with predicted chemical formula of C8H11Br3O2
 
(Figures 2e 242 

and 2f). As their retention times were shorter than that of most other monohydroxylated and 243 

dihydroxylated metabolites, we hypothesized they were carboxylated TriBECH metabolites (i.e. 244 

bromo-(1,2-dibromocyclohexyl) acetic acid or DBCBA) formed via α-oxidation mechanism 245 

(Figure 3). The oxidative reaction starts at Cα, transforming the terminal bromomethyl group 246 

initially to an aldehyde with subsequent oxidation to the carboxylic acid. This mechanism is 247 

similar to previous reports of metabolic α-oxidative dehalogenation of structurally-similar 248 

halogenated compounds such as halothane
31

 and tris-2-chloroethyl phosphate (TCEP)
32

. The 249 

aldehyde intermediate (Figure 3) however could not be identified in our samples. This is similar 250 

to the results of a previous metabolic study on TCEP using human hepatocyte cell lines, where 251 

the inability to identify the aldehyde form was attributed to potential rapid oxidation to the 252 

corresponding carboxylic acid form
32

.  253 

Kinetics of TBECH metabolism by HLM  254 

Following metabolite identification, a series of assays with different technical TBECH and pure 255 

β-TBECH concentrations (1, 2, 5, 10 and 15 µM) were performed. Due to the lack of authentic 256 

standards for the metabolites, they were semi-quantified using the response factor of the 257 

parent compound. The concentrations obtained were subjected to metabolic rate modelling 258 

(including Michaelis-Menten, Hill and substrate inhibition approaches) by nonlinear regression 259 
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analysis using SigmaPlot Enzyme Kinetics Module v1.1 (Systat Software Inc., Richmond, CA). We 260 

considered two statistical criteria: Akaike Information Criterion corrected for small sample size 261 

(AICc) and standard deviation of the residuals (Sy.x) to evaluate the goodness of fit. The best fit 262 

model was chosen as the one with lowest values for both AICc and Sy.x. SigmaPlot results 263 

indicated that non-linear regressions of monohydroxy-TBECH, dihydroxy-TBECH and 264 

monohydroxy-TriBECH as well as their β isomer counterparts were best fitted to a Michaelis-265 

Menten model (Figure 4). It should be noted that while monohydroxy-TBECH isa primary 266 

metabolite of the TBECH substrate, the lack of authentic metabolite standards precludes the 267 

confirmation of whether dihydroxy-TBECH and monohydroxy-TriBECH are primary and/or 268 

secondary metabolite. Therefore, The estimated kinetic parameters for dihydroxy-TBECH and 269 

monohydroxy-TriBECH should be considered with caution as they were derived assuming a 270 

primary metabolite status only.    271 

The model parameters derived from non-linear regression provided useful insights into the 272 

metabolic fate of TBECH in humans (Table 2). Apparent Vmax values (maximum metabolic rate) 273 

for the formation of monohydroxy-TBECH, dihydroxy TBECH and monohydroxy-TriBECH were 274 

162.5, 0.64 and 10.1 pmol/min/mg protein, respectively (Table 2). This indicates monohydroxy 275 

TBECH as the major metabolite formed in vitro by human liver microsomes. The only available 276 

information on toxicokinetics of this flame retardant suggested rapid in vivo metabolism of β-277 

TBECH in brown trout. Depuration of the β-isomer obeyed first order kinetics with half-lives of 278 

22.5 ± 10.4 (low dose), 13.5 ± 5.9 (medium dose) and 13.8 ± 2.2 (high dose) days
30

. In the 279 

present study, the observed in vitro metabolic clearance rate for β-TBECH was significantly 280 

higher (P < 0.05) than that of the TBECH mixture. Maximum metabolic formation rates of OH-β-281 
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TBECH, (OH)2-β-TBECH and (OH)-β-TriBECH were 4991.7, 14.1 and 66.1 pmol/min/mg protein, 282 

respectively (Table 2); equivalent to 31, 22 and 6.5 times of the corresponding metabolite 283 

formation rate upon exposure to the technical TBECH mixture. There are several plausible 284 

reasons for this observation including (a) slower metabolism of the α-TBECH in the technical 285 

mixture and (b) alteration of the stereoselective enzymatic metabolism process by the presence 286 

of a larger number of stereoisomers, or even other chemicals/impurities in the TBECH mixture. 287 

Nevertheless, β-TBECH was metabolized by in vitro HLM at a faster rate than the TBECH mixture. 288 

Given the simultaneous exposure of hepatic cells to a large number of xenobiotics under real-289 

life conditions, the in vivo metabolic rates of TBECH (and thereof, clearance rates) might be 290 

even slower than this controlled in vitro exposure experiment to a single compound. 291 

As the rates of OH-TBECH, (OH)2-TBECH and OH-TriBECH formation were best described by the 292 

Michaelis Menten model, we used the corresponding equations to estimate the intrinsic in vitro 293 

hepatic clearance of TBECH and β-TBECH
33

: 294 

CLint = Vmax/Km ……………..(Equation 1) 295 

CLint-liver = CLint x 34 (mg protein/g human liver) ………………..(Equation 2) 296 

CLh = (CLint-liver x Qh)/ (CLint-liver + Qh)…………………. (Equation 3) 297 

Where CLint is the apparent intrinsic in vitro hepatic clearance, CLint-liver is intrinsic in vitro 298 

hepatic clearance on gram liver basis, Vmax rate and Km are the maximum metabolic rate and 299 

Michaelis Menten constant derived from the Michaelis Menten model, CLh is in vivo hepatic 300 

clearance when hepatic blood flow (Qh = 0.71 ml/min/g liver) was taken into account
33

.  301 

From Equation 1, the intrinsic in vitro hepatic clearance (CLint) of the TBECH mixture due to the 302 

formation of OH-TBECH, (OH)2-TBECH and OH-TriBECH were estimated as 13.8, 0.3 and 3 303 
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µL/min/mg protein, respectively. By comparison,  those of β-TBECH were 302.5, 1.1 and 18.4 304 

µL/min/mg protein, respectively. The total CLint-liver from metabolic formation of all three major 305 

metabolites was then calculated: 0.58 mL/min/g liver for the TBECH mixture and 10.94 306 

mL/min/g liver for β-TBECH.  307 

Despite the lack of authentic standards for TBECH metabolites, leading to the semi-quantitative 308 

nature of these measurements, the calculated hepatic clearance rates clearly show that β-309 

TBECH was biotransformed at a much faster rate than the TBECH mixture. Despite reservations 310 

on the accuracy of direct extrapolation from in vitro to in vivo clearance due to simultaneous 311 

exposure to a large number of chemicals in vivo, we applied Equation 3 to shed some light on 312 

the in vivo hepatic clearance of TBECH in humans. Our model calculations revealed an in vivo 313 

hepatic clearance (CLh ) of 0.32 mL/min/g liver for the TBECH mixture, while  the rapid hepatic 314 

clearance of β-TBECH  was dependent on the hepatic blood circulation (Qh) (i.e. flow limited).  315 

Conclusions 316 

To our knowledge, this is the first study of TBECH metabolism by human liver microsomes. Our 317 

in vitro experiments demonstrated that TBECH was metabolized by human liver microsomes 318 

forming a complex mix of metabolites via cytochrome P450 enzyme-catalyzed hydroxylation 319 

and debromination. This is the first time that a monohydroxylated debrominated metabolite of 320 

TBECH has been detected in vitro. The other detected metabolites were OH-TBECH, (OH)2-321 

TBECH, (OH)2-TriBECH and DBCBA, with substrate concentration dependent assays showing OH-322 

TBECH to be the major one. The differences in TBECH metabolite profiles resulting from 323 

incubation with HLM (this study) and RLM
22

 underscore inter-species variation in xenobiotic 324 

metabolism. In general, more peaks of all metabolites were observed in our HLM experiments 325 
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than reported previously using RLM. Of all detected compounds, metabolic rates of OH-TBECH, 326 

(OH)2-TBECH and OH-TriBECH were found to best fit to the Michaelis-Menten model by non-327 

linear regression analysis. Separate pure β-TBECH microsomal assays also demonstrated that β-328 

TBECH was metabolized much faster than the technical TBECH mixture. However, authentic 329 

standards of α-TBECH and the metabolites are needed to elucidate more precise 330 

pharmacokinetic parameters as well as better understanding of isomer specific metabolism. 331 
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Tables 455 

Table 1. List of TBECH metabolites produced after incubation of technical TBECH mixture with HLM for 456 

60 min. 457 

Code Accurate 

mass [M-H]ˉ  

Mass deviation 

(ppm) 

Chemical 

formula 

Proposed chemical 

structure* 

Name 

M1 442.75136 1.275 C8H12Br4O 

 

Monohydroxy-

TBECH 

M2 458.74635 1.395 C8H12Br4O2 

 

Dihydroxy-

TBECH 

M3 362.84397 4.521 C8H13Br3O 

 

Monohydroxy-

TriBECH 

M4 380.83568 1.267 C8H13Br3O2 

 

Dihydroxy-

TriBECH 

M5 378.82054 2.620 C8H11Br3O2 

 

DBCBA 

* The exact position of the hydroxyl groups could not be specified via the applied standard protocol.  458 
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Table 2. Kinetic parameters derived from non-linear regression (Michaelis-Menten model) modelling 459 

of the formation of TBECH metabolites following incubation of the technical TBECH mixture and β-460 

TBECH with HLM for 60 min. 461 

Metabolite Km (µM) ± SD 

Vmax (pmol/min/mg 

protein) ± SD 

CLint (µL/min/mg 

protein) 

Technical TBECH    

OH-TBECH 11.78 ± 4 163 ± 30 13.8 

(OH)2-TBECH 2.2 ± 1 0.64 ± 0.08 0.3 

OH-TriBECH 3.4 ± 0.82 10.1 ± 0.8 3 

β-TBECH    

OH-β-TBECH 16.5 ± 7.1 4992 ± 1339 303 

(OH)2-β-TBECH 12.3 ± 7.5 14.1 ± 4.9 1.1 

OH-β-TriBECH 3.6 ± 1.1 66.1 ± 7.3 18.4 

 462 

 463 

 464 

 465 

 466 
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 469 
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Figure 1. Selected UPLC-ESI-Orbitrap/MS chromatograms of monohydroxy (M1) and dihydroxy (M2) 471 

metabolites formed by HLM exposure to 10 µM of technical TBECH (a and c) and β-TBECH (b and d) for 472 

60 min.473 

 474 

 475 

 476 

 477 

 478 

 479 

 480 

 481 

Page 24 of 28

ACS Paragon Plus Environment

Environmental Science & Technology



Figure 2. Selected UPLC-Orbitrap/MS chromatograms of metabolites M3, M4 and M5 formed by HLM 482 

following exposure to 10 µM technical TBECH (a, c and e) and β-TBECH (b, d and f) for 60 min. 483 
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Figure 3. Schematic representation of α-oxidation proposed as a mechanism for biotransformation of 493 

TBECH by HLM. 494 

 495 

 496 

 497 

 498 

 499 
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Figure 4. Kinetic study of TBECH metabolite formation fit to a Michaelis-Menten model following 60 min incubation of technical TBECH 501 

mixture (A) and β-TBECH (B) with HLM at various substrate concentrations. 502 
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