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Abstract. This paper describes an application of topological, model-
based methods for the algorithmic correction of segmentation errors in
digitised histological images. The topological analysis is provided by
the spatial logic Discrete Mereotopology and integrates qualitative spa-
tial reasoning and constraint satisfaction methods with classical image
processing methods. A set of eight topological relations defined on binary
segmented regions are factored out and reworked as nodes of a set of
directed graphs. The graphs encode and constrain a set of set-theoretic
and topological segmentation operations on regions, so that the inter-
preted images and any proposed changes made to the regions can be
made to conform to a valid histological model. Worked examples are
given using images of H&E stained H400 cell line cultures.

Keywords: Mereotopology · Graph theory · Histological image
processing

1 Introduction

This paper describes an application of model-based methods for the algorith-
mic correction of segmentation errors in digitised histological images. This is a
real-world application where qualitative spatial reasoning (QSR) and constraint-
satisfaction programming methods have been integrated with classical image
processing methods to develop context-based histological imaging algorithms.1

The context here arises from: (i) making an ontological stand whereby regions
rather than pixels in digitised images are deemed to be the main carriers of

1 See our project page at http://www.mecourse.com/landinig/software/intellimic.
html.
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Fig. 1. Idealised image of an H&E-stained nucleated cell, with pink-stained cytoplasm
and blue-stained nucleus; overlap between cytoplasm and nucleus is shown in magenta.
In (a) the nucleus forms a proper part of the cytoplasm, as expected; (b) shows an
anomalous image in which the nucleus partially overlaps the cytoplasm; (c) and (d)
show possible morphological corrections of (b), with dotted lines marking the original
extent of nucleus and cytoplasm respectively. (Colour figure online)

histological content, and (ii) highlighting the importance of and explicitly repre-
senting topological (and in particular relational) information encoded in digitised
histological images. The topological analysis and constraints are provided by the
spatial logic Discrete Meterotopology (DM) [1,2], which we use to augment the
operations of classical Mathematical Morphology (MM) by explicitly encoding
a set of binary relations such as contact, overlap and the part-whole relation on
pairs of regions. These mereotopological relations are used both to model the
domain and to guide algorithms for correcting segmentation results so that they
conform to the requirements for a valid histological model.

In three-dimensional reality a cell consists of a nucleus surrounded by a body
of cytoplasm; the two are in contact but do not overlap, the nucleus exactly fill-
ing a cavity within the cytoplasm. In a correctly-formed H&E (haematoxylin and
eosin)-stained two-dimensional image, on the other hand, based on the differen-
tial staining of cellular components, the cytoplasm region appears as a simply
connected whole, lacking a cavity, and the nucleus forms a proper part of this
(see the idealised image in Fig. 1(a)). In practice, however, cell and nuclear seg-
mentations are most often achieved independently of each other, which can result
in imperfect relations, where, e.g., the nucleus partially overlaps its cytoplasm,
as in Fig. 1(b). Such errors can often be corrected by a process of resegmenta-
tion, whereby one or both of the cell component images are manipulated using
morphological or other operators so that the expected spatial relation between
them holds. In Fig. 1(c) this is accomplished by eroding the nucleus; in (d), by
dilating the cytoplasm. If the changes required to achieve this are too extreme,
then the presence of an imaging artefact or other anomaly may be indicated.

Our approach to resegmentation uses a set of directed graphs defined on
region-region relations. Each graph details transformations to the relations aris-
ing from application of specified changes to their relata. These changes use dis-
crete topological and set-theoretic operators defined on regions and mapped to
their MM equivalents. The graphs enable transitions between relations (e.g., from
partial overlap to proper part) to be implemented as sequences of operations on
the regions themselves. This correspondence between relations and operations
underpins the model-based correction of segmentation described in this paper.

This paper builds on a series of papers that apply DM to the interpreta-
tion and segmentation of histological images [3–6]. While the mereotopological
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interpretation of digitised images is not new (see e.g., [7]), what is novel is its role
in enabling systematic context-based manipulation of regions and their relations
in quantitative histological image processing. DM first appeared in [1], which
arose out of the mereotopological theory RCC and its well-known eight-element
relation set RCC8 [8]. The GRCC (Generalised Region Connection Calculus)
[9] offers another way to model discrete domains using mereotopology. As a
formalism for modelling cellular processes, mereotopology was used to model
phagocytosis and exocytosis in [10]. A motivating example of DM used in a
constraint-based graph traversal problem is given in [11]. In general, though,
while RCC8 has been used extensively in the development of efficient constraint-
based algorithms (for deciding the consistency of a set of constraints) the algo-
rithms are typically restricted to operations on symbolic state-state models and
not grounded in interpreted segmented digitised images as done here. For a good
introduction to QSR literature and its methods, see [12].

This paper extends the framework that was originally reported in [6]. Specif-
ically, the four directed graphs originally described in [6] have been extended to
include a set of eight set-theoretical as well as topological operations on regions.
The method is generic and does not favour any one particular image segmenta-
tion method over another. All that is assumed is that the segmentation of images
into regions forming relations with other regions can be ultimately represented
as binary regions, e.g. as masks. These relations can be used to test whether the
segmented regions conform to a histological model, or not. Where they fail to
conform to the segmentation model they may be either be rejected completely,
or corrected by applying one of several operations on the regions in question.
For this reason, we do not necessarily require a set of gold-standard segmented
images with which to compare and analyse the results (though of course this
could be done). We discuss this further below. In its place we consider the set
of topological segmentation solutions satisfying our assumed histological model
and work with those. Reasons of space and the scope of this paper mean we
cannot adequately compare and contrast other segmentation methods and the
various validation methods used in the literature here, though we acknowledge
there is a large body of literature on the subject, e.g. [13,14]. However, none of
these frameworks adopt the topological framework assumed here, nor do they
address systematic methods of resegmentation to bring the results of initial seg-
mentation into line with the expectations of histological theory, which is the
main focus of the present paper.

2 Discrete Mereotopology (DM)

Of the different variants of DM that have been proposed, the version we adopt is
the one described in [1,6]. The domain is a set of possibly empty regions which
are defined as sets of pixels. We denote regions by lower-case letters (x, y, . . .);
individual pixels are denoted x̂, ŷ, . . .. Set inclusion is defined in the standard way,
the part-whole relation (P) defined as inclusion restricted to non-null regions,
and overlap (O) between regions restricted to regions sharing a part in common.
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Adjacency between pixels is axiomatised as a reflexive, symmetric relation. This
is used to define the contact relation (C) between regions. The set of all pixels
is defined as the universal region u and the null set as ∅. Singleton pixel-sized
regions are treated as atoms. The neighbourhood N(x̂) of pixel x̂ is defined as
the set of pixels in u that are adjacent to x̂. In our application domain u is a
rectangular pixel array, and N(x̂) a 3 × 3 pixel array centred on x̂. Implemented
in MM, the function N(x̂) maps to a morphological 3 × 3-pixel, 8-connected
structuring element which we now assume by default.

As is common practice in QSR when developing these spatial logics and alge-
bras, subsets of dyadic relations forming jointly exhaustive and pairwise disjoint
(JEPD) sets are singled out. In DM two JEPD relation sets are used: first,
the eight-element set RCC8 comprising DC, EC, PO, TPP, NTPP, TPPi, NTPPi
and EQ, respectively disconnected, externally connected, partial overlap, tan-
gential proper part, non-tangential proper part, with their inverses, and equals,
and second, the five-element relation set RCC5 comprising the relations DR (=
DC|EC), PO, PP (= TPP|NTPP), PPi (= TPPi|NTPPi), and EQ, respectively
disjoint, partial overlap, proper part, and inverse proper part. Here the symbol
‘|’ signifies disjunction, e.g., DR(x, y) ↔ DC(x, y) ∨ EC(x, y). These respectively
form the eight and five base relations of two relational subsumption lattices with
top and bottom elements interpreted as the universal and null dyadic relations.
Given that RCC8 is predicated on a continuous embedding space and DM on a
discrete one, the relations sharing the same name are strictly not identical. For
this reason, DM’s JEPD relation sets are identified in the text by the suffix ‘D’
as in ‘RCC8D’.

In [6] the discrete interior (intD) and closure (clD) are pseudo-topological
operators defined on regions; they share some but not all of the usual proper-
ties of the interior and closure operators in standard treatments of topology.
A map between these operators and the MM operations erosion and dilation
[5] enables one to define a notion of approximate equality that underpins transi-
tions encoded in DM’s conceptual neighbourhood graphs, and it also enables the
RCC8D relation set to be easily implemented in any image-processing programs
featuring standard MM libraries. Other properties of regions can be defined in
DM, e.g., regions with or without an interior, regular regions (i.e., those without
pixel-wide spikes and fissures), self-connected regions, connected components.

In the histological domain, cells and their parts, groups of cells forming tissues
and compartments, and the background of a digitised histological preparation
can all be modelled using DM. Simple regions and arbitrary sets of pixels forming
regions which may or may not be spatially contiguous all yield potential models.
If a histological preparation is thresholded as a single binary image, then seg-
mented regions of interest will form connected components, so that in any one
image, the only possible relations between pairs of regions are DC and EQ. The
methods presented here, however, assume that two or more independent imaging
or segmentation modalities are used, e.g., separating out the contribution of the
different dyes in stained sections (as in Fig. 1) or confocal microscopy channels.
In this case, pairs of regions, segmented from each channel, can be compared,
all RCC5D and RCC8D relations being now possible.
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3 Conceptual Neighbourhood Graphs, Continuity and
Change, and Composition Tables

In [1,6] a set of conceptual neighbourhood diagrams (CNDs), or graphs, were
defined on dyadic relations. In RCC8, relation R′ is a conceptual neighbour of
relation R if some pair of regions related by R can be continuously deformed so
that R changes to R′ with no other relation holding during that deformation. In
the discrete setting of DM, continuous deformation is recast in terms of minimal
change. In [1], this was defined using the discrete interior (intD) and closure (clD)
operators; here we extend this to include changes to regions produced using the
set-theoretic operators union (sum), intersection (prod) and difference (diff) on
region pairs. The universal region u, representing the image, is assumed to be
self-connected, i.e. SC(u).

In general, an RCC8D conceptual neighbourhood of a binary relation R can
be defined as

nbhd〈α,β〉(R) = {R′ ∈ RCC8D | ∃x, y(R(x, y) ∧ R′(α, β))}, (1)

where α and β are designated functions of the region variables x, y. The elements
of nbhd〈α,β〉(R) are called the 〈α, β〉-neighbours of R. They are all the possible
relations that can hold after regions x and y are modified in accordance with
α, β. Given a segmented image, by a resegmentation we understand the replace-
ment of a set S of regions in the image by a new set S′ defined from S using
some sequence of conceptual neighbourhood transitions. Such a resegmentation
is chosen in order to correct anomalous relations in the original segmentation so
that it satisfies the constraints of the domain being modelled.

Figure 2 shows a set of graphs that encode the conceptual neighbourhood
relations defined in terms of the operators sum, prod, diff, intD, and clD. In the
first graph, for example, showing

nbhd〈x,sum(x,y)〉(R) = {R′ ∈ RCC8D | ∃x, y(R(x, y) ∧ R′(x, sum(x, y))}, (2)

the arrow from DC to TPP represents the case nbhd〈x,sum(x,y)〉DC = {TPP},
meaning that if DC(x, y) holds then we must have TPP(x, sum(x, y)). In this
case only one resegmentation exists; other cases, such as nbhd〈x,sum(x,y)〉PO =
{TPP,NTPP}, may allow more than one. Loops in the CND indicate where a
change to a region of a designated pair does not necessarily result in a corre-
sponding change of relation. Isolated nodes or nodes without outgoing edges
arise where an operator returns null (e.g., diff(x, y) where PP(x, y)).

For graph n, the outgoing edges from the vertex labelled with relation R are
designated with the mnemonic nR; for example, in the case of the pair of out-
going edges from PO to TPP and NTPP in graph 1, this is notated as 1PO. Note
that four of the RCC8D relations are self-inverse, i.e., R(x, y) implies R(y, x);
these are DC, EC, PO, and EQ. The other four relations form two mutually
inverse pairs: TPPi(x, y) if and only if TPP(y, x), and NTPPi(x, y) if and only if
NTPP(y, x). These inverse relations will sometimes be exploited in our reason-
ing. In graph 4, for example, we see that PO(x, y) implies TPPi(y, prod(x, y));
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1: nbhd〈x,sum(x,y)〉(R) 2: nbhd〈y,sum(x,y)〉(R) 3: nbhd〈x,prod(x,y)〉(R)

4: nbhd〈y,prod(x,y)〉(R) 5: nbhd〈x,diff(x,y)〉(R) 6: nbhd〈x,diff(y,x)〉(R)

7: nbhd〈y,diff(x,y)〉(R) 8: nbhd〈y,diff(y,x)〉(R) 9: nbhd〈intD(x),y〉(R)

10: nbhd〈x,intD(y)〉(R) 11: nbhd〈clD(x),y〉(R) 12: nbhd〈x,clD(y)〉(R)

Fig. 2. Directed graphs encoding set theoretic and discrete topological operators. In
each case the regions and the resulting operation on them are non-null.

sometimes we will find it more convenient to rewrite this as TPP(prod(x, y), y),
in which case we would cite the graph operation as 4′

PO. An example of this is
seen later in Table 1.

We also use RCC8D’s composition table (RCC8D-CT). The notion of com-
position is well-known in AI as it provides an efficient inference mechanism for
many QSR constraint satisfaction programs, where it is typically implemented as
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a simple look-up table. Following [15], weak composition of DM’s JEPD relation
sets is defined as follows. Given relation set Σ , the weak composition RCC8D-
CT(R,S), where R,S ∈ Σ , is defined to be the smallest subset {Ti} ⊆ Σ such
that DM |= ∀x, y, z((R(x, y)∧S(y, z)) → T1(x, z)∨· · ·∨Tn(x, z)). The elements
of RCC8D-CT defined on non-null regions is identical to RCC8’s composition
table entailed by RCC. This was mechanically proved using the sorted theorem
prover SPASS [16] to verify that all entailments of the above form were included
in the composition table; and constructing a set of graphical models satisfying
each Ti(x, z) disjunct. The same method was used to verify the sets of directed
edges of the graphs depicted in Fig. 2.

Fig. 3. (a) Original RGB image; (b) Haematoxylin and (c) Eosin channels; binary
segmented (d) nuclei and (e) cytoplasm; (f) RGB colour merge: magenta = cytoplasm,
green = nucleus, white = cytoplasm/nucleus overlap; (g,l) cropped details of (f); (h–k,
m–p) resegmentations of g,l respectively, satisfying PP(nucleus,cytoplasm). See text
for explanation. (Colour figure online)

4 Example: Segmenting Cells in Culture

In Fig. 3, image (a) depicts an H&E-stained culture of H400 cells grown on glass.
Various image pre-processing operations are done. First a Gaussian filter (kernel
radius 2) is applied to the original image to remove noise and reduce the frag-
mentation artefacts near the region boundaries. Next, colour deconvolution [17]
is used to unmix the dye contributions and identify cell nuclei (H-stain, image
(b)) from the rest of the cell bodies (E-stain, image (c)). Several standard image
processing operations then follow (k-means clustering on the H,E stain images
using 3 clusters, Boolean compositions of thresholded clusters, binary watershed
separation), which are used to generate the two binary images of cell nuclei and
their associated cells (images (d) and (e) respectively). The colour composite
merge depicted in (f) illustrates the extent of conformity to the assumed histo-
logical constraints; binary segmented nuclei (d) are mapped to green, cytoplasm
(e) to magenta, and overlap between the two to white. Where a nucleus forms
a proper part (PP) of its cytoplasm, the latter appears as magenta surrounding
a white nucleus; in less common cases where EQ holds, the whole cell appears
white. First we test the RCC8D relation between cell nuclei and cytoplasm,
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where each typed set of spatially disjoint regions is treated as a mereological
whole (regions n and c respectively).2 In the case illustrated, we obtain PO(n, c),
as indicated by the presence of green regions in image (f). As this fails the test
of conformity (which require nuclei to fall within their associated cytoplasm) the
task is to repair the segmentation. In (f) seven candidate nuclei partially over-
lap (PO) cytoplasm regions and six form proper parts (PP). But these include
several small ‘slivers’ adhering closely to the image boundary. Typically, regions
bordering the edge of the image frame (so their true extent is not known) are
removed from the analysis.

Using the directed graphs, we look for resegmentation operations on candi-
date nucleus/cytoplasm pairs that take us from PO to PP. Consider the enlarged
detail shown in Fig. 3(g), where candidate nucleus n is PO to cytoplasm compo-
nent c. One possible solution (image (h)) successively erodes n (i.e., replaces it
by its discrete interior) until it becomes PP to c; this requires three successive
erosions. Another (image (i)) replaces c by its discrete closure (dilation) until
the same result is achieved. In (j) we extend c to cover all of n so that once
again the nucleus is PP to its cytoplasm. In (k) we achieve the same result by
subtracting from n the part that lies outside c.

Image (l) shows a second enlarged detail of (f), in which another candidate
nucleus n′ partially overlaps two cytoplasm components c1 and c2. One correc-
tion (image (m)) splits the nucleus into two by taking its intersections with c1
and c2. Each nuclear component is now PP to one cytoplasm component. In (n),
the lower cytoplasm component (c2) is extended to cover the whole of n′. This,
though, has the effect of merging two cytoplasm components; to compensate for
this, the upper component (c1) is reduced by subtracting from it the closure of
n′ (image (o)). Finally, in (p), the nucleus is completely surrounded by cyto-
plasm; this is achieved by extending c2 to cover not just n′ but its closure; the
compensatory reduction of c1 must now subtract the closure of the closure of n′

in order to ensure complete separation from the extended c2.
These resegmentations, associated graphs and inferences used to generate

them are summarised in Table 1.
In detail, the steps for c1 in (p) are as follows:

1. Start with PO(n′, c1).
2. By 11PO this gives PO|NTPPi|TPPi(clD(n′), c1).
3. By 1PO|NTPPI|TPPI this gives EQ|NTPP|TPP(clD(n′), sum(clD(n′), c1)).
4. Next, from EQ(n′, n′) and 12EQ we have EQ|NTPP(n′, clD(n′)).
5. The RCC8D weak composition EQ|NTPP ◦EQ|NTPP|TPP is EQ|NTPP|TPP.
6. Hence from 3 and 4 using 5 we have EQ|NTPP|TPP(n′, sum(clD(n′), c1)).

In step 2, we apply graph 1 to each disjunct of PO|TPPi|NTPPi separately to gen-
erate the new disjunction EQ|TPP|NTPP in step 3: here PO and TPPi (NTPPi)
2 The justification for this step is a potential speed-up of computation in certain cases:

if DC(n, c) is returned, then all pairs of connected components of n and c are DC, if
PP(n, c) then every connected component in n is part of some component of c (and
similarly for PPi), and if EQ(n, c) then every connected component in n maps to an
identical component in c. These are theorems of DM.
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Table 1. Resegmentation details for Fig. 3. Here CT refers to the RCC8D composition
table.

Figure Initial relation Relation after resegmentation Graph operation

(h) PO(n, c) TPP(int3D(n), c) 9PO

(i) PO(n, c) TPP(n, cl3D(c)) 12PO

(j) PO(n, c) TPP(n, sum(n, c)) 1PO

(k) PO(n, c) TPP(prod(n, c), c) 4′
PO

(m)

{
PO(n′, c1)
PO(n′, c2)

TPP(prod(n′, c1), c1)
TPP(prod(n′, c2), c2)

}
4′

PO

(n) PO(n′, c1) TPP(n′, sum(n′, c1)) 1PO

(o)

{
PO(n′, c1)
PO(n′, c2)

TPP(n′, sum(n′, c1))
DC(n′, diff(c2, clD(n′)))

1PO

11PO, 6PO, 12EQ,CT

(p)

{
PO(n′, c1)
PO(n′, c2)

NTPP(n′, sum(clD(n′), c1))
DC(n′, diff(c2, cl

2
D(n′))

11PO, 1PO, 12EQ,CT
11PO, 6PO, 12EQ, 12NTPP,CT

are mapped to TPP|NTPP and EQ by 1PO and 1TPPi (1NTPPi) respectively; the
combined operation is notated 1PO|TPPi|NTPPi.3 The soundness and completeness
of the inference procedures ensure not only that steps 1–4 encode the DM theo-
rem PO(x, y) → EQ|TPP|NTPP(x, sum(clD(x), y)), but also that the disjunctive
relation EQ|TPP|NTPP is the strongest obtainable. Space limitations preclude
similarly detailed analysis of the resegmentation of c2.

5 Discussion

The 12 graphs reveal six resegmentation operations that take us directly from
PO to PP (i.e., TPP|NTPP), hence guaranteeing the transition to PP,4 and
another four that merely allow that possibility.5 The number (and complexity)
of potential resegmentations increases when several graphs are combined and
node-node paths through these networks of length n > 2 are considered, as in
the segmentation operations used to generate the cell depicted in Fig. 3(n).

Strategies for selecting optimal resegmentations would be relatively straight-
forward if the segmented cells were widely separated from each other, but in
Fig. 3 this is not so, since several cells are separated by a pixel-width distance
and in (f) several nuclei overlap more than one cytoplasm component. Hence
when applying 12PO to (g) to generate (i), or applying 1PO to (l) to generate
(o), hitherto separated cytoplasm components are merged. One way to avoid
this is to restrict the discrete closure operation so as to prevent merging with
a neighbouring component: cl−D(x, y) =def {x̂ | O(N(x̂), x) ∧ ¬O(N(x̂), y)}. This
picks out those pixels whose immediate neighbourhoods overlap x but are dis-
joint from y, giving the largest subset of clD(x) not connected to y. It cannot be

3 Other disjunctions are handled similarly.
4 Namely 1PO, 2PO, 3′

PO, 4′
PO, 5′

PO, and 8′
PO.

5 Namely, 9PO, 10′
PO, 11′

PO, an 12PO. In these cases the predicted models include PP,
but PP is not entailed.
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applied carte blanche, however, since histological domain constraints may require
some regions (e.g., fragmented nuclei) to be merged.

Within DM proper, different classes of regions operate as filters, e.g., atoms,
regions without interiors, regular regions (lacking spikes or fissures) or connected
components; and all these give rise to varying constraints on the mereotopolog-
ical relations defined on them. At the image scales typically used in digital
microscopy, most segmented regions mapping to histological objects have inte-
riors, and very few are atomic, but restricting these topological properties will
constrain the possible segmentation models and relations that can be defined
on them. Constraints other than those defined directly within DM can be also
used to reduce the number of segmentation models. A simple example is where
the range of sizes of histological objects can be used as a filter, either using MM
granulometry methods or filtering by morphological thickness [1], enabling us
to rule out the segmentation models depicted in Fig. 3(i), (n) (cell bodies too
large), and (h) (cell nucleus too small).

Another extra-logical constraint that can be used exploits empirical infor-
mation about the histological stains and their known selectivity in dye take-
up with respect to targeted tissues and their parts. Given that the H-stain
offers better segmentations for nuclei than the eosin counter-stain does for cyto-
plasm, resegmentations can be ranked so as to favour those that minimise the
changes to nuclei. Other assumed empirical and ontological dependencies can
also be exploited. For example, depending on microscope resolution, each cell
nucleus should fall wholly within some cytoplasm component, whether this is
segmentable from the original image or not; in DM this can be captured by
adding the histological domain axiom Nuc(x) → ∃y(Cell(y) ∧ P (x, y)). This
constraint also justifies the assumption underlying the transition 1PO, where a
cytoplasm component partially overlapping a nucleus is extended to cover the
nucleus so that it forms part of that cell. We can also add the correspondence
between histological features and stain selectivity: given a PO relation defined
on a poorly segmented nucleus and its host cytoplasm, we favour 12PO (dilating
the cytoplasm) over 9PO (eroding the nucleus). Also worthy of note is that the
boundaries of histological objects in a greyscale image exhibit intensity gradi-
ents. This means that when binary thresholding candidate regions, subsequent
erosion and dilation-based resegmentations are more likely to track gray-scale
intensity levels in the original image than blind set-theoretic segmentation oper-
ations on binary images. This observation highlights a limitation of the underly-
ing method, namely, that once the segmentation mask of the target histological
object is provisionally segmented, changes subsequently made and translated
back to the images may not conform to all available information in the image.
However, in some cases restricting oneself to information in an image may not,
even in principle lead to a histological model. For example, uneven staining may
fail to reveal the full extent of the cytoplasm in the sample; in which case a
model-based resegmentation solution can be used to factor out those regions in
an image that need to be treated differently than the rest.
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It is also perhaps useful here, to give at least some indication of empiri-
cal methods and metrics envisaged for quantifying, validating and measuring
our segmentation solutions. For example, given cell nuclei are easier to segment
than their associated bodies of cytoplasm, these can be used as a gold-standard
reference measuring how well the segmented cytoplasm conforms to the histolog-
ical model. In this case a necessary condition is that segmented nuclei form part
of some overlapping body of cytoplasm, so one possible measure is the number of
region pairs that form a part-whole relation divided by all possible overlap cases.
These simple examples show (i) that the underlying physical model should guide
the abstraction and (ii) the danger of abstracting and working with generic cases
too quickly, where empirical constraints restricting valid resegmentations may
be missed.

6 Conclusions and Future Work

We have shown how DM provides the means to model cellular and tissue struc-
ture in digitised histological images. Segmentation and resegmentation satisfying
a histological model can be achieved by a set of operations on regions that sat-
isfy a set of constraints on pairs of regions. These constraints can be encoded as
a set of graphs in which topological and set-theoretic operators lead from one
vertex to another. The method is generic and can be applied to any domain
where it is required to segment digitised images into regions satisfying specific
sets of mereotopological relations.

Several directions for future work can be suggested. First, the set of operators
and associated graphs can be extended to cover all the standard topological and
set-theoretic operators, including the discrete exterior, boundary, the (absolute)
complement and the symmetric difference. Second, various different metrics can
be defined on the conceptual neighbourhoods and their graphs, allowing opti-
misation of segmentation models and prediction of the most likely path to take
through the graphs from a given state to a segmentation goal. These could be
based on what proportion of JEPD relations reached at each step can lead to
a valid model, or probability measures determined from a statistical analysis of
the data sets, taking into account a priori and empirically derived properties
such as tissue type and morphological shape and size.
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Open Access This chapter is licensed under the terms of the Creative Commons
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which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.
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