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Abstract 

Background and purpose. Streptococcus pneumoniae is the most common cause of 

bacterial meningitis in adults and is characterised by high lethality and substantial cognitive 

disabilities in survivors. Here, we study the capacity of an established therapeutic agent, 

magnesium, to improve survival in pneumococcal meningitis by modulating the neurological 

effects of the major pneumococcal pathogenic factor pneumolysin. 

Experimental approach. We used mixed primary glial and acute brain slice cultures, 

pneumolysin injection in infant rats, a mouse meningitis model, and complementary 

approaches such as Western blot, a black lipid bilayer conductance assay and live imaging of 

primary glial cells. 

Key results. Treatment with therapeutic concentrations of magnesium chloride (500 

mg/kg in animals and 2 mM in cultures) prevented pneumolysin-induced brain swelling and 

tissue remodelling both in brain slices and in animal models. In contrast to other divalent 

ions, which diminish the membrane binding of pneumolysin in non-therapeutic 

concentrations, magnesium delayed toxin-driven pore formation without affecting its 

membrane binding or the conductance profile of its pores. Finally, magnesium prolonged the 

survival and improved clinical condition of mice with pneumococcal meningitis in the 

absence of antibiotic treatment.   

Conclusions and implications. Magnesium is a well-established and safe therapeutic 

agent that has demonstrated capacity for attenuating pneumolysin-triggered pathogenic 

effects on the brain. The improved animal survival and clinical condition in the meningitis 

model points to magnesium as a promising candidate for adjunctive treatment of 

pneumococcal meningitis together with antibiotic therapy.    
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Non-standard abbreviations 

 CDC – cholesterol-dependent cytolysin 

 CFU – colony-forming unit 

HU – haemolytic unit 

 LDH – lactate dehydrogenase 

Mg – magnesium chloride, MgCl2 

 PI – propidium iodide 

PLY - pneumolysin 

 PSD95 – postsynaptic density 95 
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Introduction  

Streptococcus pneumoniae (pneumococcus) is a common bacterial pathogen that 

causes meningitis in humans, accompanied by high lethality (~30%) and substantial cognitive 

disabilities in survivors (Koedel, Scheld & Pfister, 2002). Pneumolysin (PLY), a member of 

the cholesterol-dependent cytolysin (CDC) group and a major pneumococcal neurotoxin, is 

one of the key pathogenic factors that causes deterioration over the course of S. pneumoniae 

meningitis (Wellmer et al., 2002) and pneumococcal lung infections (Canvin et al., 1995). 

PLY produces pores and cell lysis at high concentrations and non-lytic changes at lower 

concentrations (Iliev, Djannatian, Nau, Mitchell & Wouters, 2007a; Iliev et al., 2009). The 

CDC protein family includes toxins from Gram-positive bacteria that share a common 

dependence on the presence of cholesterol in cell membranes (Alouf, 2000). PLY-expressing 

pneumococcal strains cause more severe disease than PLY-negative strains (Reiß et al., 

2011), and the concentration of PLY in the CSF of patients with meningitis correlates with 

the outcome (Wall et al., 2012).  

PLY, which has been thoroughly studied ultrastructurally in artificial membranes 

(Tilley, Orlova, Gilbert, Andrew & Saibil, 2005), produces pores by first binding to 

membrane cholesterol, aligning in arcs and forming pre-pore structures of 30-50 monomers, 

followed by molecular unfolding and membrane perforation producing 26-30 nm wide lytic 

pores. The toxin comprises 4 domains: domain 4 mediates binding to membrane cholesterol, 

while domains 1, 2 and 3 establish the pre-pore barrel. Upon alignment in a ring-shaped pre-

pore, domain 3 refolds into two β hairpins (each containing two parallel β-strands), which 

penetrate the membrane and build the internal β-barrel of the pore (Tilley, Orlova, Gilbert, 

Andrew & Saibil, 2005). The artificial membrane ultrastructural studies utilise mostly 

concentrations of 2 µg/ml PLY and higher. In the CSF of patients with meningitis, however, 

the concentrations of PLY do not exceed 0.2 µg/ml, which is mildly lytic in cell cultures and 

non-lytic in tissue culture systems (Iliev, Djannatian, Nau, Mitchell & Wouters, 2007a; Iliev 

et al., 2009; Spreer et al., 2003). We shall call such concentrations sublytic. We have shown 

before that sublytic concentrations of PLY produce cytoskeletal changes, including actin 

remodelling and microtubule stabilisation, without plasmalemmal permeabilisation (Iliev, 

Djannatian, Nau, Mitchell & Wouters, 2007a; Iliev et al., 2009). The short-term (within a few 

hours) effects of PLY involve interstitial tissue oedema and increased pathogen tissue 

penetration in the brain, both caused by astrocyte remodelling (Hupp et al., 2012).  

The management of bacterial meningitis involves corticosteroids as adjuvants to 

prevent fatal oedema (Grandgirard & Leib, 2010) and includes antibiotics. The administration 
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of bactericidal non-bacteriolytic antibiotics has proven to reduce lethality and sequelae more 

effectively than bacteriolytic antibacterials, most likely due to the reduced concomitant 

release of neurotoxic factors such as PLY (Grandgirard, Burri, Agyeman & Leib, 2012; Nau 

et al., 1999; Spreer et al., 2003). However, the bacteriolytic family of -lactam antibiotics 

still constitutes the standard treatment, and no efficient and clinically applicable therapy 

exists to counteract the detrimental effects of PLY already released into the central nervous 

compartments.     

In this work, we demonstrate that clinically relevant doses of magnesium (Mg) 

diminish most of the tissue pathogenic effects of PLY and improve the outcome of 

pneumococcal meningitis in animal models of the disease.  

  

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=708
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Methods  

Pneumolysin preparation 

Wild-type PLY was expressed in Escherichia coli BL-21 cells (Stratagene, Cambridge, 

UK) and purified by metal affinity chromatography as described previously (Douce, Ross, 

Cowan, Ma & Mitchell, 2010). The purified PLY was evaluated for the presence of 

contaminating Gram-negative LPS using the colorimetric LAL assay (KQCL-BioWhittaker, 

Lonza, Basel, Switzerland). All purified proteins showed <0.6 endotoxin units/µg of protein. 

The stock of purified wild-type toxin exhibited an activity of 2 x 10
4
 haemolytic units 

(HU)/mg. 

 

Cell and slice cultures, vital staining, live imaging and treatments 

Primary glial cultures (astrocytes and microglia) were prepared from the brains of 

postnatal day (P) 4-6 of either C57BL/6 mice (Janvier Labs, Le Genest-Saint-Isle, France) or 

Sprague Dawley (SD) rats (Charles River WIGA GmbH, Germany) as previously described 

(Iliev, Stringaris, Nau & Neumann, 2004) in DMEM (Life Technologies, Thermo Fisher 

Scientific, Schwerte, Germany) supplemented with 10% foetal calf serum (FCS) (PAN 

Biotech GmbH, Aidenbach, Germany) and 1% penicillin/streptomycin (Life Technologies) in 

75 cm
2
 poly-L-ornithine- (Sigma-Aldrich Chemie GmbH, Schnelldorf, Germany)-coated cell 

culture flasks (Sarstedt AG & Co., Nuembrecht, Germany). The total number of animals used 

for primary cultures was 10, they were sacrificed by decapitation (an approved method in the 

German Animal Protection Law (Tierschutzgesetz)). 

Acute brain slices were prepared from P10-14 C57BL/6 mice (12 animals) or SD rats 

(12 animals) by decapitation. It allows to obtain brain tissue in optimal condition for acute 

brain slices by vibratome sectioning (Vibroslice NVSL, World Precision Instruments, Berlin, 

Germany) in BME continuously oxygenated with carbogen gas (95% O2, 5% CO2) at 4°C. 

The slices were allowed to adapt in carbogenated BME (Life Technologies) medium with 1% 

penicillin/streptavidin and 1% glucose at 37°C for 1 h before being challenged with PLY 

under the same conditions. In these acute slices, cell lysis never exceeded 5% within 12 h (as 

judged by a lactate dehydrogenase (LDH) release test).  

 In tissue remodelling experiments, the acute slices were incubated with 70-kD 

dextran-TRITC (Life Technologies, 0.5 mg/ml) for 10 min at 37°C before fixation with 2% 

paraformaldehyde (Carl Roth GmbH, Karlsruhe, Germany) in PBS to assess molecular 

penetration. The fixed samples were examined by scanning confocal microscopy on a Leica 

LSM SP5 (Leica Microsystems Heidelberg GmbH, Mannheim, Germany) followed by 3D 
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reconstruction of the z-stacks (1-µm scanning step) and measurement of penetration using 

ImageJ software (version 1.43g for Windows OS, National Institute of Health, Bethesda, 

Maryland, USA). 

 For live imaging experiments, the cells were incubated at 37°C in CO2-insensitive L-

15 Leibovitz`s medium (Life Technologies) containing propidium iodide to stain 

permeabilised cells, and Hoechst 33342 to stain the nuclei of all cells (1 µg/ml, Life 

Technologies). The cells were visualised on an Olympus Cell-M Imaging system using the 

10x and 20x dry objectives (Olympus Deutschland GmbH, Hamburg, Germany).   

 Lactate dehydrogenase (LDH) release assays were performed using CytoTox96 non-

radioactive cytotoxicity assay according to manufacturer`s instructions (Promega, Madison, 

WI, USA). 

In all experiments, cells and tissues were treated with PLY in serum-free medium. 

Magnesium chloride hexahydrate was purchased from Merck Millipore (catalogue number: 

105833) and dissolved in 0.45% saline. Calcium chloride was purchased from Sigma.  

 

Animal procedures and choice of animal models 

All animal experiments were performed according to the regulations of the German 

Research Animal Protection Law (Tierschutzgesetz) with approval from the Commission for 

Animal Experiments Government of Lower Franconia, Bavaria, Germany, and approval from 

the Authority for Consumer Protection and Food Safety of Lower Saxony (Niedersächsisches 

Landesamt für Verbraucherschutz und Lebensmittelsicherheit (LAVES)), Braunschweig, 

Lower Saxony, Germany, Germany. All animals were maintained for one week before the 

start of the experiments in an animal facility with 12/12 h light/dark cycles and water and 

food ad libitum. All experiments were terminated in such a way as to avoid animal suffering. 

Animal experiments were performed in two different animal species systems (mice and rats) 

to increase cross-species translational relevance. The choice of the most suitable animal 

model for experiments represents a major task that has to be considered carefully. Ample 

evidence indicates the risk of misleading interpretations when using only one species model 

or model that is not at correct age, correct condition or susceptible to disease (Denayer, Stöhr, 

& Van Roy, 2014). The most widely used experimental animal model species are rats and 

mice and despite being wrongly considered similar, they are actually separated by 12-24 

million years of evolution and differ substantially (Blanga-Kanfi et al., 2009). Thus, 

verification of therapeutic effect simultaneously in both species increases substantially the 

chance of translational value to humans. At the same time, the current legal and bioethical 
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standpoint strongly urges researchers to reduce the number of experimental animals, 

especially when experimental models are accompanied with potentially higher level of 

suffering (Flecknell, 2002). To accommodate both issues, we chose to verify the effects of 

magnesium in two live animal models – Sprague-Dawley rats and C57Bl/6 mice, testing the 

role of magnesium on pure toxin in one of them only and the effect in full-scale disease in the 

other. 

For induction of PLY-based animal brain swelling, 29 infant SD rats (P10-14) were 

used. The choice of the model was based on our earlier experience that showed more efficient 

intracerebroventricular (icv) toxin distribution in the ventricular system of rats versus mice 

when toxin-induced swelling was studied (Hupp et al., 2012). Rats were randomly distributed 

in the following groups: icv saline-injected mock control (n=9), icv PLY-injected group 

(n=11), and Mg (500 mg/kg) pre-treated and subsequently icv PLY-injected group (n=9). The 

animals were anaesthetised with ketamine/xylazine (sc, ketamine, 80 mg/kg; xylazine, 12 

mg/kg; Sigma), with follow-up anaesthesia using ketamine (sc, 30 mg/kg/h). During the 

experiments, the blood pressure and the pulse frequency of each anaesthetised animal were 

monitored by a non-invasive tail measurement system (Stoelting Co., Wood Dale, IL, USA) 

to confirm proper physiological conditions. To verify the pathophysiological relevance of the 

injected amounts, samples from the CSF were taken within 2 h of the injection of PLY and/or 

1% Evans Blue dye (Sigma) to confirm the complete distribution of the injected fluid in the 

CSF. The final concentration of PLY was 0.2 µg/ml (Wippel et al., 2011), which was 

comparable to the toxin amounts observed in the CSF during pneumococcal meningitis 

(Spreer et al., 2003). Equimolar amounts of albumin Fr. V (Sigma) were applied instead of 

PLY in control animals.  

For induction of bacterial meningitis, 44 two-month-old female C57BL/6 mice were 

used according to an established protocol, used repetitively in the field (Nau et al., 1999). 

Mice received an intracerebral (ic) injection of either 10 µl containing 1x10
5
 CFU/ml (1 000 

CFU/mouse) of S. pneumoniae D39 in saline (n=37) or 10 µl of sterile saline (n=7) after 

intraperitoneal (ip) anaesthesia with ketamine (100 mg/kg) and xylazine (10 mg/kg)  

(Wellmer et al., 2002). The health status of the mice was assessed every 12 h by a clinical 

score [0, no apparent behavioural abnormality; 1, moderate lethargy (apparent decrease of 

spontaneous activity); 2, severe lethargy (rare spontaneous movements, but walking after 

stimulation by the investigator);  3, unable  to  walk; 4, dead] (Gerber et al., 2001), and the 

areas under the curves (AUCs) of the clinical scores were calculated for each animal. As a 

consequence of the muscle-relaxant effect of Mg, animals receiving MgCl2 were susceptible 
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to an inhibition of ventilation by anaesthetics. To avoid negative potentiation of ventilation 

inhibition, MgCl2 administration was delayed with 30 min after introduction to anaesthesia. 

To limit the number of injections, animals were treated with 3 doses (every 12 h, starting 30 

min before ic injection) of a 0.33 ml solution containing either 30.45 mg MgCl2/ml or 0.33 

ml of 0.45% saline intraperitoneally. Animals were treated ip with 0.33 ml solution of 30.45 

mg MgCl2/ml or 0.33 ml of 0.45% saline. Magnesium chloride hexahydrate was dissolved in 

0.45% saline. As the MgCl2-dependent effect was only observed until 12 hours after the last 

MgCl2 treatment, mice were sacrificed under anaesthesia 36 h after infection by cervical 

dislocation. This time point was also defined to reduce excessive suffering of the animals 

when reaching 50% lethality. Blood samples, spleen and cerebellum were collected, plated 

and cultured on blood agar. The cerebrum was fixed in 4% formalin, dehydrated and paraffin-

embedded for further processing and analysis (cutting, immunohistochemistry).  

 

 Animal group sizes, randomization, blinding and normalization 

 The number of experimental animals used was kept to a minimum by statistical 

optimisation in accordance with the Altman`s nomogram (O'Hara, 2008). The exact number 

of animals in different groups is indicated either in the figure legends or in the Methods 

section. The total number of animals used in all experiments was 113 (107 in the 

experimental series, 3 for adjustment of the anaesthesia and 3 for preliminary analysis of 

optimal Mg concentration). All animals were randomized before treatment. In all animal 

experiments and in all further sample analyses, the animals/samples were blinded before 

evaluation and un-blinded upon statistical analysis. Normalization versus control groups 

(mock-treated and Mg-treated controls) was employed in histological analysis of postsynaptic 

fluorescence intensity to correct for intensity staining changes by Mg-treatment. The work is 

reported in line with the ARRIVE guidelines as requested in the Instructions to Authors of 

the journal. 

 

Oedema evaluation 

For the analysis of brain swelling, 10 µl of 1% Evans Blue dye was injected icv 6 h 

after the first injection (mock or PLY), and the needle was kept in place for an additional 30 

min, completely sealing the tiny skull opening. Within this time, nearly all dye was 

redistributed in the CSF. As the intracranial pressure increased, larger amounts of the 

dye/CSF mix would leak out after needle removal to equilibrate the pressure. The dye was 

absorbed onto filter paper, and the size of the spot, which was proportional to the total 
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amount of fluid, was scanned and measured (in mm
2
) with ImageJ. This method for edema 

evaluation proved superior to others when working with infant rodents (Hupp et al., 2012). 

During the whole procedure, all animals were maintained under anaesthesia without 

interruption and at the end were sacrificed by cervical dislocation. 

 The water content of the brain slices was analysed by specific gravity (also known as 

relative density) measurement in a Percoll (Sigma) density gradient (Tengvar, Forssen, 

Hultstrom, Olsson, Pertoft & Pettersson, 1982). The gradient ranged from 1.065 to 1.009 and 

was produced by dilution of isotonic Percoll in PBS (10:1 Percoll:10x PBS), thus creating 21 

layers in increments of 0.0025. Oedematous tissue demonstrates a decreased relative density 

due to its increased water content, so it floats in a Percoll layer with a lower relative density.  

 

Immunohistochemistry 

For the immunohistochemical experiments, microtome slices from mouse brains 

embedded in paraffin were deparaffinised and rehydrated, and the antigen was unmasked 

using target retrieval solution (Dako Deutschland GmbH, Hamburg, Germany) at 95°C. The 

primary antibodies used were rabbit anti-PSD95 (1:500; Abcam, Cambridge, UK) and rabbit 

anti-active caspase-3 (1:250; RnD Systems, Bio-Techne AG, Zug, Switzerland), and the 

secondary antibodies were goat anti-rabbit tagged with FITC or Cy3 (1:200; Dianova GmbH, 

Hamburg, Germany). Isotype controls confirmed the specificity of the staining. The sample 

nuclei were stained with DAPI (4,6-diamidino-2-phenylindole dihydrochloride, 1 µg/ml in 

PBS; Life Technologies). All samples were preserved with the ProLong antifade reagent 

(Life Technologies).  

 

Protein biochemistry 

Equal number of cells (500 000 per a 60 mm Petri dish) were challenged either with 

PLY alone or in the presence of additional 2 mM Mg for 15 min at 37°C in serum-free 

medium. Cells were washed 3 times with ice-cold PBS before proceeding further. Total crude 

cell membranes were isolated as described before (Iliev, Djannatian, Nau, Mitchell & 

Wouters, 2007b). Shortly, cells were homogenized in buffer containing 10 mM Tris HCl 

(pH=7.4), 1 mM EDTA, 200 mM sucrose (all from Sigma–Aldrich) and protease inhibitor 

mix (Roche Diagnostics, Mannheim, Germany). The nuclei and cellular debris were removed 

by centrifugation at 900 x g for 10 min at 4°C. The resulting supernatant was centrifuged at 

110 000 x g for 75 min at 4°C. Part of this supernatant was used for actin protein control 

samples for the Western blots. The crude membrane pellet was solubilized in buffer 
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containing 10 mM Tris HCl (pH=7.4), 1mM EDTA, 0.5% Triton X-100 and protease 

inhibitor mix) and boiled in Laemmli buffer at 95°C for 20 min. 

Samples containing equal amounts of protein (BCA test, Thermo Fisher) were loaded 

on a nitrocellulose membrane (Schleicher & Schuell GmbH, Dassel, Germany) using a 

Novex® Tris-Glycine polyacrylamide gel system (Life Technologies). After semi-dry 

blotting, the membranes were blocked with 5% non-fat milk and incubated with rabbit anti-

PLY antibody (Abcam Inc.; 1:400) and mouse anti-actin antibody (Sigma; 1:1 000) as a 

loading control. After incubation with a horseradish peroxidase-conjugated goat anti-mouse 

and goat anti-rabbit secondary antibodies (Dianova), the bands were visualised using an ECL 

kit (GE Healthcare, Munich, Germany).  

 

Planar (black) lipid bilayer experiments 

The planar lipid bilayer experiments were carried out as previously described (Benz, 

Janko, Boos & Lauger, 1978). Membranes were formed from a 1% (w/v) solution of oxidised 

cholesterol in n-decane (Sigma). This artificial lipid was used instead of diphytanoyl 

phosphatidylcholine because it facilitates the insertion of porin and PLY pores into the lipid 

bilayer (Benz, Ishii & Nakae, 1980). The toxin (0.5 μg/ml) was added to the aqueous phase 

after the membrane had turned black. The membrane current was measured with a pair of 

Ag/AgCl electrodes with salt bridges switched in series by a voltage source and a highly 

sensitive current amplifier (Keithley 427, Keithley Electronics, Garland, TX, USA) in a 

buffer containing 100 mM KCl, 10 mM HEPES and various concentrations of MgCl2. The 

temperature was maintained at 20°C throughout the experiment. 

 

Evaluation and statistics 

Image processing and image analysis were performed using ImageJ software, version 

1.43g for Windows. Statistical analyses were performed on GraphPad Prism 4.02 for 

Windows (GraphPad Software Inc., La Jolla, CA, USA). Statistical tests included the Mann-

Whitney U-test (comparing two groups, varying one parameter at a time), one-way ANOVA 

with a Bonferroni post-test (comparing three or more groups, varying one parameter at a 

time) and the log-rank test to compare survival between two groups. When non-linear 

regression analysis was performed, one-phase exponential association was used. For all 

analyses, we considered values of p<0.05 as statistically significant and indicated them with 

asterisk throughout. All values in the graphs represent mean ± SEM.     
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Nomenclature of Targets and Ligands 

Key protein targets and ligands in this article are hyperlinked to corresponding entries 

in http://www.guidetopharmacology.org, the common portal for data from the IUPHAR/BPS 

Guide to PHARMACOLOGY (Southan et al., 2016), and are permanently archived in the 

Concise Guide to PHARMACOLOGY 2015/16 (Alexander et al., 2015).   
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Results 

Magnesium diminishes interstitial brain edema by pneumolysin 

Interstitial brain oedema caused by PLY represents a tissue-specific toxin effect 

(Hupp et al., 2012). Here, brain swelling was quantified using the reduction of the relative 

density in an acute brain slice culture model system. We used concentrations of PLY 

corresponding to 4 haemolytic units (HU)/ml, which were non-lytic but produced oedema in 

slices (Hupp et al., 2012). First, the effects of therapeutic concentrations of Mg (0.5-2 mM) 

on PLY-induced tissue swelling were investigated. The basal medium in all experiments 

contained 2.5 mM Mg, and MgCl2 was added to the basal medium to reach therapeutic 

concentrations. In all experiments, the notation “without Mg” means without extra Mg above 

the basal medium concentration of 2.5 mM. Addition of 2 mM Mg completely blocked the 

brain oedema produced after 6 h of 4 HU/ml PLY exposure (Fig. 1A). Mg-induced 

prevention of brain swelling was concentration-dependent (Fig. 1B). Because PLY allows 

deeper penetration of whole pneumococci and bacterial products into the tissue due to wider 

intercellular spaces (Hupp et al., 2012), we quantified penetration using a fluorescently 

labelled dextran (MW=70 kD) incubation approach. Again, the addition of 2 mM Mg fully 

restored the normal permeability of the tissue when applied simultaneously with PLY and 

diminished the penetration of dextran to control values (Fig. 1C). 

Next, we tested whether the beneficial effects of Mg were due to i) tissue 

conditioning, ii) modulation of the interaction of the toxin with the tissue, or iii) the effect on 

the toxin alone. First, slices were pre-incubated with high doses of Mg for 1 h before the 

toxin was added to the medium (PLY+Mg) (Fig. 2A). Tissue swelling was completely 

prevented. Next, we exposed slices to PLY and Mg without tissue pre-treatment with Mg 

(PLY & Mg). The beneficial effect of Mg was preserved again (Fig. 2A). In the third 

approach, slices were pre-challenged with Mg for 1 h, then Mg was removed and PLY added 

(group MgPLY). Here, Mg was ineffective against PLY-induced brain oedema (Fig. 2A). 

Altogether, this demonstrated that the action of Mg was most prominent when applied on the 

tissue together with PLY and thus Mg exerted its effect by modulating toxin/cell interactions. 

Pre-incubation of the toxin together with high doses of Mg for 1 h followed by slice 

challenge in base medium without extra Mg was partially effective against toxin-induced 

oedema (Fig. 2B), indicating some effect limited to the toxin only. 

 

Magnesium diminishes the pore-forming capacity of pneumolysin   
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To analyse whether the elevation of Mg in the medium affects the binding of PLY to 

the cell membrane, we performed Western blot analysis on the membrane fraction from glial 

cells after challenge with PLY. No decrease in the toxin binding in primary glial cells was 

observed 15 min after challenge (Fig. 3A). Next, we measured the conductance of the PLY 

pores in black lipid membranes in the presence or absence of Mg to detect alterations in pore 

structure. No change in the conductance profile was observed in the conductance event 

frequency histograms with similar peak conductance around 25 nS (Fig. 3B). We studied the 

permeabilisation of primary glia in culture by PLY in the presence and absence of additional 

Mg. The concentrations that are pro-oedematous and non-lytic in slices are partially lytic in 

dissociated primary glial cultures (up to 10%, we call them sublytic), and this can be analysed 

by propidium iodide (PI) permeabilisation. Additional Mg significantly delayed the 

permeabilisation of glial cells by PLY (Fig. 3C, D) with differences in the permeabilisation 

endpoints after regression analysis curve extrapolation as well (Fig. 3E). LDH release 

cytotoxicity assay confirmed these findings. 5 h after toxin challenge in cell culture, however, 

the cytotoxicity of toxin challenged groups (both with and without additional Mg) equalized 

(Fig. 3F). Thus, Mg delayed pore formation by PLY without modulation of binding and 

conductance profile of the pores. All experiments were repeated both in SD rats and C57BL/6 

mouse cell systems with similar outcomes.  

 

Inhibition of brain swelling by pneumolysin in animals  

Next, we tested whether the systemic application of Mg may be a suitable therapeutic 

alternative in whole-animal paradigms. We tested two different species systems to increase 

the translational relevance of our findings. Icv injection of PLY (at a final concentration of 4 

HU/ml) into the CSF of young rats (P10-14) produced brain oedema as evaluated by the 

Evans blue method, following an established protocol (Hupp et al., 2012). Mg pre-treatment 

(500 mg/kg ip; dose was determined by extrapolation of the results from brain slices 

experiments to animals considering volume of distribution, effects of serum Mg elevation on 

CSF Mg concentration and preliminary tests in single animals) significantly reduced the 

amount of brain swelling in the infant rats 6 h after toxin challenge (Fig. 4). Mg demonstrated 

some muscle relaxation in treated animals under anaesthesia as determined by decreased 

muscle tonus.  

 

Improved survival, synaptic loss and clinical status in meningitis animals  
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Finally, we investigated the role of Mg as a potential treatment in the mouse model of 

pneumococcal meningitis that has been widely used in the field (Nau et al., 1999). No 

differences in bacterial titers in spleen, cerebellum and blood (Fig. 5A) and in weight loss 

(Supplementary Fig. S1A) were observed between mock and Mg-treated infected animals at 

the end of the experiment. The predefined endpoint for analysis of lethality was 36 h (see 

Methods). Immunohistochemically, we analysed synapses in layers I-III of the neocortex by 

PSD95 (postsynaptic density 95 – a postsynaptic marker) immunostaining. The analysis 

revealed that Mg treatment blocked the loss of PSD95 immunostaining at 36 h after infection 

with S. pneumonie (Fig. 5B). No significant differences in the elevated number of cells 

positive for active caspase-3 in the CA2 area of the hippocampal formation were observed 

between the two groups of infected mice (Supplementary Fig. S1B). Mice receiving MgCl2 

had less severe clinical symptoms, i.e., a lower clinical score, than infected mock animals 

(Fig. 5C). Mg treatment prolonged the survival of mice with pneumococcal meningitis 

significantly (Fig. 5D). While in the group with mock-treated animals, 8 (out of 19) 

succumbed to the infection in the first 36h after infection, only 2 (out of 18) Mg-treated died 

before the endpoint. 
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Discussion 

Our work demonstrates for the first time that clinically relevant concentrations of Mg, 

a well-known and established therapeutic agent, can prevent the brain pathogenicity of the 

neurotoxin PLY, which is released from S. pneumoniae, and provide a benefit for the 

outcome in animal models of pneumococcal meningitis. 

Brain swelling, a complication of brain trauma, ischaemia, brain tumours and a 

variety of other disease conditions, contributes to lethality by compromising cerebral blood 

flow and/or by displacing important brain structures within the fixed volume of the skull 

(Marmarou, 2007; Raslan & Bhardwaj, 2007). The management of acute brain oedema in 

these cases is of primary clinical importance (Raslan & Bhardwaj, 2007). Brain swelling also 

plays a significant role in pneumococcal meningitis (Brandt, 2010; Kastenbauer & Pfister, 

2003). Neuroinflammation and increased vascular permeability are considered major factors 

in infectious brain oedema (Stamatovic, Dimitrijevic, Keep & Andjelkovic, 2006). Earlier 

works have demonstrated that PLY can also produce intercellular oedema of the brain, 

widening the intercellular spaces and thus enhancing the tissue penetration of pathogenic 

factors and bacteria, as astrocyte reorganisation plays a key role in this process (Hupp et al., 

2012). 

The role of PLY as a critical pathogenic factor in pneumococcal meningitis has been 

verified in multiple experimental and clinical studies (Reiß et al., 2011; Wall et al., 2012; 

Wellmer et al., 2002). Lack of PLY is associated with much milder disease course and 

improved survival. Other members of the CDC toxin group such as perfringolysin and 

listeriolysin increase the virulence of their corresponding strains too (Awad, Ellemor, Boyd, 

Emmins & Rood, 2001; Bielecki, Youngman, Connelly & Portnoy, 1990; Jones & Portnoy, 

1994). Immunisation with PLY improves the survival rates of mice infected intranasally with 

S. pneumoniae (Paton, Lock & Hansman, 1983). Similarly, neutralising antibodies against 

PLY improve the outcome after intranasal infection with S. pneumoniae and in PLY-induced 

lung injury (Salha et al., 2012). These anti-PLY strategies, though effective, carry several 

practical therapeutic difficulties. Immunisation with PLY is not an established, routine 

approach in patients and requires time until immunity is raised. The presence of the blood-

brain and blood-CSF barrier complicates the penetration of therapeutic antibodies into the 

brain parenchyma and into the CSF (Gigliotti, Lee, Insel & Scheld, 1987; Neuwelt, Specht & 

Hill, 1986), where bacteria accumulate in meningitis. In comparison, Mg represents a well-

established, inexpensive and safe alternative that has proven effective for several clinical 

indications over many years. Mg is used in the treatment of eclampsia (Euser & Cipolla, 
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2009) and as an anti-arrhythmic agent in humans, with a daily dose as high as 600 mg/kg 

(Moran, Gallagher, Peake, Cunningham, Salagaras & Leppard, 1995). It is also 

neuroprotective and anti-oedematous in traumatic brain injury (van den Heuvel & Vink, 

2004), although some newer meta-analyses caution against this conclusion (Li et al., 2015). 

Mg lowers death, cerebral palsy and motor dysfunction in preterm infants (Crowther, Hiller, 

Doyle & Haslam, 2003). In cases of intra-operative ischaemia during cardiac bypass and 

carotid endarterectomy, Mg slows neurologic decline at 24 h postoperatively (Bhudia et al., 

2006; Mack et al., 2009), but some trials fail to replicate such effects (Mathew et al., 2013). 

While most studies use Mg in the form of MgSO4 for historical reasons, we used MgCl2, 

which is considered to be pharmacologically comparable or even superior (Durlach, Guiet-

Bara, Pages, Bac & Bara, 2005). The Mg dose applied demonstrated the well-known side 

effect of muscle relaxation. This needs to be considered, especially in clinical cases with 

depressed breathing. Muscle relaxation tends to flatten breathing movements and thus can 

complicate anaesthesia in animal models.  

We designed several experimental paradigms of Mg treatment to identify the exact 

phase and mechanism of toxin/cell interaction modulated by Mg. First, we pre-treated brain 

tissue alone with Mg before toxin challenge, evaluating some tissue-specific effects. Changes 

in membrane fluidity, for example, may affect the thermodynamic barrier to membrane 

penetration of the toxin and thus reduce the speed of pore formation (Nagahama et al., 2007). 

The evidence that metal cations (including Mg) influence membrane fluidity in the brain and 

in platelets indeed supports such a mechanism (Ohba, Hiramatsu, Edamatsu, Mori & Mori, 

1994; Sheu et al., 2002). Tissue pre-treatment with Mg alone, however, was not effective 

against subsequent PLY challenge, excluding to a large degree direct tissue-conditioning 

effects. Much more informative were our experiments with toxin pre-incubation with Mg and 

subsequent tissue toxin challenge in base medium conditions. Here, the effects of Mg were 

substantially preserved, indicating longer-lasting effects of the metal ion on the toxin 

molecule. Some divalent cations, such as calcium and zinc, have the capacity to inhibit the 

binding of PLY to membranes (Beurg et al., 2005; Franco-Vidal, Beurg, Darrouzet, Bebear, 

Skinner & Dulon, 2008). In contrast, Mg did not inhibit the membrane binding of PLY as 

assessed by Western blot analysis. Another explanation of our results points to Mg as a toxin 

modulator agent after membrane binding, but the electrophysiological experiments did not 

provide evidence for changed toxin pore properties on the single pore level, as the peaks of 

conductance remained unchanged.  
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In the mixed glial cell culture system, Mg delayed permeabilization in the first few 

hours after toxin challenge. At 6 h, however, lysis in all PLY-treated groups equalized. 

Comparative interpretation of the data from dissociated cell cultures and tissues is difficult 

tissues contain extracellular matrix and complex cellular composition not present in culture. 

The real advantage of the cell culture system, combined with live imaging, was the ability to 

study pore formation kinetics by PLY. There are multiple possible explanations for the delay 

of permeabilization by Mg: i) Mg-altered membrane turnover in the cells, or ii) Mg-affected 

pore assembly. The experiments involving Mg pre-treatment of slices and later addition of 

toxin indicated that the effects are mostly confined to the presence of toxin, supporting the 

second explanation. Interestingly, maintaining a high intracellular Mg concentration 

represents a protective mechanism against autolysis in S. pneumoniae (Neef, Andisi, Kim, 

Kuipers & Bijlsma, 2011). 

Higher calcium concentrations mildly ameliorated swelling in our brain slice system 

(Supplementary Fig. S1C). The mechanisms involved here was most likely associated with 

the modulation of membrane toxin binding by calcium (Wippel et al., 2011). High calcium, 

however, is not an alternative to the Mg treatment due to the multiple secondary calcium-

mediated effects such as enhanced cell dysfunction, excitotoxicity and accelerated cell death 

(Amagasa, Ogawa & Yoshimoto, 1990; Lorget et al., 2000; McGinnis, Wang & Gnegy, 

1999; Ravens, Liu, Vandeplassche & Borgers, 1992), but it further confirms the critical 

sensitivity of the PLY molecule to divalent ions. We hypothesise that at non-lytic, pro-

oedematous PLY concentrations in slices, Mg-induced delay of pore formation allows better 

tissue adaptation. 

Pharmacologically, Mg inhibits intracellular calcium influx via endogenous calcium 

channels (Iseri & French, 1984) and blocks the NMDA receptors of the brain, which are 

involved pathogenically in multiple disease conditions. Experiments demonstrate a role of 

glutamate release by PLY in producing synaptic dysfunction (Wippel et al., 2013). We have 

shown before that the NMDA inhibition by MK-801 and AP5 does not alter the tissue 

swelling and astrocyte remodelling induced by PLY (Hupp et al., 2012). Indeed, Mg inhibited 

the decrease of PSD95 in the brains of animals with pneumococcal meningitis here, as the 

antagonising effect may be attributed both to the antagonised NMDA signalling and to the 

delayed PLY effect, but only regarding synaptic loss and not brain swelling. Apoptotic 

neuronal injury in meningitis (judged by active caspase-3 staining in CA2 area of the 

hippocampus and in the neocortex) was not significantly altered, which can be explained with 

the nature of the mouse model we used – all mice die without antibiotic treatment within 72 
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h, and some researchers consider it not sensitive enough (Liechti, Grandgirard & Leib, 2015). 

On the other hand, this model is more reproducible and the groups are clinically more 

homogenous, which allows for smaller experimental groups and more reliable statistics. The 

important finding here, however, was that Mg treatment prolonged the survival of infected 

animals without antibiotic treatment. Considering the anti-oedematous effect of Mg against 

PLY and the fact that brain oedema is the major cause of mortality in young adults with 

meningitis (Koedel, Scheld & Pfister, 2002), we believe that the enhanced survival is mostly 

a consequence of the reduction of brain swelling.  

Calcium influx in cells in response to PLY exposure has been already demonstrated 

(Stringaris et al., 2002; Wippel et al., 2011). One can speculate that Mg acts as a blocker of 

the toxin-mediated calcium influx via pores, as it does so in multiple tissues by blocking 

endogenous calcium channels (Iseri & French, 1984). Here, however, we would expect 

certain changes in the conductance profile of PLY by Mg in black lipid membranes (even in 

the absence of calcium (Neuhaus & Cachelin, 1990)) that we did not observe.  

In considering the therapeutic application of Mg, some authors have noted the 

variable pharmacological delivery of Mg to the brain (Sun, Kosugi, Kawakami, Piao, 

Hashimoto & Oyanagi, 2009), which does not always correspond to the serum levels after 

peripheral application. We suggest that this variability might explain the lack of a protective 

effect against PLY-induced oedema in some of the animals (3 out of 9). In the case of full-

scale bacterial meningitis, however, the breakdown of the blood-brain barrier may prove 

useful by facilitating the delivery of Mg into the brain.  

In summary, we demonstrate that Mg, a widely and safely used drug, could be an 

effective adjuvant therapeutic approach for pneumococcal meningitis together with other 

established therapies. To our knowledge, this is the first example of a clinically applicable 

compound that is capable of inhibiting, in therapeutic doses, the deleterious effects of a 

cholesterol-dependent cytolysin. Our results encourage the use of MgCl2 as an adjunct to 

antibiotic treatment in an appropriate animal model and, when positive, followed by a clinical 

study in patients with bacterial meningitis.  
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Figure 1. Ex vivo inhibition of PLY-induced swelling by magnesium chloride 

(Mg). A. Relative density (lower density indicates higher water content and swelling) of brain 

slices after 6 h incubation without treatment (mock), with exposure to 4 HU/ml PLY (PLY), 

treatment with 2 mM Mg only (Mg) or combined exposure to PLY and Mg (n=6 independent 

experiments). B. Mg dose-dependent inhibition of rat brain swelling after 6 h co-exposure of 

4 HU/ml PLY (n=5 independent experiments). C. Effect of 2 mM Mg to 4 HU/ml PLY on 

penetration of dextran-TRITC in rat brain slices (n=5 independent experiments). 
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Figure 2. Attenuation of brain swelling by different Mg application schedules. A. 

Schematic diagram of the different modes of Mg application (left). Inhibition of PLY-

induced oedema by 4 HU/ml for 6 h by simultaneous incubation with 2 mM Mg with 1 h Mg 

pre-incubation of the slices (PLY+Mg) and without slice pre-incubation (PLY & Mg). Pre-

incubation of the slices with Mg for 1 h and removal before adding PLY (MgPLY) did not 

alter toxin-triggered oedema (n=5 independent experiments). B. Partial inhibition of rat brain 

slice swelling by pre-incubation of PLY with 2 mM Mg for 1 h, followed by treatment of 

slices in normal medium without extra Mg with 4 HU/ml PLY for 6 h (n=5 independent 

experiments).  
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Figure 3. Mechanisms of modulation of PLY properties by Mg. A. The presence of 

Mg does not inhibit toxin binding to mouse glial cells (Western blot) 15 min after challenge 

with 4 HU/ml (4 independent experiments). B. The conductance profile of PLY in a black 

lipid bilayer demonstrates an unchanged conductance pattern that is independent of the Mg 

concentration. The number of measured events is as follows: mock – 130 events, 2 mM Mg – 
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330 events, 4 mM – 127 events with peak conductance for mock at 25 nS, for 2 mM Mg at 

20-25 nS and for 4 mM Mg at 25 nS. C. Live-cell imaging analysis of mouse glial cell 

membrane permeabilisation (as judged by propidium iodide (PI) staining) by 4 HU/ml PLY 

reveals delayed permeabilisation and diminished number of permeabilised cells during 

treatment with 2 mM Mg. The curves are extrapolated beyond 120 min using non-linear 

regression curves fitted with one-phase exponential association (n=5 independent 

experiments). D. Increased half-time of PLY permeabilisation during treatment with 2 mM 

Mg (n=5 independent experiments). E. Diminished permeabilisation at the plateau of the 

regression curve in the presence of 2 mM Mg treatment (n=5 independent experiments). F. 

Diminished LDH release by Mg at 60 min after PLY challenge, followed by equalized 

release at 6 h (n=5 independent experiments).  
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Figure 4. Effect of Mg on PLY brain oedema model in infant rats. The amount of 

Evans Blue (expressed as mm
2
 after filter paper absorption) displaced out of the intracranial 

space (as a marker of elevated intracranial pressure) at 6 h after treatment with PLY (see 

Methods) in rats with or without 500 mg/kg ip MgCl2 application at the beginning of the 

experiment reveals ameliorated intracranial pressure increase by Mg. The intracranial 

pressure of the PLY-treated animals is significantly higher compared with the mock and 

PLY+Mg groups. Graph presents mean as well.    
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Figure 5. Effect of Mg treatment in mice with experimental S. pneumoniae D39 

meningitis. A. S. pneumoniae D39 concentrations (as colony-forming units, CFU) in blood, 

cerebellum and spleen homogenates after 36 h demonstrated comparable growth in infected 

mice treated ip with 0.45% NaCl (Mock) or treated ip with MgCl2 (Mg). B. Relative 

fluorescent intensity measurement of the PSD95 immunofluorescence in layers 1-3 of the 

neocortex at the level of the postcentral gyrus (Mock (n=4 animals): NaCl-injected and NaCl-

treated group; D39 (n=19 animals): Spn D39-infected and NaCl-treated group; D39 + Mg 

(n=18 animals): Spn D39-infected and MgCl2-treated group; Mg (n=3 animals): NaCl-

injected and MgCl2-treated group) and corresponding fluorescent images (cyan arrows 

indicate staining-negative nuclear regions; green arrows – cortical surface; green lines limit 

the region of interest, including layer I and partially layer II; schematic diagram above 

indicates the position of the imaged fragment). Scale bar: 20 µm. C. Clinical score (0 = no 

apparent behavioural abnormality; 1, moderate lethargy; 2 = severe lethargy; 3 = unable to 

walk; 4 = dead) of the animals. Mock and Mg controls demonstrate score of 0 (not included 

in the graph, overlap with axis). For statistical analysis, the area under the curve is calculated 

and compared (see Methods). D. Survival curves of MgCl2 (Mg, n=18) or NaCl-treated 
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(Mock, n=19) infected animals. All mock and Mg controls demonstrate 100% survival at 36 h 

(not included in the graph, overlap of multiple lines). 
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List of Hyperlinks for Crosschecking 

Magnesium - 

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=708 

 


