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Abstract. Railway sleepers (also called ‘railroad tie’ in North America) embedded in ballasted 

railway tracks are a main part of railway track structures. Its important role is to transfer the 

loads evenly from the rails to a wider area of ballast bed and to secure rail gauge and enable 

safe passages of rolling stocks. By nature, railway infrastructure is nonlinear, evidenced by its 

behaviours, geometry and alignment, wheel-rail contact and operational parameters such as 

tractive efforts. Based on our critical review, the dynamic behaviour of railway sleepers has not 

been fully investigated, especially when the sleepers are deteriorated by excessive wears. In 

fact, the ballast angularity causes differential abrasions on the soffit or bottom surface of 

sleepers (especially at railseat zone). Furthermore, in sharp curves and rapid gradient change, 

longitudinal and lateral dynamics of rails increase the likelihood of railseat abrasions in 

concrete sleepers due to the unbalanced loading conditions. This paper presents a structural 

capacity of concrete sleepers under dynamic transient loading. The modified compression field 

theory for ultimate strength design of concrete sleepers under impact loading will be 

highlighted in this study. The influences of surface abrasions, including surface abrasion and 

soffit abrasion, on the dynamic behaviour of prestressed concrete sleepers, are firstly 

highlighted. The outcome of this study will improve the rail maintenance and inspection 

criteria in order to establish appropriate and sensible remote track condition monitoring 

network in practice. Moreover, this study will also improve the understanding of the 

fundamental dynamic behaviour of prestressed concrete sleepers with surface abrasions. The 

insight into these behaviours will not only improve safety and reliability of railway 

infrastructure but will enhance the structural safety of other concrete structures. 

1. Introduction 

Railway sleepers (also called ‘railroad tie’ in North America) embedded in ballasted railway tracks are 

laid to support the rails. Notably, railway prestressed concrete sleepers have been used in railway 

industry for over 50 years [1-5]. The sleepers can be typically made of timber, concrete, steel or other 

engineered materials [6]. They have been systemically introduced to railway industry for many 

decades ago and currently are introduced in almost every railway network in the world. The main 

duties of sleepers are: (a) to transmit the wheel load from the rail foot to the underlying ballast bed, (b) 

to hold the rails at the proper gauge and alignment through the rail fastening system, (c) to maintain 

rail inclination, and (d) to restrain longitudinal, lateral, and vertical movements of the rails and the rail 



 

 

 

 

 

 

gauge for safe passages of rolling stocks. It is important to note that railway sleepers are a structural 

and safety-critical component in railway track systems [7-17].  

 Railway track structures often experience impact loading conditions due to wheel/rail interactions 

associated with abnormalities in either a wheel or a rail [18]. All static, quasi-static, and impact loads 

are very important in design and analysis of railway track and its components. Generally, dynamic 

shock loading corresponds to the frequency range from 0 to 2000 Hz due to modern track vehicles. 

The shape of impact loading varies depending on various possible sources of such loading, e.g. wheel 

flats, out-of-round wheels, wheel corrugation, short and long wavelength rail corrugation, dipped 

welds and joints, pitting, and shelling. Wheel/rail irregularities induce high dynamic impact forces 

along the rails that may greatly exceed the static wheel load. In all cases, the impact forces are 

significantly dependent on the train speed. These impulses would occur repetitively during the roll. 

Loss of contact between wheel/rail, so-called “wheel fly”, will occur if the irregularity is large enough, 

or the speed is fast enough. However, the impact force could be simplified as a shock pulse acting 

after the static wheel load is removed. For instance, the typical loading duration is about 1-10 msec, 

while the force magnitude varies between 200 kN and up to 750 kN, depending on the causes and the 

traveling speed of train [4]. Note that these actual loading conditions are different to the loading 

conditions specified in type testing methods of sleeper standards [1, 10]. This is because the type 

testing methods are commonly used for benchmarking purpose. 

Previous work revealed that most of the numerical and analytical models employed the concept of 

beam on elastic foundation where a sleeper is laid on the elastic support, acting like a series of springs. 

In practice, the lateral force is less than 20% of vertical force and the anchorage of fastening has been 

designed to take care of lateral actions [10, 19]. In fact, field measurements suggest a diverse range of 

sleeper flexural behaviors, which are largely dependent on the support condition induced by ballast 

packing and tamping [20-27]. However, it is still questionable at large whether modern ballast tamping 

process is effective and it could enable adequate symmetrical support for sleeper at railseat areas. Over 

time, ballast densification at railseats is induced by dynamic broadband behaviours and the sleeper 

mid-span comes into contact or is fully supported by ballast until the track geometry is restored by 

resurfacing activity (i.e. re-tamping) [28-30]. At railseat, the dynamic loading condition gives a high 

change that the bottom of sleeper (or called ‘soffit’) may experience aggressive abrasive force, 

wearing out the materials in the region.  

The critical literature review reveals that the dynamic behavior of railway sleepers has not been fully 

investigated, especially when the sleepers are deteriorated by excessive wears [29-33]. Most common 

wears are railseat and soffit abrasion at railseat. These deterioration mechanisms can be observed in 

the fields. Although it is clear that the railway sleepers can experience dynamic lateral wears, such the 

aspect has never been fully investigated. This paper is the world first to investigate and present an 

advanced railway concrete sleeper modelling capable of parametric analysis into the effect of surface 

abrasion on the dynamic behaviours of railway sleepers. The emphasis of this study has been placed 

on the impact capacity of the crossties with abrasion. The insight into these behaviours will not only 

improve safety and reliability of railway infrastructure but will enhance the structural safety of other 

concrete structures. 

2. Prediction for ultimate moment capacity 

2.1 Modified compression field theory 

In this study, the moment-curvature has been used to represent the capacity of prestressed concrete 

sleepers. The moment capacities are predicted by the modified compression field theory using 

Response-2000 [37]. This theory is capable of predicting the behaviour of reinforced concrete 

subjected to in-plane shear and normal stresses. The concrete stresses in principal directions along 

with prestressing steel are considered in only axial direction and the uncracked portion will carry on to 

sustain a load in the analysis [38]. 

 



 

 

 

 

 

 

2.2 Effect of strain and loading rates 

Based on the assumption of perfect bond between prestressing wires and concrete, the dynamic 

material properties of concrete and prestressing wires can be determined as follows [39]. 

Concrete: 

𝑓𝑐,𝑑𝑦𝑛
′

𝑓𝑐,𝑠𝑡
′ = 1.49 + 0.268 log10 𝜀̇ + 0.035[log10 𝜀̇]

2      (1) 

Prestreesing wires: 

 
𝑓𝑦,𝑑𝑦𝑛

𝑓𝑦,𝑠𝑡
= 100.38 log10 �̇�

−0.258
+ 0.993        (2) 

Where  𝑓𝑦,𝑑𝑦𝑛 is the dynamic upper yield point stress, 𝑓𝑐,𝑠𝑡
′  is the static upper yield point stress of 

prestressing wires (about 0.84 times proof stress), and 𝜀̇ is the strain rate in tendon. 

3. Material properties 

In this study, there are 2 positions of prestressed concrete sleepers. As shown in figure 1, the 

prestressed concrete sleepers in normal position and inverse position are considered to evaluate the 

positive and negative ultimate moment capacities, respectively.  

 

 
a) 

 
b) 

Figure 1. Prestressed concrete sleepers in a) Normal position b) Inverse position 

3.1 Static  

The dimension and shape of prestressed concrete sleepers are shown in figure 1. The high strength 

concrete was used with the design cylinder compressive strength of 55 MPa. The stress-strain curve of 

concrete derived by Vechio and Collin [38] was used in this study, as shown in figure 2. The 22- 

prestressing steels used were the high ultimate strength with rupture ultimate strength of 1860 MPa. 

The initial elastic modulus of prestressing steel was 20000MPa. 



 

 

 

 

 

 

 
(a) 

 
(b) 

Figure 2. Stress-strain curve of a) concrete b) steel 

3.2 Dynamic 

The prediction of moment capacity has been carried out using the data obtained from the previous 

experiments [40]. It should be noted that the average total duration of impact forces is about 4 ms. In 

this study, the strain rate of concrete is approximately about 2. It is well known that the dynamic 

ultimate strain of prestressing steel is about 20x10
3
, and the total duration of impact force influencing 

the steel fibre is roughly about 4+2=6. This is because the impact stress wave delays during the stress 

propagation and will be impeded through concrete [39].  Using Equation (1) and (2), the dynamic 

strength of materials can be obtained as the input for the sectional analysis.  

4. Results and discussions 

In general, the first stage of the behaviour of the material is elastic range when there is no damage in 

the material and the applied external force is less than the proportional limit. Then, when the moment 

reaches the proportional yield point, the nonlinear behaviour takes place till the member reaches the 

ultimate capacity. After that, the curve drops rapidly due to the crushing and spalling of concrete. 

The effect of abrasion in the prestressed concrete sleepers is evaluated by the moment capacity. The 

obtained results indicate that the abrasion in prestressed concrete sleepers can affect the moment 

capacity due to the reduction in cross-sectional area.  

Using the material properties from section 3, the ultimate moment capacities of worn prestressed 

concrete sleepers under static loading and impact loading can be illustrated in figure 3 and 4 for 

railseat abrasion and soffit abrasion, respectively. 

4.1 Railseat Abrasion 

In this study, the depth of prestressed concrete sleepers is reduced by 10 cm, 20 cm, and 30 cm, 

respectively, at the top surface. As illustrated in figure 3, it exhibits that railseats abrasions play a 

dominant role on positive moment capacity of the worn sleepers, whilst negative moment capacity 

does not have similar effects. This indicates moment capacities of worn sleepers are about  65% of 

positive moment capacities of a full cross-sectional area by 30 cm increasing in worn depth of 

concrete sleepers, as shown in figure 5a. 

0

10

20

30

40

50

60

0 1 2 3 4

S
tr

es
s 

(M
P

a)
 

Strain mm/m 

0

500

1000

1500

2000

0 20 40 60

S
tr

es
s 

(M
P

a)
 

Strain mm/m 



 

 

 

 

 

 

 
a) 

 
b) 

 
c) d) 

Figure 3. a) Positive moment curvature of worn sleepers due to railseat abrasion under static loading 

b) Negative moment curvature of worn sleepers due to railseat abrasion under static loading 

c) Positive moment curvature of worn sleepers due to railseat abrasion under impact loading 

d) Negative moment curvature of worn sleepers due to railseat abrasion under impact loading 

4.2 Soffit Abrasion 

The depth of prestressed concrete sleepers is reduced by 15 cm, 30 cm, and 45 cm, respectively, at the 

bottom surface. It is observed that the depth is reduced until the position of lowest layer of prestressing 

steel. It is assumed that the steel still locate in the bottom position. 
The moment capacities of soffit abrasion can be demonstrated in figure 4. It it exhibits that soffit 

abrasion play a little role on positive moment capacities of the worn sleepers. However, sleepers in 

inverse position, the negative moment capacities of sleepers can be slightly clearer. It should be noted 

that about moment capacities of worn sleepers are 42% and 47% for static and impact loading, 

respectively, of negative moment capacities of full cross-sectional area by 45 cm increasing in worn 

depth of concrete sleepers, as illustrated in figure 5b. 
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a) 
 

b) 

 
c) 

 
d) 

Figure 4. a) Positive moment curvature of worn sleepers due to soffit abrasion under static loading 

b) Negative moment curvature of worn sleepers due to soffit abrasion under static loading 

c) Positive moment curvature of worn sleepers due to soffit abrasion under impact loading 

d) Negative moment curvature of worn sleepers due to soffit abrasion under impact loading 
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b) 

Figure 5. Mu/Muf worn depth relationship under static and impact loading due to a) Railseat abrasion b) Soffit 

abrasion 

In addition, the combination of railseat and soffit abrasion is also considered. As shown in Table 1. It 

can be clearly seen that railseat abrasion does not affect the positive moment capacity of prestressed 

concrete sleepers. Also, in term of negative moment capacity, It is clear that the sleepers are not 

effected by soffit abrasion, although, the railway sleepers can experience both surface abrasions. 

Table 1. Ultimate moment capacities of prestressed concrete sleepers due to surface abrasion 

No 
Worn depth (cm) Static loading Impact loading 

Railseat Soffit Positive Negative Positive Negative 

1 0 0 59.3 47.5 72.0 58.2 

2 10 0 52.5 47.4 64.4 58.0 

3 20 0 45.8 47.3 56.9 57.8 

4 30 0 39.4 47.0 49.7 57.5 

5 0 15 59.0 37.4 71.5 47.1 

6 0 30 58.5 28.1 71.0 36.7 

7 0 45 58.0 19.8 70.4 27.5 

8 10 15 52.1 37.3 63.9 46.8 

9 10 30 51.7 28.0 63.3 36.5 

10 10 45 51.3 19.7 62.8 27.3 

11 20 15 45.4 37.2 56.5 46.6 

12 20 30 45.1 27.9 56.0 36.3 

13 20 45 44.6 19.7 55.4 27.1 

14 30 15 39.0 37.0 49.3 46.3 

15 30 30 38.7 27.7 48.9 36.1 

16 30 45 38.3 19.5 48.4 27.0 

5. Conclusions 

This study is the world first to investigate the effect of surface abrasion on the impact capacity of 

railway prestressed concrete sleepers. It exhibits that the surface abrasion undermines strength and 

impact capacity of railway concrete sleepers.  Based on a critical literature review, it is found that 

previous research work in open literature has never considered the degradation of railway concrete 

sleepers in dynamic analysis. In fact, the ballast angularity causes differential abrasions on the soffit or 

bottom surface of sleepers (especially at railseat zone). Furthermore, in sharp curves and rapid 
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gradient change, longitudinal and lateral dynamics of rails increase the likelihood of railseat abrasions 

in concrete sleepers due to the unbalanced loading conditions. Therefore, it is essentially important for 

track and rail engineers to assure that the modification or retrofitting of concrete sleepers at 

construction sites is carried out in a proper manner. By the results obtained from these unprecedented 

studies, the railseat abrasion can reduce the positive moment capacity of the sleepers. Also, it is found 

that the soffit abrasion plays a critical role on negative moment capacity reduction. The insight into the 

impact behaviour of the concrete sleepers with surface abrasion will enable safer built environments in 

railway corridor, especially for concrete sleepers whose structural inspection is very difficult in 

practice. 
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