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Abstract 
Capital Market-Based financing for Small and Medium-sized Enterprises (SMEs) is increasingly 

viewed as complementary to traditional bank-based financing for SMEs. In response, policymakers 

are recognising the need for better access of SMEs to capital markets and are making efforts to 

remove major impediments to their participation in capital markets. Thus, SMEs listed on stock 

exchanges benefit from better access to finance and reduced information asymmetry than their 

unlisted counterparts. This in turn shall lead to lower failure likelihood of listed SMEs. In this study, 

we empirically test this hypothesis and report that listed SMEs enjoy a lower likelihood of financial 

distress and bankruptcy than their unlisted counterparts. Although factors affecting financial distress 

of both listed and unlisted SMEs are almost identical, Average Marginal Effects of respective factors 

are strikingly higher for their unlisted counterparts. This suggests a higher vulnerability of unlisted 

SMEs due to changes in financial ratios. Due to the extremely low number of legal bankruptcy events, 

our hypothesis finds weak support when bankruptcy is used as the dependent variable in the 

regression analysis. Broadly, our findings support the view that stock exchange listing can relieve 

SMEs from external financing constraints, thus reducing their failure likelihood.  
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1. Introduction 

Access to finance for Small and Medium-sized Enterprises (SMEs) is a perennial 

problem for policy makers, and thus an area worthy of scholarly debate. For several reasons, 

access to external finance is unanimously considered to be the most important factor 

hindering SMEs growth, development (e.g. Beck and Demirguc-Kunt, 2006; Ardic et al., 

2012), and potentially their failure. Several reasons such as insufficient collateral, poor 

creditworthiness, short/no credit history, underdeveloped bank-borrower relationships, high 

transaction costs, and information asymmetry, contribute toward the difficulty that they face 

in obtaining commercial bank financing, especially long-term borrowings. This problem 

became more severe with the unfolding of the financial crisis toward the end of 2007. During 

the crisis period, SMEs suffered from severe credit constraints and many had to rely on trade 

credits to meet their financing needs (Carbó‐Valverde et al., 2016). Belgian SMEs with a 

large proportion of long-term debt maturing at the beginning of the crisis faced difficulties in 

renewing their loans due to the negative credit supply shock, and thus were left underinvested 

(Vermoesen et al., 2013). This crisis also had a significant detrimental impact on the ability 

of innovative SMEs to access external finance (Lee et al., 2015). Further, empirical evidence 

also suggests that the increasing market power of banks leads to higher credit constraints for 

SMEs (Love et al., 2015; Ryan et al., 2014), and thus a complementary source to traditional 

bank-based financing for SMEs might be an appropriate alternative choice. 

Considering the limited use of alternative sources of financing by SMEs (Berger and 

Udell, 2006), efforts are being made to understand the factors affecting their participation in 

capital markets (see Bongini et al., 2017) and make their financial structure less dependent on 

bank financing (see OECD, 2015). This could be particularly relieving in conservative 

economic scenarios when bank lending decisions become increasingly selective due to banks’ 

own balance sheet constraints, and the rising default likelihood of its borrowers (European 

Central Bank, 2014). Although trade credit, factoring and leasing might be viewed as closer 

substitutes to bank lending (Ferrando and Mavrakis, 2017), these alternative sources are 

primarily dependent upon their level of business activity, which gets adversely affected 

during economic downturns, and thus leads to constrained access to such alternatives.   

While stock exchange listing could relieve them from financing constraints (Kim, 

1999), listing might be difficult due to admission requirements and disclosure regulations 

(see Gao et al., 2013). This realization has led to the emergence of stock markets with relaxed 
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admission requirements and disclosure regulations specifically targeting SMEs (e.g. 

Alternative Investment Market of the London Stock Exchange). Thereby, they may relax 

their overdependence on lending institutions/banks for external financing by listing 

themselves in stock exchanges, consequently removing the financial barriers hindering their 

growth and competitiveness. This further reduces information asymmetry between firms and 

external investors, which in turn can make access to external finance easier. As a 

consequence, listed SMEs are expected to experience lower likelihood of failure than their 

unlisted counterparts. Thus, in this study we hypothesize that the financial distress and 

bankruptcy likelihood of listed SMEs are lower than their unlisted counterparts, primarily due 

to their ability to access external market-based (equity) finance.  

Considering the discussion above, we believe it is important to understand the impact 

of market-based finance on SMEs failure likelihood for several reasons. Improved 

understanding of the difference between credit risk behaviour of listed and unlisted SMEs 

shall allow for: (i) better pricing of credit risk by lending institutions; (ii) improved 

investment decisions by capital market investors; (iii) better allocation of resources by 

policymakers and regulators in developing capital markets targeted toward encouraging 

participation from small companies; and (iv) reduced constraints to external financing for 

SMEs. Thus we contribute to the fast growing literature on SMEs failure and their financing 

constraints (e.g. Bassetto and Kalatzis, 2011) by investigating whether Stock Exchange 

listing reduces SMEs likelihood of financial distress and bankruptcy. In particular we 

examine if there are significant differences in the determinants of financial distress and 

bankruptcy of listed and unlisted SMEs. 

We empirically test our hypothesis using a sample of listed and unlisted SMEs in the 

United States covering a sampling period between 1985 and 2016. Firm level annual 

accounting information and monthly/daily stock prices data are sourced from the Compustat 

database. Considering the suggestion by Gupta et al. (2017), we use panel logistic regression 

to perform univariate and multivariate one-year financial distress and bankruptcy prediction 

models for listed and unlisted SMEs respectively. Twelve financial ratios with established 

reputations for financial distress/bankruptcy prediction in earlier studies are used as 

accounting covariates (see among others Altman and Sabato, 2007; Gupta et al., 2017) along 

with a number of appropriate control variables. In order to understand any complementary 

explanatory power of market variables in explaining financial distress and bankruptcy of 
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listed SMEs, we also estimate our regression models supplementing five market variables in 

line with suggestions from Shumway (2001) and Campbell et al., (2008). Our definition of 

financial distress based on firms’ financial performance is adapted from Keasey et al. (2015), 

and firms that filed for legal bankruptcy under Chapter 7/11 are considered to be bankrupt.  

Based on our empirical findings, we report significant differences between failure 

hazards of listed and unlisted SMEs. At any given age, the failure (survival) rate of unlisted 

SMEs is significantly higher (lower) than their listed counterparts. Although an identical set 

of financial ratios are significant in discriminating between financially distressed and 

censored groups of listed and unlisted SMEs in univariate analysis, we observe significant 

difference in the weights of regression coefficients of respective covariates of listed and 

unlisted SMEs. Average Marginal Effects (AME) of respective covariates for the unlisted 

group of firms is strikingly higher than for their listed counterparts, suggesting higher 

vulnerability of unlisted firms due to changes in their financial position. However, univariate 

regression estimates using bankruptcy as a dependent variable reveal striking differences in 

the factors affecting the bankruptcy likelihood of listed and unlisted SMEs. Although all 

twelve accounting covariates are significant in predicting bankruptcy for the unlisted group of 

SMEs, only seven are significant predictors for listed SMEs. Moreover, values of AMEs for 

mutually significant covariates are much lower for listed firms. This may be explained by the 

fact that listed firms are discounted much earlier than their unlisted counterparts due to their 

lower information asymmetry. These univariate regression results support our hypothesis that 

listing reduces SMEs risk of failure; as a consequence listed SMEs shall be less vulnerable to 

financial distress and bankruptcy risk than their unlisted counterparts. 

Results obtained in our multivariate analysis are also broadly consistent with our 

univariate findings. We adopt the multivariate model building strategy suggested by Gupta et 

al., (2017) and find empirical evidence in support of our hypothesis. Out of twelve significant 

covariates in the univariate analysis, we find nine covariates are significant in predicting the 

financial distress likelihood of listed SMEs over the one-year period, with significant values 

of AME and excellent within-sample and out-of-sample classification performance. 

Multivariate models developed supplementing significant market variables reflects the 

complementary nature of market information in predicting financial distress of listed SMEs. 

Broadly, the significance of respective accounting covariates remains unchanged, and four 

market variables enter significantly into the multivariate model. However, our primary 

interest lies in the comparative performance between multivariate models developed using 
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accounting ratios for listed and unlisted SMEs. Out of twelve highly significant covariates in 

univariate analysis, eight enter significantly into the multivariate setup. We also find few 

differences in the factors affecting financial distress likelihood of listed and unlisted SMEs. 

Comparison of AMEs of respective accounting covariates further reinforces our hypothesis. 

AME for all accounting covariates are significantly higher for unlisted SMEs than their listed 

counterparts, as observed in the univariate analysis. This suggests that unlisted SMEs are 

more vulnerable to changing financial positions, unlike listed SMEs. 

However, our multivariate results are not appropriately reliable for regression models 

estimated using bankruptcy as the dependent variable. This is due to an extremely low 

number of bankruptcy events (28 for listed SMEs with accounting variables, and 21 for listed 

SMEs with accounting and market variables) in our sample. Only two accounting covariates 

are significant with mostly insignificant values of control and market variables. We 

understand that this is a serious drawback of this study, but the appropriate solution to this 

problem would require a sample with greater frequency of bankruptcy events. However, for 

the unlisted group of firms, we have 247 bankruptcy events and the multivariate model 

developed looks much more reasonable than its listed counterpart. Out of twelve accounting 

variables, five enter significantly into the multivariate model with significant control 

variables. 

The remainder of the paper is structured in the following way: the next section presents 

discussion on our sample, covariates, and descriptive statistics; Section 3 outlines our 

empirical methods, followed by discussion on univariate and multivariate estimates; and 

Section 4 concludes our study. 

2. Sample, Covariates and Descriptive Statistics 

This section provides discussion related to the source and use of dataset, selection of 

explanatory variables and their summary statistics. 

2.1 Sample Description 

We sourced firm-level accounting and market information for the United States SMEs 

from the Compustat database. We consider a firm a SME if it reports less than 250 
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employees
1
. Considering significant changes that were introduced in the Bankruptcy Reform 

Act of 1978, our sampling period runs from 1985 until 2016. We do this to avoid any 

structural bias that may arise in our estimations due to different bankruptcy regimes. 

Furthermore, firms with Standard Industrial Classification (SIC) codes from 6,000 through 

6,999 (financial firms), and 4900 through 4949 (regulated utilities), are excluded from the 

sample (see Table 1). We also exclude subsidiary firms (if ‘stock ownership code’ 

(Compustat data item ‘stko’) is ‘1’ (subsidiary of a publicly traded company) or ‘2’ 

(subsidiary of a company that is not publicly traded) in the Compustat database). We consider 

a SME as listed if it is publicly traded in any of the three popular exchanges, i.e. NYSE, 

AMEX and NASDAQ (Compustat data item ‘exchg’ is 11 (NYSE), 12 (AMEX) or 14 

(NASDAQ)) and unlisted otherwise (Compustat data item ‘exchg’ is 1 (non-traded 

company), 13 (OTC Bulletin Board) or 19 (Other OTC)).  

[Insert Table 1 Here] 

Table 2 reports annual rates of financial distress and bankruptcy of listed and unlisted 

SMEs respectively. As we see in Table 2, for any given year the rate of financial distress is 

much higher for unlisted SMEs than for their listed counterparts. This phenomenon is also 

persistent for our sample of bankrupt firms. This provides preliminary support to our 

hypothesis that listed SMEs face lower financial constraints, and this transmits into their 

higher survival or lower distress rate. The number of firms entering the state of financial 

distress in any given year is sufficiently large to establish the empirical validation, however 

lower annual bankruptcy rates raise scepticism. Before the year 2000, numbers of 

bankruptcies were at-least in double digits, with a maximum of 28 for the unlisted group of 

firms (see columns 11, 12 and 13 of Table 2). However there is barely any bankruptcy filing 

in year 2000 and onwards. This problem of extremely low or no bankruptcy filing is more 

                                                 
1
 In line with several existing studies (see among others Beck and Demirguc-Kunt, 2006; Carbó‐Valverde et al., 

2016), we follow the European Commission’s definition of SMEs and define SMEs as those firms with fewer 

than 250 employees; micro firms with fewer than 10 employees; small firms with fewer than 50 but greater than 

9 employees; and medium firms with fewer than 250 but greater than 49 employees. We are aware of the fact 

that the US Small Business Administration (SBA) defines SMEs differently. Broadly, it considers a firm a SME 

if it has less than 500 employees and an annual turnover of less than $7.5 million. However, their precise 

definition varies across industrial sectors to reflect industry differences. For instance, a mining firm with less 

than 1000 employees, a general building and heavy construction firm with annual turnover of less than $36.5 

million, and a manufacturing firm with less than 1500 employees, are all classified as small businesses as per 

SBA. This may not be a convenient workable definition from the lender’s point of view. Many of these firms are 

too big to be called SMEs in the real sense, despite being classified as small firms as per SBA. They do this 

primarily to determine the eligibility of a firm for SBA financial assistance, or for its other programs. Thus we 

follow a more appropriate and popular definition of SMEs provided by the European Union for this study. The 

most popular study on predicting bankruptcy of US SMEs by Altman and Sabato (2007) also follows the 

European Union’s definition of SMEs.  
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severe for our group of listed SMEs (see columns 8, 9 and 10 of Table 2). This is expected to 

have deterrent impact on our regression analysis; however computations presented in Table 2 

are clearly in favour of our hypothesis.  

[Insert Table 2 Here] 

2.2 Covariates 

Dependent Variables: This study employs two binary dependent variables (Financial Distress 

and Bankruptcy) to establish the empirical validation. A firm which files for legal bankruptcy 

under Chapter 7/11 is considered to be Bankrupt with value of the dependent variable 

equalling to 1 and 0 otherwise. In this study we also use financial distress as a dependent 

variable beside legal bankruptcy, with the presumption that it is the primary reason behind 

bankruptcy and always precedes the bankruptcy filing event. Also, bankruptcy filings are 

becoming an increasingly rare phenomenon; this might be due to active bankruptcy resolution 

support provided by the government, and an increasing number of out of court settlements 

(see Blazy et al., 2013). Thus a mechanism to identify distressed firms is operationally more 

relevant than waiting until a firm files for bankruptcy as the last resort. Further, filing for 

legal bankruptcy is the least efficient exit strategy for SMEs (Balcaen et al., 2012) and 

distress definitions based on bankruptcy laws are inefficient in comparison to distress 

definitions based on firms’ financial performance (see Gupta et al., 2017). Thus, following 

Keasey et al. (2015), a SME experiencing financial distress is defined as one that satisfies the 

following: (i) its expenses exceed earnings during two consecutive years; (ii) its total debt 

exceeds net worth during those two years in (i); and (iii) it records negative growth in net 

worth during the same consecutive periods in (i) and (ii). Additionally, a firm is also recorded 

as financially distressed in the year immediately following these distress events. 

Independent Variables: Our empirical analysis employs financial ratios that have established 

reputations as significant predictors of SMEs default risk. The adopted accounting covariates 

(see Panel A of Table 3) assess firms’ performance on liquidity, solvency, activity, 

profitability and interest coverage dimensions. Specifically, we incorporate covariates from 

popular studies on SMEs bankruptcy such as Altman and Sabato (2007),  Lin et al. (2012),  

and Gupta et al. (2017).
2
 To restrict the influence of outliers, the range of all accounting 

variables are restricted to within their 5th and 95th percentile values. For our sample of listed 

                                                 
2
 Altman et al. (2010) and Gupta et al. (2017) provide detailed discussions of the covariates selected as well as 

their relationship with the probability of a default. 



P A G E  | 8                                                                                                                              

 

SMEs, we also estimate our regression models supplementing market variables (see Panel B 

of Table 3) suggested by Shumway (2001) and Campbell et al. (2008).  

Control Variables:  As suggested by Gupta et al. (2015) we control for the diversity between 

micro, small and medium firms by employing dummy variables for micro (fewer than 10 

employees) and small (fewer than 50 but greater than 9 employees) firms in all our 

multivariate models. To control the volatility in the macroeconomic environment affecting 

specific industrial sectors, we calculate an additional measure of industry risk (RISK) as the 

failure rate (number of firms experiencing the event of interest in the respective industrial 

sector in a given year/total number of firms in that industrial sector in that year) in each of the 

seven industrial sectors in a given year. Higher values indicate a higher risk of default, and 

vice versa. The risks of financial distress and bankruptcy are denoted by RISKFD and RISKB 

respectively (see Panel C of Table 3). To account for any duration dependence due to firms’ 

age, we employ natural logarithm of firms’ annual age (AGE) in our multivariate models. We 

proxy a firm’s age as the earliest year for which annual financial information is available for 

that firm in the Compustat database.  

[Insert Table 3 Here] 

2.3 Descriptive Statistics 

Table 4 reports key descriptive measures of our 12 accounting variables and 5 market 

variables. Measures are reported for listed and unlisted SMEs separately for respective 

samples of financially distressed and bankrupt groups of firms. Initial inspection of 

descriptive statistics is useful in evaluating the variability of covariates and potential bias that 

may arise in the multivariate setup due to unexpected extreme variations. We expect the 

mean of covariates that exhibit a positive relationship with the failure risk to be higher for the 

distressed or bankrupt group than for the healthy or censored group (e.g. see the variable 

TLTA in Table 4) of firms. On the contrary, the mean of covariates that shows a negative 

relationship with the failure risk is expected to be lower for the default group than for their 

healthy counterparts (e.g. see variable CETL in Table 3). Mean, median and standard 

deviation of all covariates are as we expect for the respective group of listed and unlisted 

SMEs, except CTA (for listed financially distressed SMEs), MB (for listed financially 

distressed SMEs), TCTA (for listed Bankrupt SMEs), and STDEBV. Their mean value for 

the distressed/bankrupt group is contrary to our expectation.  A look at the mean and median 
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values of respective covariates reveals that most of the accounting variables show skewed 

distribution, with STDEBV and TTA exhibiting extreme skewness. In comparison, the mean 

and median values of market variables are sufficiently close (except MB) for both financially 

distressed and bankrupt group of SMEs. When interpreting these distributions, it is important 

to keep in mind that we weight every firm-year observation equally. This has two important 

implications. First, these distributions might be dominated by the behaviour of relatively 

small/large companies. Second, these distributions reflect the influence of both cross-

sectional and time-series variation. However, this should not be a problem in our regression 

analysis, as our methodology does not require any normality or linear assumption.  

[Insert Table 4 Here] 

 Strong correlation among explanatory variables might raise serious multicollinearity 

issues in our multivariate models. The correlation matrix presented in Table 5 provides 

evidence that some of the covariates are strongly correlated with each other. For example, 

FETA exhibits moderate to strong correlation with six other covariates. This is also the case 

with TCTA and LCR. RETA shows strong positive correlation of approximately 0.72 with 

EBITDATA, supporting the expectation that SMEs primarily rely on internal sources for 

their funding requirements. In order to address this issue of multicollinearity effectively while 

developing multivariate models, we follow the suggestion by Gupta et al. (2017) and use a 

selection procedure of covariates based on their Average Marginal Effects, obtained from the 

univariate analysis. Among the market variables, only RSIZE is strongly correlated with 

PRICE, and they all exhibit low or moderate correlation with accounting variables. 

Moreover, casual observation of mean of respective covariates for listed and unlisted group 

of SMEs reveal striking differences in their values. Thus we are initially motivated to believe 

that weights/significance of respective regression coefficients might be different for listed 

and unlisted SMEs.     

 [Insert Table 5 Here] 

3. Empirical Methods and Findings 

In this section we explain the choice of statistical model that we use to perform 

regression analysis, followed by results and discussion on univariate regression analysis of 
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respective covariates. Finally, we report and discuss multivariate regression results for our 

samples of listed and unlisted SMEs.  

3.1 Panel Logistic Regression 

Although we see a significant rise in the popularity of hazard models in modelling 

bankruptcy or financial distress events, we use panel logistic regression to establish our 

empirical validation in line with the findings of Gupta et al. (2017). They argue that the 

discrete-time hazard model with logit link is essentially a panel logistic model that controls 

for firms’ age. We therefore assume that the marginal probability of a firm’s financial distress 

or bankruptcy over the next year follows a logistic distribution that is estimated as follows: 

𝑃(𝑌𝑖𝑡 = 1) =
1

1 + exp⁡(−𝛼 − 𝛽𝑋𝑖,𝑡−1)
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1) 

where 𝑌𝑖𝑡 is the dependent variable that equals one if the firm is in financial distress/bankrupt 

in the year t, and zero otherwise; and 𝑋𝑖,𝑡−1 is a vector of explanatory variables known at the 

end of the previous year. To capture any duration dependency, we use the natural logarithm 

of firms’ annual age (AGE) as a control variable in our multivariate models. 

3.2 Univariate Regression and Average Marginal Effects 

To understand the statistical significance and relative importance of respective 

covariates in predicting the outcome variable, we use Equation 1 to estimate univariate 

regression models for respective covariates, with financial distress and bankruptcy as 

dependent variables. In both cases the dependent variable has a binary outcome, where ‘1’ 

implies the firm has experienced the financial distress/bankruptcy event, and ‘0’ otherwise. 

Estimations are performed separately for the listed and unlisted groups of firms to understand 

whether listing has any impact on their statistical significance and Average Marginal Effects 

(AME
3
). 

                                                 
3
 In non-linear regression analysis, Marginal Effects is a useful way to examine the effect of changes in a given 

covariate on changes in the outcome variable, holding other covariates constant. These can be computed as 

marginal change (it is the partial derivative for continuous predictors) when a covariate changes by an infinitely 

small quantity and discrete change (for factor variables) when a covariate changes by a fixed quantity. Whereas, 

Average Marginal Effects (AME) of a given covariate is the average of its marginal effects computed for each 

observation at its observed value. Alternatively, AME can be interpreted as the change in the outcome (financial 

distress = 1, in our case) probabilities due to unit change in the given covariate, provided other covariates are 

held constant. See Long and Freese (2014) for detailed discussion on this topic.  
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3.2.1 Financially Distressed SMEs 

Panel A of Table 6 reports results of univariate regression models estimated using 

financial distress as the dependent variable. Columns 3 to 6 report statistics pertaining to 

listed SMEs, while columns 7 to 9 report the same for unlisted SMEs. It emerges clearly that 

all accounting covariates are highly significant in discriminating financially distressed and 

censored firms for both listed and unlisted groups of SMEs. All respective covariates also 

bear excepted signs except STDEBV for the unlisted group of SMEs. We expect the sign of 

its coefficient to be positive, but it is negative. This might be due to the lower mean of 

STDEBV for the distressed group compared with the censored ones. What is really important 

and interesting is the value of AMEs of respective covariates. Comparisons of AMEs in 

columns 6 and 9 show that AME of respective accounting covariates are strikingly different 

for listed and unlisted groups of SMEs. Specifically, AMEs of all covariates are higher for 

unlisted SMEs than their listed counterparts. This implies that, although the same set of 

accounting covariates are statistically significant in explaining financial distress for both 

listed and unlisted firms, their impact is substantially higher on the unlisted group of SMEs. 

This suggests that default probabilities of listed SMEs are less affected by unit change in the 

value of respective covariates than unlisted SMEs. Overall, unlisted SMEs seem to be more 

vulnerable to financial distress due to changes in their financial ratios compared with listed 

SMEs. This supports our hypothesis that listed SMEs are less susceptible to financial distress 

than unlisted ones. This might be due to the fact that once a firm is listed, other factors 

besides accounting ratios also play a significant role in its survival likelihood. This is 

reinforced if one looks at the statistical significance of market variables in Panel A of Table 

6. All five market variables are highly significant with their respective expected signs. 

3.2.2 Bankrupt SMEs 

Panel B of Table 6 reports univariate regression estimates obtained using bankruptcy as 

the dependent variable. Again, estimates are reported separately for listed and unlisted groups 

of SMEs. Here, results are strikingly different. Although all accounting covariates are 

significant in predicting the outcome variable for the unlisted group of SMEs, only 7 of them 

(CTA, CETL, TLTA, CAG, TCTA, FETA and FES) are significant predictors for the listed 

group of SMEs. Also, values of AMEs for mutually significant covariates are much lower for 

listed firms. This may be due to the fact that listed firms are discounted much earlier than 

their unlisted counterparts given their lower information asymmetry. Among the market 
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variables, RSIZE and MB fail to be significant, while SIGMA is weakly significant. 

Although we find support in favour of our hypothesis, our results might be biased due to the 

very low number of bankruptcy events in our sample. 

[Insert Table 6 Here] 

3.3 Multivariate Regression Analysis 

Figure 1 shows survival curves of the financially distressed and bankrupt group of firms 

estimated using the Kaplan-Meier estimator (see Cleves et al., 2010). At any given age, the 

survival curve of the listed group of SMEs is higher than their unlisted counterparts. This 

supports our hypothesis that SMEs using the capital market to access external finance enjoy 

lower levels of financial distress and bankruptcy likelihood. This is also evident from our 

results in the univariate analysis section. However, to test this hypothesis in the multivariate 

framework, we need to start with a multivariate model building strategy as we report strong 

to moderate correlation among some covariates in Table 5. We partially follow the model 

building strategy proposed by Gupta et al. (2017) to build our multivariate models. 

Specifically, considering the multicollinearity among the covariates, we introduce each 

covariate in turn into the multivariate setup based on the magnitude (sign is ignored) of their 

AME. For this, at first we rank
4
 all of the covariates found significant in the univariate 

analysis based on the absolute value of their AME (see columns 6 and 10 in Table 6), and 

then start to introduce each covariate in turn into the multivariate setup in increasing order of 

the rank of their AME. The rationale is that the higher the value of AME, the higher the 

change in the predicted probability due to unit change in the covariate. Thus a covariate with 

a higher value of AME (e.g. FETA in Table 6) is more efficient in discriminating between 

distressed and censored firms than covariates with a lower value of AME (e.g. TLTA in 

Table 6). Further, if the introduction of a covariate affects the sign
5
 of any previously added 

covariate, then that covariate is excluded from the multivariate model. This could happen due 

to multicollinearity among covariates; accordingly, their exclusion seems reasonable. 

Moreover, we believe that this method of covariate introduction while developing the 

multivariate models leaves us with the best set of covariates with expected sign of 

coefficients of respective covariates. However, this variable selection strategy is only applied 

to accounting variables. Market variables are excluded at this stage as we are initially 

                                                 
4
 Highest value gets rank ‘1’, second highest gets rank ‘2’ and so on. 

5
 Coefficients with negative sign become positive and vice versa.  
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interested in understanding the variability of accounting covariates across listed and unlisted 

groups of firms. After multivariate models for listed firms are developed, we then supplement 

those models with market variables to understand the marginal contribution that market 

variables make to the multivariate models developed using accounting ratios. We exclude 

RSIZE from our multivariate models as it shows a correlation of about 0.73 with PRICE and 

its AME is lower than AME of PRICE (see column 5 of Table 6). Additionally, we also 

employ all control variables listed in Panel C of Table 2 in all multivariate models.  

[Insert Figure 1 Here] 

The dependent variable for these models has a binary outcome with financially 

distressed/bankrupt equalling ‘1’ and ‘0’ otherwise, while independent variables are the set of 

covariates found significant in the univariate regression analysis. The final set of multivariate 

hazard models reported for both listed and unlisted SMEs is estimated using observations 

from the entire sampling period available to us, thus we do not have separate test and holdout 

samples. In order to assess the within-sample classification performance of the models 

developed, we estimate area under Receiver Operating Characteristic curve
6
 (AUROC) for 

respective models using the full estimation sample (i.e. from 1985 to 2016). For out-of-

sample validation we first estimate the multivariate hazard model using observations until the 

year 2011. We use these estimates to predict the default probabilities for the year 2012. Then, 

we include 2012 in the estimation sample and predict default probabilities for 2013 and so on, 

until the year 2016. We then use these predicted probabilities from the year 2012 through to 

2016 to estimate out-of-sample AUROC with a one-year prediction horizon for respective 

multivariate hazard models. AUROC of 1 denotes a model with perfect prediction accuracy, 

and 0.5 suggests no discrimination ability. In general there is no ‘golden rule’ regarding the 

value of AUROC, however anything between 0.7 and 0.8 is acceptable, while above 0.8 is 

considered to be excellent (see Hosmer Jr et al., 2013). 

3.3.1 Multivariate Models for Financially Distressed SMEs 

Panel A of Table 7 reports multivariate regression models developed using financial 

distress as the dependent variable. Considering our model building strategy as discussed 

earlier, out of twelve significant covariates in the univariate analysis, we find nine covariates 

suitable for developing the multivariate prediction model for listed SMEs. Columns 3, 4 and 

                                                 
6
 See Gupta et al. (2017) for additional discussion on ROC curves. 
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5 report test results for the multivariate model developed using accounting ratios. All nine 

covariates are highly significant in predicting financial distress likelihood over the one-year 

horizon. Their respective AME are significant as well. Control variables RISKFD, Micro and 

AGE also exhibit significant explanatory power. The within-sample AUROC is about 0.88, 

and out-of-sample AUROC is about 0.81. This shows excellent discriminatory performance 

of our multivariate model in identifying distressed and censored firms (see A1 and A2 in 

Figure 2). The AME are reported in percentages, which state that TTA is the most powerful 

covariate with AME of around -48 followed by FETA with AME of around 7. The 

multivariate model developed supplementing market variables is reported in columns 6, 7 and 

8. Broadly the significance of accounting covariates remains unchanged except RETA and 

FETA, and market variables EXRETAVG, MB, SIGMA (weakly significant) and PRICE 

enter significantly into the multivariate model. However we see a decline in AMEs of 

respective covariates in the presence of market variables (see columns 5 and 8 in Panel A of 

Table 7). This reflects the complementary nature of market information in predicting SMEs 

financial distress. Although the within-sample classification performance remains almost 

identical, but there is about a 5% increase in out-of-sample classification performance in the 

presence of market variables (see A3 and A4 in Figure 2).  

However, we are primarily interested in the comparative performance between 

multivariate models developed using accounting ratios for listed and unlisted SMEs. Columns 

9, 10 and 11 in Panel B of Table 7 report the multivariate model for unlisted SMEs. Out of 

twelve highly significant covariates in univariate analysis, eight enter significantly into the 

multivariate setup. We also observe some differences in the factors affecting the default 

probability of listed and unlisted SMEs. For instance, STDEBV, RETA and FES are 

significant predictors for the listed group of SMEs, but they do not find a place in the model 

developed for unlisted SMEs, except for STDEBV being weakly significant. Unlike listed 

SMEs, LCR enters significantly into the multivariate model for unlisted SMEs, which 

emphasises the importance of liquidity on financial distress of unlisted SMEs. The model 

prediction performance is deemed to be excellent with AUROC values of above 0.8 (see A5 

and A6 in Figure 2). Finally, comparison of AMEs of respective accounting covariates 

reported in columns 5 and 11 reinforce our hypothesis. As observed in the univariate analysis 

section, here also AME for all covariates is significantly higher for unlisted SMEs than their 

listed counterparts (see columns 5 and 11 of Table 7). This suggests that unlisted SMEs are 

more vulnerable to the changing financial position, unlike listed SMEs. 
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3.3.2 Multivariate Models for Bankrupt SMEs 

Panel B of Table 7 presents regression estimates using bankruptcy as the dependent 

variable. The effect of the extremely low number of bankruptcy events (28 for listed SMEs 

with accounting variables and 21 for listed SMEs with accounting and market variables) can 

be seen in the multivariate models. Only CTA and FETA are significant, however most of the 

control and market variables remain insignificant. Also, all AME values of respective 

covariates are insignificant. We understand that this is a serious drawback of this study, but 

the appropriate solution to this problem is beyond our control. With an increasingly low rate 

of bankruptcy filings, all we can suggest is to use an alternative mechanism like financial 

distress instead of legal bankruptcy filings to make relevant decisions, or to test it using legal 

bankruptcy data containing a sufficient number of bankruptcy events. 

However, for unlisted group of firms, we have 247 bankruptcy events and the 

multivariate model developed looks much more reasonable than its listed counterpart. Out of 

twelve accounting variables, five enter significantly into the multivariate model with 

significant control variables. Although we report AUROC for these multivariate models, it 

might be unreliable considering the presence of a very low number of outcome events in our 

sample (see A7 to A12 in Figure 2). 

[Insert Figure 2 Here] 

4. Conclusion 

SMEs are widely considered to be a fundamental component of an economy, and are 

viewed as an important route to recovery in the aftermath of the global financial crisis of 

2008-2009. Given the increased importance of SMEs, a significant volume of academic 

literature on SMEs bankruptcy/financial distress has emerged in recent years (e.g. Altman 

and Sabato, 2007; Keasey et al., 2015; Gupta et al., 2017). 

Access to external finance is unanimously considered to be the principal factor 

obstructing SMEs growth and development. This might be due to a lack of collateral and 

information asymmetries. Prolonged difficulty in accessing external finance may lead to 

financial distress or bankruptcy. Stock exchange listing could relieve SMEs from external 

financing constraints (Kim, 1999), consequently reducing their overdependence on banks for 

external financing and, thereby, reducing their likelihood of failure.  
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We empirically test this hypothesis using a sample of listed and unlisted SMEs located 

in the United States covering the sampling period between 1985 and 2016. One-year financial 

distress and bankruptcy prediction models of listed and unlisted SMEs are estimated using 

panel logistic regression technique and a set of financial covariates with established 

significance of financial distress/bankruptcy prediction in prior studies. The definition of 

financial distress employed based on firms’ financial performance is adapted from Keasey et 

al. (2015), and we consider a firm as bankrupt if it files for Chapter 7/11 bankruptcy.  

We report significant differences between the failure risk of listed and unlisted SMEs. 

At any given age, the survival (hazard) likelihood of listed SMEs is significantly higher 

(lower) than their unlisted counterparts. In the univariate analysis, although an identical set of 

financial ratios is significant in discriminating between financially distressed and censored 

groups of listed and unlisted SMEs, we report significant differences in the weights of 

regression coefficients of respective covariates of listed and unlisted SMEs. AME of 

respective covariates for the unlisted group of firms is strikingly higher than their listed 

counterparts, suggesting higher vulnerability of unlisted firms due to changes in financial 

ratios. Additionally, regression coefficients of mutually significant covariates in multivariate 

regression models for listed and unlisted SMEs also show striking differences in their 

weights. Our hypothesis is further reinforced when we compare AME of respective 

covariates for financial distress prediction models of listed and unlisted groups of firms. In 

line with our univariate estimates, AME of mutually significant covariates are significantly 

higher for unlisted SMEs than for listed ones. However, we report weak empirical evidence 

in support of our hypothesis when bankruptcy is used as the dependent variable. This is 

primarily due to the very low number of bankruptcy events in our sample. We understand that 

this is a serious drawback of this study, but the appropriate solution to this problem would 

require a sample with greater frequency of bankruptcy events.  

We believe this study on the impact of market-based equity finance on SMEs failure 

likelihood shall be of relevance for several reasons. Our study leads to improved 

understanding of differences between credit risk behaviour of listed and unlisted SMEs. This 

in turn shall allow for: (i) better pricing of credit risk by lending institutions; (ii) improved 

investment decisions by capital market investors; (iii) better allocation of resources by 

policymakers and regulators in developing capital markets targeted toward encouraging 
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participation from small companies; and (iv), as a consequence, reduced constraints to 

external financing for SMEs.  
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Tables and Figures 

 
Table 1: Sample Industrial Classification 

Industry Code SIC Code Industry Included/Excluded 

1              < 1000 Agriculture, Forestry, Fishing Included 

2 1000 to < 1500 Mining Included 

3 1500 to < 1800 Construction Included 

4 2000 to < 4000 Manufacturing Included 

5 5000 to < 5200 Wholesale Trade Included 

6 5200 to < 6000 Retail Trade Included 

7 7000 to < 8900 Services Included 

Excluded 4000 to < 5000 Transportation, Communications & Public Utilities Excluded 

Excluded 6000 to < 6800 Finance, Insurance & Real Estate Excluded 

Excluded 9100 to < 10000 Public Administration Excluded 

Notes: This table reports Standard Industrial Classification (SIC) of US firms. SIC Code is a four digit code that represents a given industrial sectors. The 

last column reports the industrial sectors that we included or excluded from our sample.  
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Table 2: Sample Description 

Year 

Financially Distressed Firms  Bankrupt Firms  

Listed Firms Unlisted Firms Listed Firms Unlisted Firms 
Distressed Total % Distressed Distressed Total % Distressed Bankrupt Total % Bankrupt Bankrupt Total % Bankrupt 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 

1985 50 805 6.21 294 1460 20.13 4 805 0.49 27 1460 1.84 

1986 57 872 6.53 333 1496 22.25 4 872 0.45 28 1496 1.87 

1987 63 900 7.00 337 1515 22.24 5 900 0.55 21 1515 1.38 

1988 60 854 7.02 289 1419 20.36 3 854 0.35 25 1419 1.76 

1989 52 793 6.55 325 1372 23.68 3 793 0.37 24 1372 1.74 

1990 53 770 6.88 299 1301 22.98 0 770 0.00 27 1301 2.07 

1991 55 831 6.61 281 1250 22.48 1 831 0.12 16 1250 1.28 

1992 60 899 6.67 238 1237 19.24 3 899 0.33 11 1237 0.88 

1993 50 958 5.21 209 1269 16.46 2 958 0.20 15 1269 1.18 

1994 48 948 5.06 200 1250 16.00 2 948 0.21 6 1250 0.48 

1995 59 969 6.08 206 1270 16.22 1 969 0.10 6 1270 0.47 

1996 61 1095 5.57 237 1408 16.83 3 1095 0.27 11 1408 0.78 

1997 53 1029 5.15 253 1394 18.14 2 1029 0.19 9 1394 0.64 

1998 79 909 8.69 276 1275 21.64 1 909 0.11 12 1275 0.94 

1999 120 1010 11.88 307 1298 23.65 0 1010 0.00 10 1298 0.77 

2000 94 835 11.25 320 1284 24.92 0 835 0.00 6 1284 0.46 

2001 68 750 9.06 360 1230 29.26 0 750 0.00 7 1230 0.56 

2002 84 702 11.96 388 1096 35.40 0 702 0.00 3 1096 0.27 

2003 117 721 16.22 333 969 34.36 1 721 0.13 6 969 0.61 

2004 94 690 13.62 297 931 31.90 0 690 0.00 3 931 0.32 

2005 71 626 11.34 231 843 27.40 0 626 0.00 4 843 0.47 

2006 75 573 13.08 241 790 30.50 0 573 0.00 5 790 0.63 

2007 65 519 12.52 221 727 30.39 0 519 0.00 2 727 0.27 

2008 64 440 14.54 203 642 31.61 0 440 0.00 3 642 0.46 

2009 82 450 18.22 230 588 39.11 2 450 0.44 2 588 0.34 

2010 85 452 18.80 208 548 37.95 0 452 0.00 1 548 0.18 

2011 68 415 16.38 158 498 31.72 0 415 0.00 0 498 0.00 

2012 73 438 16.66 197 513 38.40 0 438 0.00 0 513 0.00 

2013 97 493 19.67 225 544 41.36 0 493 0.00 1 544 0.18 

2014 93 496 18.75 224 560 40.00 0 496 0.00 1 560 0.17 

2015 90 490 18.36 184 476 38.65 0 490 0.00 1 476 0.21 

2016 15 90 16.66 42 104 40.38 0 90 0.00 0 104 0.00 

Notes: This table presents annual details of financially distressed and bankrupt firms for listed and unlisted SMEs respectively. Column 1 lists years 

followed by the number of listed SMEs in financial distress in that year (column 2), total number of listed SMEs in the database in that year (column 3), 

and percentage of financially distressed listed SMEs in that year (column 4). Subsequent columns show similar information for  financially distressed 

unlisted SMEs (columns 5, 6 and 7), bankrupt listed SMEs (columns 8, 9 and 10), and finally bankrupt unlisted SMEs (columns 11, 12 and 13). 
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Table 3: List of Explanatory Variable 

Variable Definition Compustat Data Item 

Panel A: Accounting Variables 

EBITDATA Earnings before interest taxes depreciation and amortization/total assets EBITDA/AT 

STDEBV Short term debt/equity book value DLC/SEQ 

CTA Cash and short-term investments/total assets CHE/AT 

RETA Retained earnings/total assets RE/AT 

CETL Capital employed/total liabilities (AT – LCT)/LT 

TLTA Total liabilities/total assets LT/AT 

CAG Capital growth; calculated as (Capitalt / Capitalt-1) - 1 (AT - LCT) 

TTA Taxes/total assets TXT/AT 

LCR ln(current assets/current liabilities) ln(ACT/LCT) 

TCTA Trade creditors/total assets AP/AT 

FETA Financial Expense/total assets XINT/AT 

FES Financial Expense/sale XINT/SALE 

Panel B: Market Variables 

EXRETAVG 

 

Weighted average of monthly log excess return relative to value-weighted S&P 500 

return over the previous 12 months period (EXRETAVG), calculated as: 

 

𝐸𝑋𝑅𝐸𝑇𝐴𝑉𝐺𝑡−1,𝑡−12 = 

1 − ∅

1 − ∅12
⁡(𝐸𝑋𝑅𝐸𝑇𝑡−1 +⋯+ ∅11𝐸𝑋𝑅𝐸𝑇𝑡−12) 

 

Where; 

𝐸𝑋𝑅𝐸𝑇𝑖,𝑡 = 𝑙𝑜𝑔(1 + 𝑅𝑒𝑡𝑢𝑟𝑛𝑖,𝑡) − 𝑙𝑜𝑔(1 + 𝑅𝑒𝑡𝑢𝑟𝑛𝑆&𝑃⁡500,𝑡) 

Missing values of EXRETAVG are replaced with the cross-sectional mean of EXRET. 

 

 

RSIZE 

 

Logarithm of each firm’s size relative to S&P 500 market capitalization (RSIZE), 

calculated as: 

𝑅𝑆𝐼𝑍𝐸𝑖,𝑡 = 𝑙𝑜𝑔 (
𝐹𝑖𝑟𝑚⁡𝑀𝑎𝑟𝑘𝑒𝑡⁡𝐸𝑞𝑢𝑖𝑡𝑦𝑖,𝑡

𝑇𝑜𝑡𝑎𝑙⁡𝑆&𝑃⁡𝑀𝑎𝑟𝑘𝑒𝑡⁡𝑉𝑎𝑙𝑢𝑒𝑡
) 

 

 

PRICE Log of price per share winsorized at 5% PRCC_F 

MB Firm’s Market-to-book ratio PRCC_F×CSHO/SEQ 

SIGMA Standard Deviation of past three months daily return  

Panel C: Control Variables 

Micro Dummy variable ( Number of employees<10 = 1 and 0 otherwise) EMP 

Small Dummy variable (10 =< Number of employees < 50 = 1 and 0 otherwise) EMP 

AGE Natural logarithm of firms’ annual age  

RISKFD 

Financial distress rate (number of firms experiencing a financial distress event in 

the respective industrial sector in a given year/total number of firms in that 

industrial sector in that year) in each of the seven industrial sectors in a given year. 

 

RISKB 

Bankruptcy rate (number of firms a experiencing bankruptcy event in the respective 

industrial sector in a given year/total number of firms in that industrial sector in 

that year) in each of the seven industrial sectors in a given year. 

 

Notes: This table lists the set of covariates along with their respective definitions that we used for our empirical analysis. The last column presents the specific 

Compustat data items that we used to estimate the covariates. Panel A list the set of accounting variables, Panel B lists the set of market variables and Panel C lists 

the set of control variables that we use in this study. 

 

 

 

 

 

 

 

 



P A G E  | 22                                                                                                                              

 

Table 4: Descriptive Statistics 

Variable 

Financially Distressed Firms Bankrupt Firms 

Listed Unlisted Listed Unlisted 

Distressed Non-Distressed Distressed Non-Distressed  Bankrupt Non-Bankrupt Bankrupt Non-Bankrupt 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

EBITDATA         

Mean -0.4474 -0.0407 -0.7723 -0.2049 -0.0998 -0.0808 -0.4184 -0.3459 

Median -0.2438 0.0626 -0.3376 3.21e-07 0.0304 0.0455 -0.1025 -0.0565 

SD 0.6275 0.3422 0.9634 0.5949 0.4633 0.3987 0.8047 0.7461 

Minimum -2.7163 -2.7163 -2.7163 -2.7163 -2.4716 -2.7163 -2.7163 -2.7163 

Maximum 0.2751 0.2751 0.2751 0.2751 0.2751 0.2751 0.2751 0.2751 

STDEBV         

Mean 0.1048 0.1016 -0.0218 0.16422 0.1341 0.1019 0.1018 0.1197 

Median 0.0073 0.0139 -0.0012 0.0370 4.86e-07 0.0135 -0.0046 0.0229 

SD 0.5259 0.2569 0.6739 0.4464 0.4928 0.2941 0.5385 0.5184 

Minimum -0.8648 -0.8648 -0.8648 -0.8648 -0.8648 -0.8648 -0.8648 -0.8648 

Maximum 1.3398 1.3398 1.3398 1.339 1.339 1.3398 1.3398 1.3398 

CTA         

Mean 0.3420 0.3142 0.1608 0.2118 0.1543 0.3172 0.1643 0.1993 

Median 0.2565 0.2311 0.0652 0.1087 0.1150 0.2341 0.0650 0.0962 

SD 0.2969 0.2783 0.2172 0.2408 0.1624 0.2804 0.2394 0.2361 

Minimum 0.0024 0.0024 0.0024 0.0024 0.0042 0.0024 0.0024 0.0024 

Maximum 0.8850 0.8850 0.8850 0.8850 0.7767 0.8850 0.8850 0.8850 

RETA         

Mean -5.1102 -1.0834 -9.086 -2.7454 -1.8146 -1.4800 -6.4905 -4.3087 

Median -2.4755 -0.1135 -4.0122 -0.5265 -0.8056 -0.2031 -2.4034 -0.9486 

SD 6.9482 3.0881 10.3607 6.0995 3.1702 3.8476 8.9668 7.8763 

Minimum -29.1461 -29.1461 -29.1461 -29.1461 -14.3784 -29.1461 -29.1461 -29.1461 

Maximum 0.5035 0.5035 0.5035 0.5035 0.5035 0.5035 0.5035 0.5035 

CETL         

Mean 1.1857 3.7522 0.3791 2.7290 2.4460 3.5008 0.6275 2.1561 

Median 0.7774 2.5007 0.1983 1.5166 0.8445 2.2724 0.3170 1.1256 

SD 1.9397 3.3794 1.2787 3.3085 4.0878 3.3527 1.4995 3.1148 

Minimum -0.5603 -0.5603 -0.5603 -0.5603 -0.5603 -0.5603 -0.5603 -0.5603 

Maximum 13.0587 13.058 13.0587 13.0587 13.0587 13.0587 13.0587 13.0587 

TLTA         

Mean 0.9755 0.3710 1.6469 0.6128 1.1248 0.4295 1.7501 0.8629 

Median 0.7339 0.3154 1.1139 0.4576 0.8241 0.3406 1.3741 0.5675 

SD 0.7819 0.2953 1.1878 0.6590 1.0052 0.4114 1.1636 0.9312 

Minimum 0.0718 0.0718 0.0718 0.0718 0.0718 0.0718 0.0718 0.0718 

Maximum 3.7170 3.7170 3.7170 3.7170 3.7170 3.7170 3.7170 3.7170 

CAG         

Mean 0.1525 0.4351 -0.0018 0.2539 0.1531 0.4076 -0.1000 0.1927 

Median -0.1749 0.0918 -0.2418 0.0165 0.0264 0.0806 -0.1863 -0.0125 

SD 1.3389 1.0760 1.2997 1.1231 1.0672 1.1079 1.1866 1.1744 

Minimum -1.4009 -1.4009 -1.4009 -1.4009 -1.4009 -1.4009 -1.4009 -1.400 

Maximum 3.9583 3.9583 3.9583 3.9583 3.9583 3.9583 3.9583 3.9583 

TTA         

Mean 0.0010 0.0156 0.0014 0.0083 0.0133 0.0142 0.0050 0.0066 

Median 9.02e-08 0.0015 5.38e-07 6.12e-07 0.0020 0.0005 3.37e-07 5.88e-07 

SD 0.0142 0.0290 0.0144 0.0241 0.0266 0.0283 0.0224 0.0222 

Minimum -0.0276 -0.0276 -0.0276 -0.0276 -0.0276 -0.0276 -0.0276 -0.0276 

Maximum 0.0879 0.0879 0.0879 0.0879 0.0879 0.0879 0.0879 .0879 

LCR         

Mean 0.3804 1.1170 -0.6496 0.5449 0.5950 1.0451 -0.1936 0.2507 

Median 0.3887 1.1202 -0.4709 0.5912 0.7665 1.0613 -0.0096 0.3676 

SD 1.0589 0.8471 1.1876 1.1047 1.1185 0.8970 1.3571 1.2371 

Minimum -2.4365 -2.4365 -2.4365 -2.4365 -2.4365 -2.4365 -2.4365 -2.4365 

Maximum 2.5579 2.5579 2.5579 2.5579 2.5579 2.5579 2.5579 0.5579 
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TCTA         

Mean 0.1367 0.0754 0.2850 0.1329 0.0632 0.0815 0.1920 0.1707 

Median 0.0909 0.0554 0.2016 0.0885 0.0368 0.0573 0.0835 0.1052 

SD 0.1472 0.0733 0.2344 0.1415 0.0674 0.0855 0.2278 0.1814 

Minimum 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 

Maximum 0.6895 0.6895 0.6895 0.6895 0.2835 0.6895 0.6895 0.6895 

FETA         

Mean 0.0583 0.0163 0.1104 0.0359 0.0546 0.0203 0.0896 0.0542 

Median 0.0338 0.0070 0.0683 0.0174 0.0247 0.0081 0.0598 0.0250 

SD 0.0714 0.0285 0.1020 0.0570 0.0766 0.0372 0.0888 0.0777 

Minimum 6.51e-08 6.51e-08 6.51e-08 6.51e-08 6.51e-08 6.51e-08 6.51e-08 6.51e-08 

Maximum 0.2866 0.2866 0.2866 0.2866 0.2866 0.2866 0.2866 0.2866 

FES         

Mean 0.1573 0.0434 0.2076 0.0750 0.06270 0.0546 0.1318 0.1079 

Median 0.0494 0.0091 0.0699 0.0175 0.0401 0.0105 0.0442 0.0240 

SD 0.2219 0.1143 0.2556 0.1608 0.0753 0.1334 0.1960 0.1975 

Minimum 1.20e-07 1.20e-07 1.20e-07 1.20e-07 1.20e-07 1.20e-07 1.20e-07 1.20e-07 

Maximum 0.6969 0.6969 0.6969 0.6969 0.3874 0.6969 0.6969 0.6969 

EXRETAVG         

Mean -0.0245 -0.0140 ---- ---- -0.0440 -0.0148 ---- ---- 

Median -0.0224 -0.0124 ---- ---- -0.0133 -0.0130 ---- ---- 

SD 0.0886 0.0652 ---- ---- 0.1116 0.0675 ---- ---- 

Minimum -0.5179 -0.5392 ---- ---- -0.3547 -0.5392 ---- ---- 

Maximum 0.5550 1.8033 ---- ---- 0.0888 1.8033 ---- ---- 

RSIZE         

Mean -12.3706 -11.8686 ---- ---- -12.3995 -11.9114 ---- ---- 

Median -12.3559 -11.8511 ---- ---- -11.8353 -11.8817 ---- ---- 

SD 1.6217 1.3484 ---- ---- 1.7010 1.3809 ---- ---- 

Minimum -19.4562 -18.4861 ---- ---- -15.6499 -19.4562 ---- ---- 

Maximum -7.1950 -5.6036 ---- ---- -10.2021 -5.6036 ---- ---- 

PRICE         

Mean 0.6940 1.5377 ---- ---- 0.4519 1.4638 ---- ---- 

Median 0.7608 1.6582 ---- ---- 0.5941 1.6034 ---- ---- 

SD 1.4274 1.1505 ---- ---- 1.6711 1.2008 ---- ---- 

Minimum 5.5994 -5.5214 ---- ---- -2.7806 -5.5994 ---- ---- 

Maximum 5.0279 5.8327 ---- ---- 2.7408 5.8327 ---- ---- 

MB         

Mean 3.6790 3.2490 ---- ---- 2.0352 3.2892 ---- ---- 

Median 2.5912 2.1359 ---- ---- 0.8808 2.1578 ---- ---- 

SD 6.6338 3.5578 ---- ---- 4.2332 3.9327 ---- ---- 

Minimum -6.5426 -6.5426 ---- ---- -6.5426 -6.5426 ---- ---- 

Maximum 16.8418 16.8418 ---- ---- 13.8958 16.8418 ---- ---- 

SIGMA         

Mean 0.0618 0.0472 ---- ---- 0.06121 0.0485 ---- ---- 

Median 0.0534 0.0415 ---- ---- 0.0445 0.04245 ---- ---- 

SD 0.0342 0.0260 ---- ---- 0.0457 0.0271 ---- ---- 

Minimum 0.0000 0.0000 ---- ---- 0.01136 0.0000 ---- ---- 

Maximum 0.2464 0.2775 ---- ---- 0.1618 0.2775 ---- ---- 

Notes: This table presents descriptive statistics measures of respective accounting and market covariates for financially distressed and bankrupt 

groups of listed and unlisted SMEs respectively. 
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Table 5: Correlation Matrix  

Variable  1 2 3 4 5 6 7 8 9 10 11 12 

EBITDATA 1 1.00            

STDEBV 2 0.24 1.00           

CTA 3 -0.14 -0.15 1.00          

RETA 4 0.72 0.25 -0.07 1.00         

CETL 5 0.19 -0.09 0.45 0.25 1.00        

TLTA 6 -0.60 -0.26 -0.19 -0.70 -0.51 1.00       

CAG 7 0.10 -0.01 0.16 0.10 0.16 -0.09 1.00      

TTA 8 0.25 -0.01 -0.00 0.16 0.08 -0.13 0.07 1.00     

LCR 9 0.41 0.03 0.51 0.47 0.68 -0.71 0.17 0.16 1.00    

TCTA 10 -0.54 -0.16 -0.22 -0.57 -0.43 0.70 -0.10 -0.10 -0.60 1.00   

FETA 11 -0.51 -0.20 -0.16 -0.57 -0.38 0.77 -0.08 -0.13 -0.58 0.52 1.00  

FES 12 -0.47 -0.15 0.03 -0.41 0.19 0.46 -0.01 -0.15 -0.37 0.24 0.64 1.00 

EXRETAVG 13 0.19 -0.03 0.01 0.09 0.02 -0.06 0.11 0.13 0.06 -0.03 -0.07 -0.06 

RSIZE 14 0.08 -0.15 0.33 0.19 0.23 -0.22 0.28 0.16 0.33 -0.29 -0.19 0.03 

PRICE 15 0.27 -0.13 0.19 0.37 0.23 -0.32 0.26 0.29 0.34 -0.29 -0.30 -0.10 

MB 16 -0.12 0.22 0.21 -0.08 0.00 -0.11 0.16 0.00 0.06 -0.01 -0.07 0.01 

SIGMA 17 -0.22 0.07 -0.03 -0.21 -0.10 0.20 -0.04 -0.20 -0.20 0.18 0.19 0.07 

  13 14 15 16 17        

EXRETAVG 13 1.00            

RSIZE 14 0.23 1.00           

PRICE 15 0.31 0.73 1.00          

MB 16 0.20 0.34 0.26 1.00         

SIGMA 17 -0.15 -0.33 -0.45 -0.03 1.00        

Notes: This table presents correlation among the covariates used in this study. 
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Table 6: Univariate Regression 

Variable Sign 
Listed SMEs  Unlisted SMEs 

 
Coefficient SE AME  R  Coefficient   SE AME R 

(1) (2) (3) (4) (5) (6)  (7) (8) (9) (10)  

Panel A: Financially Distressed Firms 

Accounting Variables 

EBITDATA - -2.5973a 0.0892 -7.93a 6  -1.4195a 0.0329 -21.99a 6  

STDEBV + 0.2826a 0.0870 0.99a 10  -0.3612a 0.0344 -6.01a 11  

CTA - -1.5500a 0.1680 -4.48a 7  -2.4354a 0.1039 -38.92a 5  

RETA - -0.1893a 0.0081 -0.69a 12  -0.1013a 0.0028 -1.68a 12  

CETL - -1.1801a 0.0399 -0.72a 11  -1.0085a 0.0219 -8.46a 9  

TLTA + 3.4940a 0.1119 8.47a 5  1.2872a 0.0271 20.75a 7  

CAG - -1.3947a 0.0597 -3.42a 8  -0.4806a 0.0178 -7.80a 10  

TTA - -33.8233a 1.8965 -112.06a 1  -27.5016a 1.1484 -440.29a 1  

LCR - -1.3878a 0.0490 -2.97a 9  -1.0965a 0.0223 -15.55a 8  

TCTA + 7.5618a 0.3705 23.77a 3  4.7166a 0.1197 75.79a 3  

FETA + 15.8479a 0.7288 54.68a 2  10.0798a 0.2613 166.25a 2  

FES + 3.6450a 0.1929 13.42a 4  2.5223a 0.0997 41.58a 4  

Market Variables 

EXRETAVG - -5.8849a 0.4531 -15.60a 2       

RSIZE - -0.6652a 0.0350 -1.37a 4       

MB - -0.0322a 0.0071 -0.08a 5       

SIGMA + 15.7153a 1.1195 39.76a 1       

PRICE - -0.8078a 0.0339 -1.91a 3       

 

Panel B: Bankrupt Firms 

Accounting Variables 

EBITDATA - -0.7101 0.5181 -7.93e-05 ---  -0.3069a 0.1231 -0.001b 11  

STDEBV + 0.3322 0.5422 8.69e-05 ---  -0.5589a 0.1604 -0.005a 7  

CTA - -4.2277a 1.6692 -0.001 3  -2.4929a 0.5164 -0.020a 3  

RETA - -0.0527 0.0587 -1.62e-05 ---  -0.0272b 0.0125 -2.2e-04b 12  

CETL - -0.3552b 0.1604 -3.99e-05 6  -0.8694a 0.1067 -0.002a 10  

TLTA + 1.2998a 0.3194 8.48e-04 4  0.6945a 0.0906 0.005a 6  

CAG - -0.7094b 0.3461 -1.86e-04 7  -0.4242a 0.0914 -0.003a 9  

TTA - -11.3026 9.6082 -0.004 ---  -11.5692a 4.6268 -0.100b 1  

LCR - -1.5196 0.3163 -1.18e-04 ---  -0.6973a 0.0832 -0.004a 8  

TCTA + 4.3895b 2.1920 0.001 2  2.9511a 0.4851 0.020a 4  

FETA + 15.5532a 3.7053 0.006 1    6.5106a 1.0942 0.040a 2  

FES + 2.8546b 1.3706 7.79e-04 5  1.0666b 0.4691 0.008b 5  

Market Variables 

EXRETAVG - -6.2787b 2.9082 -0.002 2       

RSIZE - -0.1646 0.2069 -5.59e-05 ---       

MB - -0.0263 0.0643 -9.70e-06 ---       

SIGMA + 13.1246c 6.8861 0.005 1       

PRICE - -0.7187a 0.2062 -5.42e-05 3       

            

Notes: a (b) [c] significant at the 1 % (5 %) [10 %] level (two-sided test). This table reports results obtained from univariate regression analysis of respective 

covariates for listed and unlisted SMEs respectively. Column 2 presents the expected sign of the coefficients, while columns 3 and 7 report estimated coefficients 

of respective groups. In columns 4 and 8, ‘SE’ represents standard error of the respective estimated coefficients. AME is the Average Marginal Effects (AME) in 

percentage and reported in columns 5 and 9 for listed and unlisted SMEs respectively. ‘R’ in columns 6 and 10 show the rank of respective covariates in 

decreasing order of the absolute value of their respective AME. Panel A reports univariate estimates for financially distressed SMEs while Panel B reports similar 

information for bankrupt SMEs.  
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Table 7: Multivariate Regression Models 

Variable Sign 

Listed SMEs Unlisted SMEs 

Accounting Variables Accounting + Market Variables Accounting Variables 

β  SE  AME  β  SE  AME  β   SE  AME  

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

Panel A: Financially Distressed Firms 

EBITDATA - -1.6340a 0.1152 -3.03a -1.6956a 0.1437 -1.95a -0.8289a 0.0417 -10.82a 

STDEBV + 0.3746a 0.0888 0.69a 0.5590a 0.1251 0.64a 0.0585c 0.0364 0.76c 

CTA - -1.1249a 0.1877 -2.08a -0.5043b 0.2269 -0.58b -1.0200a 0.1269 -13.31a 

RETA - -0.0296a 0.0109 -0.05a -0.0178 0.0134 -0.02 --- --- --- 

CETL - --- --- --- --- --- --- --- --- --- 

TLTA + --- --- --- --- --- --- --- --- --- 

CAG - -0.9063a 0.0532 -1.68a -1.0113a 0.0703 -1.16a -0.3623a 0.0192 -4.73a 

TTA - -25.8403a 2.1895 -47.95a -24.1643a 2.5637 -27.83a -23.0114a 1.3064 -300.43a 

LCR - --- --- --- --- --- --- -0.6444a 0.0291 -8.41a 

TCTA + 2.5850a 0.4498 4.79a 2.9353a 0.5582 3.38a 0.3348b 0.1558 4.73b 

FETA + 3.7301a 0.9620 6.92a 0.9593 1.2076 1.10 1.8423a 0.3377 24.05a 

FES + 2.4381a 0.2736 4.52a 3.2631a 0.3281 3.75a --- --- --- 

EXRETAVG - --- --- --- -1.6824a 0.5472 -1.93a --- --- --- 

RSIZE - --- --- --- --- --- --- --- --- --- 

MB - --- --- --- 0.0206b 0.0096 0.02b --- --- --- 

SIGMA + --- --- --- 2.6305c 1.5189 3.03c --- --- --- 

PRICE - --- --- --- -0.3066a 0.0541 -0.35a --- --- --- 

Micro  -0.6439a 0.1426 -1.19a -1.0632a 0.1745 -1.22a 0.4173a 0.0690 5.44a 

Small  0.0653 0.0919 0.12 -0.1995c 0.1107 -0.22c 0.4011a 0.0571 5.23a 

AGE  -0.2118a 0.0741 -0.39a 0.0136 0.0944 0.01 0.1675a 0.0400 2.18a 

RISKFD + 5.3348a 0.7583 9.90a 4.4440a 0.9238 5.11a 1.0432b 0.4191 13.62b 

Constant  -3.8580a 0.2144 --- -4.5701a 0.3107 --- -2.2673a 0.1170 --- 

Goodness of Fit Value   Value   Value   

Wald chi2 1282.39a   1045.11a   3069.28a   

Log likelihood -4090.4301   -3174.1028   -11067.319   

AUROC          

Within Sample 0.8792   0.8870   0.8295   

Holdout Sample 0.8099   0.8461   0.8186   

Number of observations          

Distressed 1,798   1,390   6,760   

Censored 16,340   14,408   19,469   

           

Panel B: Bankrupt Firms 

EBITDATA - --- --- --- --- --- --- --- --- --- 

STDEBV + --- --- --- --- --- --- --- --- --- 

CTA - -3.2537c 1.7384 -8.16e-04 -2.1179 1.8661 -1.45e-04 -1.8949a .5248 -0.01b 

RETA - --- --- --- --- --- --- --- --- --- 

CETL - --- --- --- --- --- --- --- --- --- 

TLTA + --- --- --- --- --- --- --- --- --- 

CAG - --- --- --- --- --- --- -0.3092a 0.0895 -0.002b 

TTA - --- --- --- --- --- --- -8.4212c 4.9078 -0.07 

LCR - --- --- --- --- --- --- --- --- --- 

TCTA + --- --- --- --- --- --- 1.9866a .5554 0.01b 

FETA + 15.9876a 4.0072 0.01 8.5400 5.8890 5.84e-04 3.9274a 1.2612 0.03b 

FES + --- --- --- --- --- --- --- --- --- 

EXRETAVG - --- --- --- -4.4539 3.5486 -3.04e-04 --- --- --- 

RSIZE - --- --- --- --- --- --- --- --- --- 

MB - --- --- --- --- --- --- --- --- --- 

SIGMA + --- --- --- -0.0700 9.9581 -4.79e-06 --- --- --- 

PRICE - --- --- --- -0.5678c 0.3126 -3.88e-05 --- --- --- 

Micro  -1.0788 1.2668 -2.71e-04 -1.1927 1.4507 -8.15e-05 0.5313c 0.2958 0.004 

Small  0.1480 0.6472 3.71e-05 0.0693 0.7980 4.74e-06 0.4936b 0.2546 0.004 

Age  -0.0493c 0.4711 -1.24e-05 0.0576 0.6168 3.94e-06 0.5156a 0.1833 0.004b 

RISKB + 65.5401b 28.2130 0.01 52.5831 35.3994 0.003 59.0356a 10.4964 0.55b 

Constant  -12.511a 1.4786 --- -13.3585 2.1086 --- -11.2812a 0.6559 --- 

           

Goodness of Fit Value   Value   Value   

Wald chi2 25.30a   17.87b   108.44a   

Log likelihood -156.5782   -116.0002   -1078.5337   

AUROC          

Within Sample 0.7742   0.7609   0.7269   

Holdout Sample 0.4885   ----   0.4525   

Number of observations          

Bankrupt 28   21   247   
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Censored 18,110   15,782   25,982   

           

Notes: a (b) [c] significant at the 1 % (5 %) [10 %] level (two-sided test). This table report results obtained from multivariate regression analysis of listed (columns 3 to 8) and unlisted 

(columns 9, 10 and 11) SMEs respectively. Column 2 presents the expected sign of the coefficients.  ‘SE’ represents standard error of respective estimated coefficients, while AME is the 

Average Marginal Effects (AME) in percentage. Panel A reports multivariate regression estimates for financially distressed SMEs while Panel B reports similar information for bankrupt 

SMEs. 

 

 

 

Figure 1: Table of Survival Curves 
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Figure 2: Table of ROC Curves 

   

   

   

A10: Out-of-Sample AUROC for Listed Bankrupt SMEs 

Employing Accounting and Market Variables 

 

 

ROC curve not generated as our sample 
does not contain any bankruptcy event 
for this sample category. 

  
 

 


