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ABSTRACT 

Soybeans are an important raw material for those seeking vegan, lactose-free products, such 

as soymilk and tofu. The aim of this review article is to provide an overview of aqueous 

extraction of protein and other desirable components from whole soybeans. Firstly, a 

discussion over the microstructure of the soybean is held, including a summary of protein 

localisation and properties. A detailed review of common whole soybean extraction process is 

then given, along with extraction process parameters and process intensification steps that can 

improve yield. A novel extraction model is presented, based on a mass balance of the water 

phases. The extraction model reveals separation as the main limitation for protein recovery 

during aqueous soy protein extraction due to the high amount of okara waste stream and its 

high moisture content. 

Industrial relevance 

Typically, the extraction of protein from an intermediate soy-protein ingredient is studied at 

lab-scale. Within industry, aqueous extract from whole soybeans is commonly used for 

making consumer products containing both soy protein and soybean oil, and this has been the 

focus of this review. Key extraction process parameters are presented and challenges of each 

extraction step are given for the whole soybean extraction process. A novel model for 

determining the separation efficiency has been presented, which is useful for many other 

extraction systems that contain components of interest in high amounts of waste stream. 

KEYWORDS 

Aqueous extraction; Microstructure; Soymilk; Cavitation  
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HIGHLIGHTS 

Understanding the microstructure of raw materials is vital for enhancing yields. 

Processing parameters influencing protein extraction have been discussed. 

By-product for soybase production, okara, contains protein in the water phase. 

A model using liquid to solid ratio was presented to calculate separation efficiency. 

ABBREVIATIONS 

CLSM Confocal laser scanning microscopy 

d.b. dry basis 

HPH High pressure homogenisation 

SEM Scanning electron microscopy 

SPC Soy protein concentrate 

SPI Soy protein isolate 

TEM Transmission electron microscopy 

w.b. wet basis 

NOMENCLATURE 

S Soybase mass 

B Soybean mass 

W Water mass 

O Okara mass 

xi Mass fraction of component i 

xi,j Mass fraction of component i in stream j 

i p Protein 

 w Moisture 

j s Soybase 

 b Soybean 

w Water 

o Okara  
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1. INTRODUCTION 

Plant-based protein is more sustainable than animal-based protein when comparing fossil fuel 

usage, land use and water consumption (González et al., 2011). With the human population 

projected to increase to 9.5 billion by the year 2050 (Reynolds et al., 2015), a greater portion 

of the nutrients required for human nutrition will be supplied by plant-based sources. The first 

generation plant-based protein source for human consumption has been the soybean. 

Reportedly the consumption of soybeans can be dated back as early as 3
rd

 century BC in 

China (Huang et al., 2008). The consumption of soy has gained popularity in the western 

world over recent decades due to: 

- increased knowledge of the consumer and drive for a healthier lifestyle 

- increased prevalence of lactose intolerance 

- improved processing of soybeans with reduced off-flavour (Debruyne, 2006) 

The increased consumption of soy-based products leads to the incentive for more sustainable 

soybean processing, by reducing the carbon footprint and/or greenhouse gas emissions 

compared to current processes. Not only is sustainability a motivation for industry, but 

financial gain is also made possible through improved utilisation of the raw material. Table 1 

shows an overview of the typical oil and protein contents of soybean and the main soy-

derived commercially available ingredients. The summarised production methods for these 

soy-ingredients can be seen in Figure 1.  
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Table 1: Typical variations in protein and oil contents on a wet basis (w.b.) for soybean and some of its commercial 

ingredients. *Values derived from Riaz (2006) and own observations. 

 Product 
Typical protein 

content (w.b. %) 

Typical oil content 

(w.b. %) 

Soybean 40 20 

Soybase 4-5 2 

Soy flour 40 20 

Defatted soy flour/flakes 44-54* 0.5-1* 

Soy protein concentrate (SPC) 65-70* Trace* 

Soy protein isolate (SPI) 85-90* Trace* 

 

Defatted soybean flakes are common by-products from oil extraction, the most common 

component utilised from the oilseed. Soybeans are crushed in a roller mill and then the oil is 

extracted using a solvent, typically hexane. Hexane-based processing can lead to the 

production of greenhouse gases and concerns regarding safety due to the flammable nature of 

the solvent (Rosenthal et al., 1996). The remaining solvent within the soybean matrix is 

removed via heat evaporation. Mechanical extraction can also be employed; however, 

compared to solvent extraction, the oil yield is not as lucrative. Defatted soy flour refers to the 

same material as defatted soybean flakes, but with a finer particle size. It can be used as a 

feed, yet more value can be created when the proteins are extracted from it. To produce soy 

protein concentrate (SPC), defatted soybean flakes are added to alcohol or water to remove 

carbohydrates. Soy protein isolate (SPI) contains a higher protein content than SPC (see Table 

1) due to the removal of insoluble carbohydrate and dietary fibres via an intermediate, acidic 

precipitation step. 

A less commonly used extraction route is the whole soybean extraction (far left process in 

Figure 1). The aqueous extract of whole soybean extraction is called soybase and it is mainly 

used for making consumer products containing both soy protein and soybean oil. Products 

like soymilk, soy-fruit beverages and tofu are produced by adding various ingredients to the 

soybase, such as flavours, gums, stabilisers, minerals, vitamins, sugars, fruit juices and/or 
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coagulating agents in case of tofu. At industrial scale, the use of soybase may result in 

consumer products with better sensory properties and might be a commercially more 

attractive route than first isolating soy protein and soybean oil separately and then blending 

them together at a later stage. However, a large quantity of protein, oil and other components 

exit the process in the waste stream (30-40% of total protein, depending on the exact 

conditions). The waste stream, referred to as okara in the field, is typically utilised as animal 

feed (Li et al., 2012). 

This review article provides an overview of the latest insights in whole soybean extraction 

processing and the emerging technologies employed to aid especially protein extraction. 

Firstly, the soybean composition and microstructure is discussed, as insights from these can 

be gained into extraction processes. Then an overview of these most common processes is 

given, as well as a more detailed discussion of the challenges and opportunities of each 

extraction step. Finally, a novel extraction model will highlight the location of greatest losses 

of protein during soybean processing. Findings in this area of research are also beneficial for 

the advancing generations of other plant-based protein sources, such as pea, canola and lupin, 

as well as many other extraction systems that contain components of interest in high amounts 

of waste stream.  
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2. SOYBEAN COMPOSITION AND MICROSTRUCTURE 

The composition of soybeans can vary; for the production of soy-based products, such as 

soymilk and tofu, a strain of soybean containing relatively high amounts of proteins should be 

selected. Other criteria for soybean selection include the colour and sensory properties of its 

extract in the final consumer product. The composition of a typical soybean for producing 

soymilk on a wet and dry basis can be seen in Figure 2 (Imram et al., 2003). Soybeans used 

for soybean oil production are commonly richer in oil and lower in proteins (about 40 and 

20%, respectively). Soybeans are considered as the most important legume as they are one of 

few vegetal materials containing all of the essential amino acids required for human 

development. Dairy alternative products prepared from soybeans are not only selected for 

their high protein content, but also for their lack of cholesterol and lactose. 

For optimal extraction of components from soybeans, it is vital to understand the structure 

located within the soybean. There are a number of structures which make up the soybean: the 

hull, the hypocotyl axis and predominantly cotyledon cells (Campbell et al., 2011). Figure 3 

shows an image of soybeans and their microstructure after pre-soaking. The main constituent 

of the soybean, cotyledon cells, are organised within the bulk in a space-filling arrangement. 

Cotyledon cells are 70-80 µm in length and 15-30 µm in width (Campbell & Glatz, 2009; 

Rosenthal et al., 1998). Hydration may cause the cells volume to increase. 

The cell wall of the soybean cotyledon is comprised of a series of polysaccharides, which are 

often cross-linked with proteins and phenolic compounds (lignin) (Ouhida et al., 2002). The 

primary cotyledon cell wall contains pectins, hemicelluloses and microfibrils of cellulose 

cross-linked with proteins (Campbell et al., 2011). There is a secondary cell wall within the 

primary wall containing cellulose and hemicelluloses also capable of binding to proteins. 

Cells are held together by adhesive substances found in the middle lamella, the extracellular 
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space between cells, and contain pectins, glycine and hydroxyproline-rich proteins (Campbell 

et al., 2011; Kasai et al., 2003). 

2.1 SOYBEAN OIL 

Oil consists of approximately 88.1% triglycerides, 9.8% phospholipids, 1.6% unsaponifiable 

components and 0.5% free fatty acids (Salunkhe et al., 1992). The majority of oil is located in 

oil bodies (oleosomes) within the cotyledon cells (Waschatko et al., 2012). Oil bodies are 

found within the cytoplasmic network of the cells and are stabilised by small molecular 

weight proteins termed oleosins (Rosenthal et al., 1998), which make them more hydrophilic 

and easy to extract aqueously. The oil bodies typically vary in size from 0.2-0.5 µm 

(Campbell & Glatz, 2009). Figure 4 shows a SEM image of a dry soybean. Oil bodies are 

observed in this micrograph, as well as other components of interest, most notably protein 

bodies and phytic acid (Preece et al., 2017b). 

2.2 SOY PROTEINS 

The majority of proteins are organised in protein bodies of the cotyledon cells, labelled in 

Figure 4. According to Preece et al. (2017b), the protein bodies within the cotyledon cells 

were found to be in the size range 2.4 to 13.5 µm when examined using SEM without sample 

hydration. These values fell on the low side when compared to values recorded using TEM of 

2 to 20 µm on hydrated soybeans (Rosenthal et al., 1998). It has been reported previously 

(White et al., 2013) that protein bodies swell upon hydration with water at neutral pH to 

double their original size, confirming these findings. 

There are two major storage proteins that account for typically 60-80% of the total soybean 

protein: the globulins glycinin (11S) and β-conglycinin (7S) (Murphy, 2008). At neutral pH 

and ambient temperature, glycinin (11S) is a hexameric complex comprised of acidic and 
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basic polypeptides linked by disulphide bridges to provide a molecular weight in the range 

320-375 kDa (Lakemond et al., 2000). β-conglycinin (7S) contains three major subunits (β, α 

and α’) reportedly with sizes of 50, 67 and 71 kDa, respectively (Maruyama et al., 1999). 

Globulins are, by definition, only 100% water soluble in a salt solution (Kapchie et al., 2012).  

Other metabolic protein sources within the soybean include oleosins (8-20% of the total 

protein) for oil body stabilisation, trypsin inhibitors (0-1.7% of the total protein) and enzymes 

such as lipoxygenase (LOX) (Murphy, 2008). Trypsin inhibitors are a group of proteins 

present within the soybean that cause negative effects on human digestion. Trypsin and 

chymotrypsin are digestive enzymes located within the gastrointestinal tract with which 

trypsin inhibitors form very stable complexes with (Savage, 2003). Trypsin inhibitors are 

commonly denatured by heat inactivation during the extraction process ((Kwok et al., 2002; 

Van Der Ven et al., 2005); e.g., 90% inactivation after 5-10 min at 121°C at pH 6.5). High 

temperature treatment may also denature LOX, an enzyme activating the oxidation of 

polyunsaturated fatty acids and formation of fatty acid hydroperoxides, which are turned into 

volatile off-flavours. A balance is recommended between the inactivation of trypsin inhibitors 

and LOX and the detrimental effects of heat treatment, especially as protein denaturation will 

cause a reduction in the protein extraction yield (Rosenthal et al., 1998). As soy protein is a 

complex mixture containing various proteins, it has different denaturation temperatures. β-

conglycinin and glycinin, the main storage proteins, possess denaturation temperatures of 

about 68°C and 86°C, respectively (Peng et al., 2016). Solubility of soy proteins also depends 

on their isoelectric points (pI), which is on average at pH 4.5 (Campbell et al., 2011; Kinsella, 

1979); so most soy proteins are soluble at pH values below 3 and above 6. 
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3. WHOLE SOYBEAN EXTRACTION PROCESSES 

3.1 COMMON PROCESSES 

The traditional process for soybase preparation used in the Orient, which is still used for the 

preparation of soybase in the home or by street vendors today, includes the following steps 

(Kwok & Niranjan, 1995): 

- Soaking of the soybeans 

- Grinding in cold water 

- Filtering 

- Cooking at 93-100°C for 30 min 

This method could be modified by grinding in hot water, which has the advantage of LOX 

inactivation. Today such processes are adapted to make soybase at larger scale, either in a 

batch or continuously. As illustrative examples, some of these processes are shown in Figure 

5. Process 1 is also known as the Tetra Pak Alwin™ process (Imram et al., 2003) and is 

shown in more detail in Figure 6. Soybeans are ground at about 85°C and pH 8, and then the 

okara is removed by decanting and the soybase is further heated to 141°C and vacuum treated. 

It is quite similar to the classic Illinois process, although this was originally done with 

overnight soaking of soybeans (Nelson et al., 1976). Process 2 is a process in which the 

soybeans are first dehulled and the soybean slurry is heated to 141°C and vacuum treated 

prior to decanting. Although a limited amount of protein is lost due to dehulling, it has the 

advantage that less okara will be produced during the extraction process and therefore slightly 

higher extraction yields can be achieved in comparison to process 1 (see section 4). Another 

advantage of process 2 is that the okara has more exposure to heat, and it is therefore more 

microbiologically stable and useful for other food applications after immediate drying. 

Process 3 is an example of grinding soybeans at ambient temperature, in contrast to the other 
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processes. This is commonly utilised by ProSoya, for example (Gupta, 2014). An advantage 

of cold grinding is that the proteins are not denatured at this stage and can solubilise well into 

the aqueous phase (see also section 3.3). However, the oxygen levels should be kept low 

otherwise LOX may cause off-flavour production. An alternative is to use LOX-free 

soybeans, but these are more expensive than standard soybeans. Heat treatment is still 

necessary at a later stage in Process 3 to denature trypsin inhibitors and create some 

microbiological stability of the soybase until further usage. Please note that these three 

processes are used here as examples and that some elements of one process can be used in one 

of the other process as well. 

The sections below discuss each extraction step and important process parameters in more 

detail. 

3.2 MECHANICAL DISRUPTION OF SOYBEAN CELLS 

Traditional methods for producing homemade soymilk, such as ‘nama-shibori’, include pre-

soaking of the soybeans prior to mechanical disruption (Toda et al., 2007). Yet in most 

industrial processing plants, this is not employed due to the generation of off-flavours (Kwok 

& Niranjan, 1995). Blanching of soybeans is sometimes utilised by manufacturers to 

eliminate off-flavours in the final product (Peng et al., 2017); however, this causes 

denaturation and aggregation of the protein. Soybeans are ground by either dry or wet milling 

to disrupt intact cotyledon cells to make protein and other components available for 

extraction. Dry milling can be achieved with, e.g., six-roller mill equipped with proper 

cooling, in which three sets of two rolls are used with one roll in each pair rotating faster than 

the other. For optimal dry milling, the particle size of the flour should be smaller than that of 

intact cells (see Section 3.3.1). Wet milling is often done at elevated temperatures (≥80°C) to 

eliminate the effects of the LOX. Two to three mills might be used in sequence, such as disk 
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mill, colloid mill and/or high pressure homogeniser. Swelling of soybean cells occurs upon 

hydration, therefore the maximal particle size for optimal extraction is greater for wet milling 

than for dry milling. New mills are grinding better than ones that have worn, and this affects 

the final yield of the extraction process directly. 

3.3 SOLUBILISATION OF COMPOUNDS 

The solubilisation of compounds can be split further into a number of steps: diffusion of the 

solvent into the plant matrix, solubilisation of cellular components, transport of the solutes to 

the exterior of the solid matrix and transport of the solutes from the matrix surface to the bulk 

medium. The rate determining step for mass transfer is most likely the solubilisation of 

intracellular components and their transfer to the surface (Jung et al., 2011). Solubilisation of 

protein is influenced by several processing parameters, which impact the extraction of 

intracellular components into the bulk phase: 

- particle size of the matrix (milling efficiency) 

- pH of the solvent 

- ionic strength of the solvent 

- temperature of the solvent 

- solubilisation time 

- protein concentration of the resultant soybase 

In the following sections, these main parameters are discussed in more detail, assuming there 

is enough solvent to solubilise or disperse the soy ingredients. In sections 3.4 and 4, we will 

explain that the liquid-to-solid ratio affects the separation efficiency and is therefore discussed 

there. 
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3.3.1 Particle size 

Lower particle sizes of the plant matrix results in high extraction yields of protein and oil 

from flour (Rosenthal et al., 1998; Russin et al., 2007; Vishwanathan et al., 2011a, 2011b). 

This is related to the available surface area for interaction with the solvent, or the fact that 

more cell walls were then disrupted by the milling, favouring cell content release. Decreasing 

the average particle diameter of soy flour from 223.4 to 89.5 µm, increased the protein 

recovery from 40 to 52% (Russin et al., 2007). The maximum recovery of protein by 

extraction was achieved from a fine fraction of particles with a particle size below 75 µm; 

97% and 93% from soybean flour and okara flour, respectively (Vishwanathan et al., 2011a). 

The effects of particle size during wet milling of soybeans to produce soybase has also been 

reported (Vishwanathan et al., 2011b). Particle size (364 to 182 µm) was found to have an 

inverse relationship with protein recovery (78.8 to 89.3%) (Vishwanathan et al., 2011b). 

Similar results were also obtained using a stone grinder and a colloidal mill (Vishwanathan et 

al., 2011b). These sizes quoted are slightly greater than those discussed previously relating to 

the size of intact cotyledon cells in Section 2 and to those measured during dry processing. 

This can be attributed to the particles swelling to larger sizes when in contact with water 

compared to the dry milling counterpart. Laser diffraction techniques to measure the particle 

size can also overestimate the size of structures; the technique cannot differentiate between a 

mass of intact cells and a cage-like structure of cell walls with the contents extracted. 

Campbell and Glatz (2009) argued that only broken soybean cells in the outer layer of 

soybean particles can release their content. Hence only soybean particles with a diameter as 

large as one or two soybean cells may fully release their content (if broken), as particles with 

larger diameters will have soybean cells which are not in the outer layers. The model 

presented by Campbell and Glatz (2009) assumes that cotyledon cells are spherical with a 

length of 55 μm (an average of 30 and 80 μm, see section 2) and that the processed soybean 
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particles from which contents are extracted are also spherical. So one may estimate a minimal 

particle diameter for full release from soybean particles of 110 µm (= 2 broken cells   55 

µm), although the structures of processed soybean microstructures we observed by confocal 

laser scanning microscopy (CLSM) did not fit with this model (Preece et al., 2015). 

3.3.2 Effect of pH and ionic strength 

There is a good correlation between extraction yield and solubility (see section 2.2) of soy 

protein as function of pH. The highest extraction yields from either milled soybeans or okara 

are observed at either low or high pH values (<3 and >6), and the lowest around the pI of the 

majority of soy proteins at 4.5 (Ma et al., 1996; Rosenthal et al., 1998; Vishwanathan et al., 

2011a). Interestingly, oil extraction yields follow the same pH correlation as the protein 

extraction yields, although oil itself cannot be (de)protonated. This can be explained by the 

properties of the surface active proteins that stabilise oil droplets within the aqueous extract 

(emulsions). In general a pH of about 8 – 8.5 is chosen for extraction. Although the solubility 

may be improved at higher pH values, the functional properties of the proteins may then be 

impaired because of disaggregation and hydrolysis of the proteins. The extraction medium 

can be alkalised using sodium bicarbonate (NaHCO3). This also increases the ionic strength, 

which also contributes to the solubility of soy protein (see section 2.2). 

3.3.3 Effect of temperature 

Proteins in their native state are more soluble than those that have been denatured. Therefore, 

the extraction temperature should ideally be kept below the soy protein denaturation 

temperature (<70°C, see also section 2.2) (Deak & Johnson, 2007; Rosenthal et al., 1998). 

However, increasing the temperatures aids in breaking the protein-carbohydrate complex, 

leading to an improved protein yield (Kasai & Ikehara, 2005). Other benefits of thermal 

treatments also include the inactivation of LOX and trypsin inhibitors. Thus, a sacrifice must 

be made for improved solubility versus denaturation of certain protein components.  
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Preece et al. (2015) visualised the effect of thermal treatment at 80°C and compared it to wet, 

ambient extraction (<42°C) at lab scale. Upon 30 min wet, ambient milling of soybeans, it 

was possible to extract 26% more protein (absolute value) in comparison to the thermal 

equivalent (80°C, 30 min). CLSM (Figure 7) confirmed aggregation of protein bodies 

(depicted in green) in- and outside of intact cotyledon cells (assigned purple in microscope 

software) upon extraction at 80°C. Interestingly, we could not visualise such aggregated 

protein bodies when the soybean extraction was performed at pilot plant scale, which might 

be caused by its much shorter milling time (Preece, et al., in press). 

The release of protein from okara was found to be more sensitive to temperature in 

comparison to flour and wet milling of soybean (Ma et al., 1996). Increasing the temperature 

from 25 to 90°C resulted in a progressive increase in the extraction of protein. This can be 

explained through the thermal processing previously experienced by the okara proteins during 

soybase production, leading to their denaturation and retarded release. 

3.3.4 Effect of solubilisation time 

The effect of incubation time of soy flour on protein extraction yield has been studied 

previously at lab-scale (Rosenthal et al., 1998). After a period of approximately 10 min at 

50°C, the protein yield plateaued at 75% for non-heat treated flour and 25% for heat treated 

samples. The rapid release rate of protein can be attributed to a short diffusion path offered by 

the fine flour, and follows first-order kinetics (unpublished Unilever results). Similar release 

rates as the ones for proteins were found for oil by Rosenthal et al. (1998) and us, which 

might be explained by the fact that most proteins are present on the surface of oil droplets 

(emulsions). Higher temperatures and smaller particles may result in faster release rates. 
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3.3.5 Protein concentration 

Proteins above a concentration of 5-6% (w/w) in soybase tend to aggregate and sediment 

(unpublished Unilever results), and therefore the liquid-to-solid ratio commonly used for 

whole soybeans is often around 6:1 or 7:1 w/w (40% protein in soybean / 7 = 5.7%). 

Although higher amounts of water may result in relatively more yield (see section 4), both the 

protein throughput and the protein concentration will be lower. The latter is important for 

further product formulation; e.g., one needs a soybase with a concentration well above 4% if 

one would like to make a soymilk with 3% protein as other ingredients need to be 

incorporated as well. 

3.4 SEPARATION AND EFFECT OF SOLID-TO-LIQUID RATIO 

For the removal of insoluble ingredients, typically filtration or centrifugal separation 

techniques are employed, with decanting the more frequent choice due to its continuous 

operation. For the production of soybase, where the product contains a variety of soy-based 

components, no further separation of streams is required. However, if it is essential to 

separate the fractions further, such as the oil phase, water-soluble and insoluble materials, a 3-

phase decanter would be more suitable. Successive extraction like double decanting, using a 

water-to-okara ratio of about 1:3 (w/w, equal to a solid content of ca. 5%), achieve higher 

yields (about 10-15%, depending on exact conditions). Please note that insolubility is here 

defined as ingredients which do not end up in the soybase, as some small and/or light solids 

can still end up in the soybase (e.g. denatured proteins, oil droplets, etc.). Insoluble 

ingredients are separated based on their density compared to the solvent in a decanter, 

resulting in a ‘milky’ soybase and the waste material okara. Particle size of insoluble particles 

also influences their separation during the recovery of components. Based on the principle of 

Stokes’ law, smaller particles are more difficult to separate from the bulk solution. 
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Okara (see Figure 8) has a surprisingly high moisture content of approximately 80% (Preece 

et al., 2015). We propose that this high moisture content is responsible for most of the protein 

losses during whole soybean extraction, especially as the amount of okara produced is quite 

high. It is about two times more in weight than hulled soybeans in a process similar to the one 

shown in Figure 6, and for tofu production a soybean/okara ratio of 1:1.2 (w/w) has been 

reported (Li et al., 2012). Surprisingly, others have not reported this cause for the low yield. 

We also hypothesise that the efficiency of the separation step is highly dependent on the 

liquid-to-solid ratio (also called water-to-bean ratio) because of the presence of okara. This is 

in contrast to what has been reported before by others, who argue that the use of more water 

results in more protein solubilisation (see below and Ma et al., 1996; Rosenthal et al., 1998; 

Sari et al., 2015; Vishwanathan et al., 2011a). However, we propose that, after a certain 

minimum needed to solubilise soy ingredients, the use of more water results in better 

separation efficiency as relatively less water stays in the okara. Therefore, we propose a new 

model in section 4. 

3.5 ENSURING SENSORIAL QUALITY AND A SAFE PRODUCT 

Soybase is heated to denature LOX and to hinder the effects of trypsin inhibitors (section 2.2), 

which cause digestive problems, if left untreated. Either steam injection or steam infusion can 

be used to increase the temperature to 121°C or higher. This unit operation may cause some 

denaturation or dissociation of proteins (Johnson & Synder, 1978), browning of the product 

by Maillard reactions, and cooked flavours (Kwok & Niranjan, 1995). Afterwards the soybase 

enters a vacuum tank for deodorising. The drop in pressure (from about 2 to 0.6 bar) and 

temperature (from about 121 to 80°C) facilitates off-flavour removal by flashing. The thermal 

and vacuum treatment can be carried out before or after separation of insoluble materials, 

which influences the properties of both soybase and okara. 
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The obtained soybase is then chilled but not sterile, although the microorganisms that 

survived the steam injection process are unlikely to grow during short-term storage. 

Furthermore, oxidation may take place when exposed to air in the processing facility and this 

is the main reason that soybase should be processed quickly. 
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3.6 PROCESS INTENSIFICATION OPTIONS 

To aid in the extraction of protein and other components from soy, a number of other unit 

operations can be employed. 

3.6.1 Enzyme-assisted extraction 

Enzyme-assisted extraction using protease was found to improve both the extraction of oil 

and protein from soy flour (Rosenthal et al., 2001; Sari et al., 2015). The effects of protease 

were also studied with positive effects in combination with membrane recovery by De Moura 

et al. (2011) and enhanced protein solubility from full fat extruded flakes (De Almeida et al., 

2014). Protease may improve the solubility of soy proteins, especially when they are 

denatured and/or aggregated. In general the smaller the proteins, the better their solubility. In 

addition, protease may cleave proteins from cell wall materials. Cellulases have also been 

used in an attempt to degrade cell walls, although the results were limited (Kasai et al., 2003, 

2004; Rosenthal et al., 2001). The main issues with cellulases are that most of them are not 

food-grade and that the food-grade enzymes are most active at pH 5; at this pH soy proteins 

tend to aggregate since their pI is 4.5 (see section 2.2). One enzyme that has shown promise in 

previous research (Rosset et al., 2014) is Viscozyme L, a multi-component carbohydrolase 

containing arabanase, cellulose, hemicellulose and xylanase. Viscozyme L resulted in a 

protein yield improvement of 23% at pH 9 from defatted soy flakes versus a control sample 

upon a 30 min incubation at a 1:20 solid-to-liquid ratio at 60°C (Rosset et al., 2014). 

Enzyme treatment times are usually long (30 min – hours), and expenses of both enzyme and 

processing are relatively high. One should also realise that optimal conditions for enzyme 

activity might not be similar to the optimal conditions of whole soybean extraction (e.g. pH of 

8 and high temperature, see above). 
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3.6.2 Cavitation-assisted extraction 

Cavitation is a phenomenon which has been widely studied within the food industry (Knorr et 

al., 2004), with improvements attributed to enhanced mass and heat transfer and cell 

disruption.  

3.6.2.1 Ultrasound-assisted extraction 

Ultrasound-assisted extraction has been studied at lab (Preece et al., 2017b) and pilot scale 

(Preece et al., in press) for enhancing the extraction of protein from soybeans, based on 

cavitation. Improvements in protein extraction yields of 11% and 12% were found for soy 

slurry and okara ultrasound treatments (20 kHz, 1 min, 50 °C) respectively from materials 

prepared at lab-scale. Ultrasound caused the disruption of aggregated protein in the aqueous 

phase, confirmed by CLSM (Preece et al., 2017b). When okara was prepared at pilot-scale, 

the improvement in protein extraction yield was less significant (4.2%), therefore was not 

recommended for industrial scale-up. Rationales for limited effects of ultrasound at pilot-scale 

include: less protein present within the okara for subsequent extraction with ultrasound due to 

shorter milling times and smaller energy intensities of the probe system versus the lab-scale 

system (Preece et al., in press). 

3.6.2.2 High pressure homogenisation 

High pressure homogenisation (HPH) is another unit operation based on cavitation which can 

improve extraction yields from soybean processing materials (Preece et al., 2017a). 

Improvements in yields were found to be a result of disruption of all intact storage cells, with 

a maximum total protein yield of 94% reported for okara solution with a single pass through a 

homogeniser at 100 MPa (Preece et al., 2017a). Debruyne (2006) mentioned that 

homogenisation can cause a negative effect on the separation efficiency. However, this was 

only the case after multiple passes of okara solution or soy slurry through the homogeniser at 

100 MPa (Preece et al., 2017a). Additional investigations are required to assess the scalability 
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of this promising result obtained using a lab-scale homogeniser as well as the sensory and 

physico-chemical properties of the final soy-based product. Blockages of the homogeniser 

also needs to be avoided and, if not prevented, could result in halting the production of 

soybase. 

3.6.3 Double decanting 

Decreasing the moisture content of okara will improve the separation yields (see also next 

section). Washing of the okara results in an increase in the extraction of 10% or more extra 

soybase at an industrial scale (Debruyne, 2006). Options to get drier okara may include the 

use of centrifugal separation techniques using a higher g-time than the standard decanter (e.g. 

using a Sedicanter
®
 (Flottweg Separation Technology, 2016)). 

3.6.4 Belt press 

Another option might be the addition of an expression device such as a belt press (also 

available from Flottweg or other companies) at the end of the current process, which may 

reduce the water content of okara from 80 to 65-70%. Please note that this is equal to an about 

40% weight reduction. Direct treatment of okara is desirable versus re-diluting the waste 

stream. In this example filter press, okara is fed between two belts, the press belt and filter 

belt. The drive rollers cause these belts to turn, feeding the okara in between the press rollers 

that apply pressure to the okara. The filter belt contains holes that are designed to allow the 

filtrate to squeeze out into the collection area. The hole size will require investigation to 

achieve a similar solid content as the soybase, as well as being sufficiently large enough to 

not be frequently blocked with solids. If necessary, a vacuum can be applied to the filter bed 

to draw through more of the filtrate. This new soybase should be analysed for composition 

and sensory perception, in comparison to decanted soybase. Filter pressing is commonly 

utilised during wastewater treatment; e.g. raw sludge slurry containing 55% solids has been 

dewatered to 95% solids in previous reports (Chen, et al., 2002). Unfortunately, the design of 
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the belt press is quite open to air in the processing facility and therefore hygienic control may 

not be easy.  
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4. A NOVEL MODEL FOR EXTRACTION 

Previously a model was derived by Rosenthal et al. (1998), which described their results very 

well, relating the yield to the concentration in the ‘solid’ phase using a partition coefficient. 

The use of more water (higher liquid-to-solid ratio) results in more protein dissolution and 

therefore higher extraction yields. The difference in protein concentration of solvent versus 

biomass is widely proposed as the driving force for protein going into solution and should 

explain that more yield is achieved at higher liquid-to-solid ratios (see e.g. Sari et al., 2015). 

Some of our own data could be fitted well to the model of Rosenthal et al. (1998), especially 

when performed at ambient temperature when protein aggregation did not occur (see Preece et 

al. (2015) for more information). The protein extraction yield could also be predicted well 

using another mechanistic model developed by Campbell and Glatz (2009) and measured 

volume-weighted mean diameter values (D[4,3]) (see section 3.3.1). However, this model did 

not fit with the processed soybean microstructures we observed by CLSM (Preece et al., 

2015). We propose that, after a certain minimum of water needed to solubilise soy 

ingredients, protein dissolution in the aqueous phase is not the limiting factor in most cases. It 

is also hard to see how extracted protein is going back to the solid phase in beans (as is 

suggested in the equilibrium model by Rosenthal et al. (1998)). Moreover, especially at high 

temperature of 80°C and above at which whole bean extraction is commonly performed, soy 

proteins are mainly present (75-100%) in an aggregated, dispersed form with a particle size of 

about 0.1-1 micron in the liquid phase (soybase) (unpublished Unilever data). 

Therefore, we would like to propose a new model. The protein extraction yield can be defined 

by the amount of protein in the soybase divided by the total amount of protein in both the 

soybase and okara; this yield is a function of both protein availability and separation 

efficiency as well: 
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                                                                          (1) 

where: 

S mass of soybase 

O mass of okara 

xp,s mass fraction of protein in soybase 

xp,o mass fraction of protein in okara 

Protein availability is here defined as the % of proteins that can be solubilised or dispersed in 

the extraction medium, here water. It is affected by the mechanical disruption of cells and 

solubilisation of compounds, whereas separation efficiency deals directly with the removal of 

solid materials. We hypothesise that the main losses in soy protein extraction yield are 

especially due to the high amount of okara and its water content, containing available 

proteins. Often the separation efficiency is not optimal. Of course, losses may also occur if the 

milling step is not optimal. After separation, okara still contains a large volume of water 

(about 80% w/w, see Figure 8) and commonly about 1-2 times more okara is produced than 

soybeans used in whole soybean extraction (see section 3.4). We propose that this high 

amount of water and the large amount of okara to be separated are the fundamental reasons 

why separation is more efficient at a higher liquid-to-solid ratio. This is illustrated by the 

equations and figure below. 

           (2) 

where: 

B dry mass of soybeans 
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W mass of water (either added or already in the soybeans) 

The mass here or below can be in weight (kg or ton), and can also be expressed per time 

(mass flow rate) when using a continuous set-up, without accumulation. 

Assuming that the available proteins are equally distributed over the aqueous phase of 

soybase and the aqueous phase of okara,  the separation efficiency can then be calculated by 

taking the ratio of the water phase in the soybase and the total water phase (in both soybase 

and okara): 

                           
      

               
      (3) 

where xw,s and xw,o  are the fractions of water in the soybase and okara, respectively. Please 

note that the protein concentration is not present in equation 3, so it is applicable to soybeans 

with different protein contents as well as to partially solubilised protein conditions. In other 

words, the difference in protein concentration of solvent versus biomass, as widely proposed 

as the driving force for protein going into solution (see e.g. Ma et al., 1996; Rosenthal et al., 

1996; Sari et al., 2015; Vishwanathan et al., 2011a), does not play a role here. 

The liquid (L)-to-solid (S) ratio can be expressed as: 

 

 
  

 

 
  (4) 

Rearrangement and addition of equation 4 into equation 2 and then 3 results into: 

                          
 

 
    

 

 
          

    
    

 
     (5) 

Figure 9 below shows that the separation efficiency becomes more efficient when more water 

is used. Again, this is not due to high protein solubility, but there is simply more aqueous 

soybase compared to (the water in) the okara phase at relatively higher water contents.  
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In the figure above we have also plotted the measured protein yields of whole soybean 

extraction performed at our pilot plant in Unilever Research & Development facilities, 

Vlaardingen, as well as the separation efficiency calculated using equation 5 (no correlation 

factor used here). The experimental data agrees very well with the theoretical lines. 

Interestingly, the calculated separation efficiencies using real flow rate data of the different 

masses from pilot-scale experiments are most often just slightly above the measured protein 

yield data (0.5-6% greater, see Figure 9). This indicates that very little protein was 

unavailable for extraction in our pilot-scale experiments; about 92-99% was available (see 

equation 1). Indeed we have found by CLSM that the milling process in the pilot plant was 

very efficient as no aggregated protein bodies outside cells and not many intact cells were 

found during soybean experiments at pilot-scale, in contrast to soybean extraction performed 

at lab scale (Preece et al., in press). During our lab scale extraction from whole soybeans 

(Preece et al., 2015), the yields were lower due to observed protein aggregation or inefficient 

milling. However, a similar trend in yields as a function of liquid-to-solid ratio can still be 

observed and one may then calculate the yield by multiplying the separation efficiency with 

the amount of protein that is available for extraction (from 0-100%) according to equation 1. 

Unfortunately, such high yields as shown in Figure 9 are not common at factory scale, 

probably due to quick wear of the mills resulting in lower % of available protein.  

The model above assumes that the protein or other ingredient concentration is equal in all 

phases, especially in the soybase and okara phases. This may not completely be true. Despite 

the very good agreement between theory and experimental data, we have measured that the 

protein content was often greater in okara than in the soybase during this pilot study (0.96 

times at L/S of 1:6 to 1.3 times at L/S at 1:11 or higher). Both the protein concentration in the 

soybase (xp,s) and in the okara (xp,o) decreased with higher L/S ratio, but not with the same 

magnitude. 
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We also derived yield data from the study by Rosenthal et al. (1998) and plotted these in 

Figure 9 as well. Again, the theory and practical data agree very well with each other, 

although Rosenthal et al. (1998) obtained these with a very different system, with extraction 

from soybean flour at 50°C and pH 8 at lab-scale for 15 min whilst stirring at 200 rpm. They 

did not report amounts of okara and did not explain with their model the lower yield obtained 

at 80°C. One should also not neglect the differences in the scale of centrifuge used; Rosenthal 

et al. (1998) used a bench top centrifuge, whereas the measured protein yield represents a 

pilot-scale operation, using a decanter centrifuge. However, similar separation efficiencies 

(ca. 70%) were obtained when comparing the decanter centrifuge used by Preece et al. (in 

press) and a bench top centrifuge operated at 4330 × g for 10 min. 

The effects of okara mass (O) and okara moisture content (xw,o) are also shown in Figure 9. 

Reducing the moisture content from 80%, typically achieved using a decanter centrifuge, to 

65% improved the separation efficiency. A higher separation efficiency is also achieved if a 

mass reduction of okara production is attained. In section 3.6 we discussed the use of belt 

press, which can reduce xw,o from 80 to 65% and O by 40% (e.g. soybean/okara ratio (B/O) 

from 2.3 to 1/1.4, w/w). Figure 9 shows that an improvement of yield by 13-18% might then 

be achieved at L/S values of 7-5, respectively. 

Please note that equation 5 can also be expressed with a solid-to-liquid ratio (instead of 

liquid-to-solid ratio) in a similar way, and this will give an almost linear plot that is very 

comparable to the results published by Rosenthal et al. (1998). Please also note that the 

extraction yield of oil and solids follow a similar dependency as function of liquid-to-solid 

ratio, although their values are not the same as the protein yield (Preece et al., 2017a, 2017b; 

Rosenthal et al., 1998). 
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As we argued above, a good fit with theory and experimental data is not a full proof of our 

model. The model is simple but not perfect, as shown by the measured difference in protein 

concentration in soybase and okara. However, we based our model on the soybean 

microstructures seen upon processing (see Figure 7 and previous article (Preece et al., 2015)) 

and highlight for the first time (as far as we know) that the well-known L/S ratio effect on 

protein extraction yield is caused by the amount of okara and its moisture content.  
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5. CONCLUSIONS 

In this review, aqueous extraction from whole soybeans has been detailed, with a focus on 

protein extraction. During a whole soybean extraction process, soybeans are first ground, and 

the intracellular components are then extracted into the medium followed by separation of the 

okara waste stream. The availability of a component depends on particle size of the plant 

matrix after grinding, the properties of the aqueous medium used (pH, ionic strength, 

temperature) and the incubation time. High temperature is needed to inactivate LOX and 

trypsin inhibitors, so a sacrifice is required when considering processing conditions for 

soybean processing between protein solubility and inactivation of anti-nutritional proteins. 

The amount of water used influences the separation efficiency and therefore the yield. This 

could be explained by a novel model based on the mass balance over the water phases. The 

best process intensification options to consider might be the use of high pressure 

homogenisation and ways to obtain drier okara (e.g. decanters with higher centrifugal force, 

belt press). Less promising options seem to be the use of enzymes or ultrasound. The best, 

total extraction process for obtaining the final product might be a compromise between the 

optimal conditions of each individual step. Both microstructural control and process science 

should play a role in the design of an optimal process. Aspects like sensorial quality and 

throughput (which affect costs) should be taken into account as well. 

The current review focuses on whole soybean extraction processes, but we believe that some 

of these insights and also the model can be utilised for the study of other soy protein 

extraction processes (like SPC or SPI, see Figure 1). Extraction of other plant protein (such as 

pea, canola and lupin) and many other extraction processes from biomass in which the 

moisture content of the waste stream is high and entraps a notable amount of the desired 

component can also benefit from understanding the discussed information. 
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FIGURE CAPTIONS 

Figure 1. Simplified scheme of processes applied to soybeans to produce common soy ingredients. Please refer 

to the text and e.g. Riaz (2006) & Imram et al. (2003) for more information about these ingredients. 

Figure 2. Composition of a soybean preferably chosen for soymilk production on a dry and wet basis. Data from 

Imram et al. (2003). 

Figure 3. Image of soybeans (about 5 mm in size) and scanning electron microscopy (SEM) image of a pre-

soaked soybean. Within this micrograph, the seed coat (hull) and swollen cotyledon cells containing protein 

bodies can be observed. 

Figure 4. SEM micrograph of soybean cell without prior pre-soaking (Preece et al.,2017b). Various components 

are labelled on the image: oil bodies (OB), protein bodies (PB), phytic acid (PA; spherical structures) and 

artefacts (A; white dots) can be seen. Scale bar represents 2 microns. 

Figure 5. Examples of common, large-scale processes for soybase preparation. Typically, soybeans are dry 

cleaned first to remove dirt and damaged soybeans. Process 1 describes the Tetra Alwin process from Tetra Pak 

(Imram et al., 2003, see also Figure 6); process 2 shows a variation in the order of processing with steam 

injection prior to the decanter; and process 3 is an example of an airless, cold grinding extraction process, 

utilised by ProSoya (Gupta, 2014). 

Figure 6. Tetra Alwin
®
 Soy process line (courtesy of Tetra Pak; published with their permission) is an example 

of a commercially available for the continuous production of soybase directly from soybeans (Imram et al., 

2003). It is the same as Process 1 in Figure 5. Numbers of the unit operations are: 1) Grinding of soybeans by 

mills; 2) heating of water; 3) pH adjustment to 8 and increase of ionic strength by addition of sodium carbonate 

(optional); 4) separation by use of a decanter; 5) double decanting (optional); 6) CIP unit, cleaning in place; 7) 

steam injection to increase temperature to 121°C or higher; 8) spiral to increase holding time; 9) flashing into a 

deodorisation tank under reduced pressure; 10) cooling unit to cool to about 5°C. 

Figure 7. CLSM image of soy slurry visualised using acridine orange after grinding soybeans at 80°C. The green 

colour of the protein bodies indicates that these are relatively hydrophobic and thus denatured, as protein bodies 

inside cotyledon cells after grinding at ambient temperature are purple and not seen outside these cells. 

Figure 8. Photograph of okara produced at Unilever Research & Development facilities, Vlaardingen. It contains 

a surprisingly high water content of about 80%, most likely due to remaining, although most often broken, cell 

wall structures in which water becomes bound to via hydrogen bonding (see also the CLSM image of okara 

shown by Preece et al.(2015)). 

Figure 9. Separation efficiency or yield as a function of liquid-to-solid ratio. The separation efficiency lines were 

calculated using equation 5, assuming a mass of okara is either 1.4 or 2.3 times the mass of soybeans used. Also 

plotted in this figure are measured protein yields from a continuous soybean extraction process under alkaline 

conditions at 85°C (like Process 1, see Figure 5 or Figure 6) at pilot scale at Unilever R&D Vlaardingen (●). The 

slurry, at an operating flow rate of 200 kg h
-1

, was fed into a decanter centrifuge operating at a g-force-time of 

1.5 × 10
5
 g-s. Details of the pilot plant set-up can be found in the research by Preece et al., (in press). Separation 

efficiencies were also calculated using equation 5 and real data, i.e. measured flow rates of soybeans (corrected 

for their moisture content), water and okara (X). On average the okara to dry bean flow rate ratio during the pilot 

plant experiments was 2.3 and the xw,o was approximately 0.8. Finally, the yields as obtained from Rosenthal et 

al. (1998) are also plotted here (▲). 
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