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Models invoking the chemical master equation are used in many areas of science, and, hence, their
simulation is of interest to many researchers. The complexity of the problems at hand often requires
considerable computational power, so a large number of algorithms have been developed to speed
up simulations. However, a drawback of many of these algorithms is that their implementation is
more complicated than, for instance, the Gillespie algorithm, which is widely used to simulate the
chemical master equation, and can be implemented with a few lines of code. Here, we present an
algorithm which does not modify the way in which the master equation is solved, but instead modifies
the transition rates. It works for all models in which reversible reactions occur by replacing such
reversible reactions with effective net reactions. Examples of such systems include reaction-diffusion
systems, in which diffusion is modelled by a random walk. The random movement of particles
between neighbouring sites is then replaced with a net random flux. Furthermore, as we modify
the transition rates of the model, rather than its implementation on a computer, our method can
be combined with existing algorithms that were designed to speed up simulations of the stochastic
master equation. By focusing on some specific models, we show how our algorithm can significantly
speed up model simulations while maintaining essential features of the original model. C 2016 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4942413]

I. INTRODUCTION

Stochastic models are used in many areas of physics,
chemistry and biology to describe random fluctuations
associated with uncertainties in the external environment and
the intrinsic discreteness of the species of interest, which
could be individual atoms, molecules, cells, or animals.1,2

The chemical master equation is commonly used to determine
the time evolution of the probability density function which
describes the current state of the system of interest. Such a
state could, for instance, be defined by the current number of
molecules of each kind in a model of chemical reactions,3–5

the number of animals of each species in an ecological model,6

or the number of cells in an animal tissue.7–9 The problem
which remains is then to solve for the time-evolution of the
probability density function.

As analytic solutions to the master equations are rarely
obtainable, one typically aims to simplify the master equation,
(e.g., by the van Kampen expansion1), or one numerically
computes solutions of the master equation. A commonly used
algorithm for such simulations is the Gillespie algorithm.10,11

It is exact in the sense that every reaction is taken into account,
and no stochastic information is lost in the simulation process.
However, this makes it computationally expensive, as for
each event, several potentially expensive computational steps,
such as the simulation of random numbers, the recalculation

of propensities, or the identification of the next occurring
reaction need to be performed. Additionally, in many cases,
the large number of elementary reactions involved makes
the use of the conventional Gillespie algorithm practically
unfeasible.

For this purpose, a number of algorithms have been
developed in order to speed up the simulation of the master
equation. Some of these are hybrid methods that switch from
a stochastic to the corresponding mean field model12–16 in
regions of space or time where the latter are reasonable
approximations to the stochastic equations. Others, such as
the tau-leap method,17–22 simulate several reactions within
one time step. The related work focuses on a more efficient
simulation of stochastic models not based on the chemical
master equation.23–32

A common feature of the aforementioned methods is
that their implementation is typically more complex than for
the Gillespie algorithm, which can be implemented with a
few lines of code. In this paper, we introduce an algorithm
which does not affect the solution method of the master
equation, but rather changes the transition rates of the master
equation itself. As a result, existing algorithms (and their
optimisations) can be used, and only the definition of the
transition rates needs to be changed. The idea is to group
together reversible reactions. For example, a particle which
is created and subsequently annihilated before it reacts with
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any other particle has no observable effect. Likewise, in a
stochastic diffusion problem on a lattice, if two particles of
the same type swap sites, this has no observable effect on the
state of the system, provided no reactions happen while the
particles switch locations. Our algorithm involves combining
transition rates for reactions which have opposing effects to
produce effective rates that describe the net effect of the
two reactions. The model, with the modified transition rates,
is designed such that the mean behaviour is the same as
that of the original stochastic model, but typically stochastic
effects such as variance are reduced. Hence, we suggest
that the modified transition rates are used when the number
of particles involved in the reaction exceeds a threshold
value chosen such that stochastic effects corresponding to the
reaction of the transition rate which we modify can be ignored.
This is similar to methods such as Ref. 16 which replace parts
of a stochastic model with the mean-field description of the
same model. In the mean-field limit of a stochastic model,
the dynamics of two opposing reactions is also only taken
into account in a net, effective way. However, unlike the
mean-field limit, our method is based entirely on the chemical
master equation. Hence, it is easier to implement than most
other hybrid methods, as the modifications to our algorithm
are based on the transition rates and, hence, can be easily
combined with transition rates of other reactions which are
not optimised. Furthermore, in contrast to other methods,16,28

which approximate a stochastic process in some regions by
its mean-field description, our method does not encounter
technical challenges at the interface of the stochastic and
mean field domains.

The remainder of the paper is organised as follows.
We discuss a simple birth-death process in Section II. This
example serves to introduce our algorithm and can have
applications in complex reaction networks where at least
some reactions are reversible. In Section III, we focus on
the stochastic diffusion of particles randomly migrating on
a lattice. This is a good test of our algorithm since when
two particles move in opposite directions, the system returns
to its original state. We show that our model of stochastic
diffusion accurately preserves stochastic properties such as
first-passage times. Our study of stochastic diffusion is also
important for understanding how our algorithm will perform
for the more general case of reaction-diffusion systems. For
instance, when diffusion occurs on a faster time scale relative
to reactions, many diffusive events may occur which do
not affect the reactions, but slow down simulations of the
system. In Section IV A, we focus on the stochastic Fisher-
Kolmogorov system to understand how our algorithm can
increase simulation speed significantly while maintaining
essential stochastic features, such as the modification of
the wave speed due to stochastic effects. In Section IV B,
we study a one-dimensional model of Min oscillations.
This multi-species example illustrates how our algorithm
performs when some molecular species are present at low
copy numbers, leading to stochastic effects, while others
are present in high numbers, making simulations slow. Again,
our method can markedly improve the simulation speed, while
preserving the statistical distributions of species with low copy
numbers.

II. CREATION AND ANNIHILATION PROCESS

We consider a spatially averaged model in which particles
of type A can either divide or annihilate when they hit another
particle of the same type,

A
λ−→ 2A,

2A
µ
−→ A.

(1)

Here, λ and µ are rate constants associated with division and
annihilation, i.e., for small times t, λt + O(t2) is the probability
that a randomly chosen particle divides, and 2µt + O(t2) is
the probability that one of two randomly chosen particles
annihilates the other. Such a model is the simplest to which our
algorithm can be applied, as it consists of only two reactions
which have equal and opposite effects. Our algorithm replaces
the creation and annihilation reactions with a net reaction
which, depending on whether creation or annihilation is more
likely, will itself be a creation or annihilation reaction with a
rate given by the difference of the rates of the original model.

We model this process with the chemical master equation,
denoted by P(N, t), the probability density function for N
particles to be present in the system at time t,

dP(N, t)
dt

=
�(E− − 1)TN+1|N + (E+ − 1)TN−1|N

�

× P(N, t), N ∈ N. (2)

Here, E± are shift operators that shift the number of particles
N by ±1, and TN+1|N (TN−1|N) denote the transition rates for
the creation (annihilation) of a particle, so that

TN+1|N = λN,

TN−1|N = µN(N − 1). (3)

We note that T0|1 = T−1|0 = 0, so the model ensures that neither
extinction nor negative particle numbers can occur if N is
initially positive. From Equations (2) and (3) we can see that
if λN > µN(N − 1), then a new particle is more likely to
appear than to disappear. Conversely, if λN < µN(N − 1),
particles will be more likely to disappear. We thus define a
second stochastic process with the same master equation (2),
but transition rates given by

TN+1|N =max (λN − µN(N − 1),0) ,
TN−1|N =max (µN(N − 1) − λN,0) . (4)

It is straightforward to show that, if N2 ≈ N
2
, which can be

motivated, for instance, by the van-Kampen expansion1 in the
limit of large particle numbers, then the model with transition
rates (4) leads to the mean-field equation

dN
dt
≈ λN − µN(N − 1), N =


N

N P(N, t), (5)

which is identical to that for the model with transition rates
(3). However, the behaviours of (3) and (4) for low particle
numbers and low ratios of λ

µ
are quite different (see also

Figure 1 and the discussion below). We note that for a given
state, transition rates (4) are always bounded above by those in
(3). Therefore, a global change in state will typically involve
fewer stochastic events in (4) than in (3) and be faster to
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FIG. 1. Birth-death process with parameters λ = 5, µ = 1, and N = 20 at
t = 0, simulated with the original stochastic model (3) (obtained by setting
the threshold Θ= 100), the difference model (4) (Θ= 0) and the conditional
difference model (6) with Θ= 10, and the mean-field ODE (5).

simulate with the Gillespie algorithm. We henceforth refer to
(4) as the difference model, as it is constructed by taking the
differences of reversible reactions in the original, exact model
(3). Having established that for large particle numbers, (4)
and (3) behave similarly, and that for small particle numbers,
they do not, we now introduce a model which conditionally
switches between transition rates (3) and (4),

TN+1|N =



max (λN − µN(N − 1),0) if N ≥ Θ,
λN otherwise,

TN−1|N =



max (µN(N − 1) − λN,0) if N ≥ Θ,
µN(N − 1) otherwise.

(6)

Here, we have introduced a threshold Θ such that when
N < Θ, we use the exact model (3), and when N ≥ Θ, we
approximate (3) by the difference model (4). We will refer
to (6) as the conditional difference model. If Θ → ∞, we
recover (3), whereas (4) is obtained for Θ = 0. Note that
while (6) leads to the same mean-field equation as (3), its
stochastic properties are, generally, different. We can view (6)
as an approximation to (3), and the challenge is to choose
Θ so that simulation results are in close agreement with
(3). Figure 1 shows a typical simulation of the birth-death
process with parameters λ = 5, µ = 1, and N = 20 at t = 0.
We compare results generated from the exact model (3), the
difference model (4), the conditional difference model (6) with
a threshold value Θ = 10 and the corresponding ODE model,
Equation (5). We see that the behaviour of the conditional
difference model is qualitatively similar to that of the original
model. By contrast, the number of particles in the difference
model decays randomly until it reaches N = λ

µ
+ 1 = 6, which

is an absorbing state in the difference model. Hence, the
difference model behaves qualitatively differently from the
original, exact model, and the conditional difference model
when N ≈ 6. It behaves more like the mean-field ODE solution
because of the absorbing state, which is not present in the
original model (3), and when N > 6, particles in the difference
model can only decay, i.e., cannot be created. In Figure S1
of the supplementary material,33 we show the distribution of
numbers for two thresholds, Θ = 0,10, at two times, shortly
after the start of the simulations, t = 0.01, and at the long

time, t = 10, when the solution is close to its steady state.
In each case, we compare the results to those of the exact
model, which is obtained by fixing Θ = 100. We note that the
distributions at t = 0.01 are similar for all cases, but when
the threshold is less than the initial condition, the distribution
is bounded above by the initial condition. At t = 10, we
notice that for Θ = 0, the distribution approximates the delta
distribution, whereas when Θ = 10, it closely matches that for
the exact model. We explain these results by noting that in the
exact model, particle numbers exceed N = 10 only with low
probability.

A more detailed comparison between the exact model and
its approximation by the difference and conditional difference
models will be performed in the sections that follow, where
we consider the examples of diffusion and reaction-diffusion
problems.

III. STOCHASTIC DIFFUSION MODELS

We now consider stochastic versions of the one-
dimensional diffusion equation,

∂n
∂t
= D

∂2n
∂x2 , (7)

defined for x ∈ [0,L] and t ≥ 0, and which is supplemented
with boundary conditions which we do not specify here for
generality. In Equation (7), D > 0 is the constant diffusion
coefficient, and the concentration n = n(x, t) denotes the
number of particles per unit length. We keep all quantities
in dimensional form to better understand the physics. We
discretise the spatial domain into kmax equally spaced
compartments of size h. We denote by Nk(t) the number
of particles in compartment k at time t, dropping the time
dependence when no confusion is possible, and consider the
master equation

dP(Nj, t)
dt

=

k


l=k±1

(E+k E−l − 1)TNk−1,Nl+1|Nk,Nl
P(Nj, t),

(8)

where P(Nj, t) denotes the probability density function that
there are Nj particles in compartment j at time t, for
j = 1, . . . , kmax. Furthermore, TNk−1,Nl+1|Nk,Nl

denotes the
transition rate from a state in which there are Nk,Nl particles
in compartments k and l, respectively, to one in which
there are Nk − 1 and Nl + 1 particles in those compartments,
while particle numbers in all other compartments remain
constant. Finally, the operators E±

k
are defined by increasing

(decreasing) Nk by one. A simple random walk model is
defined by the transition rates

TNk−1,Nk±1+1|Nk,Nk±1 =
D
h2 Nk . (9)

Here, D is the diffusion coefficient that appears in Equation (7).
Henceforth, we refer to the model with transition rates (9) as
the exact model of stochastic diffusion. As the transition rate
is proportional to the number of particles in the outgoing box
k, this indicates that the random walkers do not interact. The
mean field equations associated with this stochastic model are
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given by

∂Nk

∂t
=

D
h2

(
Nk+1 − 2Nk + Nk−1

)
. (10)

Equation (10) can be viewed as an explicit finite-difference
approximation of the diffusion equation (7) if we identify
the densities with the particle numbers via Nk(t) = hn(x, t),
x = kh. We now propose the following alternative transition
rates for a model of stochastic diffusion:

TNk−1,Nk±1+1|Nk,Nk±1 =
D
h2 max (Nk − Nk±1,0) . (11)

Here, a random walker moves from compartment k to
compartment k ± 1 only if the number of particles in the
outgoing box k exceeds the number in the incoming box
k ± 1. Transition rates (11) give rise to the same mean field
equations (10) as transition rates (9) and, hence, also lead
to the diffusion equation in the continuum limit. Indeed, the
net average flux between neighboring compartments implied
by transition rates (11) is the same as that implied by (9).
However, we can expect that the noise associated with (9) will
be larger, since the transition rates (11) are bounded above by
the transition rates (9). In situations where noise changes the
system dynamics, (11) might not be suitable. For this reason,
we consider a combination of (9) and (11). We introduce
a non-negative threshold Θ and the conditional difference
model

TNk−1,Nk±1+1|Nk,Nk±1

=




D
h2 max (Nk − Nk±1,0) if Nk,Nk±1 ≥ Θ,
D
h2 Nk otherwise.

(12)

We motivate (12) by noting that (9) represents the exact
model of the random walkers, and should be used when
particle numbers are low, since typically then relative noise
levels are significant. When particle numbers are high,
i.e., Nk,Nk±1 ≥ Θ, we approximate (9) by (11), as for high
particle numbers, relative noise levels are typically low. We
note that the mean of (11) and (9) are both given by (10), and
Θ should be scaled with the lattice constant h. In particular,
when the lattice constant is small, even if the total number
of particles present in the system is large, the number of
particles per compartment may not be large. In such cases, the
threshold would need to be reduced, but with caution since
the application of (11) might lead to restrictive suppression of
fluctuations.

We now aim to identify situations for which transition
rates (9), (11), and (12) yield similar behaviour, and when
they do not.

A. First-passage time problems

In many transport problems, it is important to know
when a particle has first reached a certain site. We thus
begin by investigating a first-passage time problem. We also
refer the reader to Ref. 34 for more studies of first-passage
time problems. We suppose that initially N0 particles are
located at the left boundary compartment k = 1, and all
other compartments are empty. We impose Dirichlet boundary

FIG. 2. First-passage times for N 0= 1000 random walkers starting at com-
partment k = 1 at time 0, with D = 10. We present the average first-passage
time for conventional random walkers based on the exact model defined by
(9) (solid line) and for the random walkers based on the difference model
(11) (dashed line). The results are averaged over 1024 simulations and are in
excellent agreement.

conditions, so that N1 = N0 and Nkmax = 0 at all times, and
the lattice constant is h = 1. We define the first-passage time
at site k to be the time at which a particle first reaches
compartment k. In Figure 2, we compare the average first-
passage times obtained by averaging 1024 realisations of
the exact random walk model (9), which coincides with the
conditional difference model when Θ → ∞, and the random
walk based on the difference model (11), which coincides with
the conditional difference model when Θ = 0. As expected,
there is excellent agreement between the two models, because
the first-passage times represent the time at which a single
particle enters an empty compartment, and the transition
rates for entry into an empty compartment are identical for
(9) and (11).

When studying problems such as a reaction-diffusion
system in which two, or more, particles of the same species
need to be present at the same time and place, we should
also establish whether changes in the transition rates of the
random walk affect the time until several particles reach the
same location. In such situations, we are concerned with
the distribution of first times at which two particles are
present in the same compartment. The first-passage times
for two particles are shown in Figure 3. We notice that
the difference model (11) predicts first passage times which
are slightly longer than those predicted by the conditional
difference model (12) with a threshold Θ = 5, whose first-
passage times are indistinguishable from those of the exact
random walk model (9). This is because when one particle
is present in a compartment, the rate at which a second
particle enters that compartment is lower for the difference
model, but identical for the conditional difference model
when Θ ≥ 2 and the exact random walk model. Hence,
when the system of interest involves reactions with two or
more particles, the threshold needs to be set suitably high.
In Figure S2 of the supplementary material,33 we present
histograms of the number of particles in a given box at a
given time, for the same scenario as above, comparing the
distributions associated with different thresholds to those
associated with the exact model Θ = ∞. We find that,
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FIG. 3. The first time when a compartment k contains two particles is shown
as a function of k for the exact random walk (9) (solid line, Θ=∞), the
random walk based on the difference model (11) (dotted line, Θ= 0) as well
as the conditional difference model (12) (dashed line, Θ= 5). Each plot is
obtained by averaging 1024 simulations, with D = 10 and N 0= 1000 random
walkers at time 0 in compartment k = 1. The graphs for the exact random
walk and the conditional difference model with Θ= 5 coincide.

in general, lower thresholds lead to narrower distributions
centered around the same mean, and that as the threshold
levels increase, the distribution approaches that obtained from
the exact model. In Figure S3 of the supplementary material33

we confirm that, as the threshold increases, the standard
deviations of the exact model are recovered in a switch-like
manner.

In Table I, we show the average number of stochastic
events needed to ensure that all lattice sites have been visited
at least once by at least one particle. We fix D = 1 and
average over 1024 simulations. We see that the random
walk difference model (11) needs only 4% of the number
of events that the conventional random walk model (9)
needs, with the conditional difference model (12) offering
similar performance gains, although these improve as the
threshold Θ is reduced. We remark also that the time to
simulate a stochastic model with the conventional Gillespie
algorithm is proportional to the total number of events that
occur, since we repeat the same steps when simulating a
single event. We conclude that the conditional difference
model preserves the essential stochastic features of the
exact random walk model while being considerably faster to
simulate.

TABLE I. Comparison of the average number of Gillespie events needed to
simulate the first-passage time problem, shown in Figure 2, for the exact
random walk model (9), the difference model (11), and the conditional dif-
ference model (12) with two different thresholds Θ= 5,10. The simulations
were stopped when every lattice site had been visited at least once by at least
one particle.

Number of Gillespie events

N 0= 100 N 0= 1000

Exact random walk (9) 1.21 × 106 7.97 × 106

Difference model (11) 4.68 × 104 3.04 × 105

Conditional difference model (12), Θ= 5 7.35 × 104 3.23 × 105

Conditional difference model (12), Θ= 10 1.06 × 105 4.88 × 105

IV. REACTION-DIFFUSION MODELS

A. Stochastic Fisher-Kolmogorov equation

We now investigate a stochastic version of the Fisher-
Kolmogorov equation. This equation can be viewed as
a spatially-resolved birth-death process, in which identical
particles move in a diffusive manner, divide and/or annihilate.
The stochastic model is defined by the master equation

dP(Nj, t)
dt

=

k


l=k±1

(E+k E−l − 1)TNk−1,Nl+1|Nk,Nl
P(Nj, t)

+

k

�(E−k − 1)TNk+1|Nk
+ (E+1

k − 1)TNk−1|Nk

�

× P(Nj, t), (13)

where the birth and death transition rates are defined by

TNk+1|Nk
= λNk,

TNk−1|Nk
=

λ

Ωh
Nk(Nk − 1), (14)

and the random walk transition rates are defined by either (9),
(11), or (12). In (14), λ is a growth rate and hΩ is a measure of
the carrying capacity of a single compartment and, as before,
h denotes the lattice constant. Consequently, if Nk is larger
than hΩ, then the annihilation process dominates the creation
process. If we assume, as for the case of the homogeneous
birth-death process, that the particle number is sufficiently
large that a van-Kampen limit applies, then this stochastic
model results in mean field equations of the form

∂Nk

∂t
=

D
h2

(
Nk+1 − 2Nk + Nk−1

)
+ λNk

*
,
1 − Nk

Ωh
+
-
. (15)

Then, setting n(x, t)h = Nk(t), x = kh, as before, we obtain
the Fisher-Kolmogorov equation in the continuum limit,

∂n
∂t
= D

∂2n
∂x2 + λn

(
1 − n
Ω

)
. (16)

An interesting feature of Equation (16) is that it generates
stable travelling wave solutions which propagate with a
constant speed of 2

√
Dλ (see Figure S4 of the supplementary

material33 for an example of a travelling wave obtained from
Equation (16)). The wave speed of the stochastic Fisher-
Kolmogorov equation differs from that of the corresponding
PDE.35 Hence, the challenge for our algorithm is to reproduce
this shift in wave speed, while being faster to simulate than the
exact model. To this end, we now investigate travelling wave
propagation in the stochastic Fisher-Kolmogorov equation
when the random walk part is modelled by the exact model
(9) and by the difference model (11). For clarity, we do not
apply our difference method to the reaction rates (14), since
otherwise it will be less clear if the observed differences
from using the difference model are due to the reaction
or the diffusion parts of the model. Initial conditions are
chosen so that the travelling wave front resembles that from
the PDE. We impose Dirichlet boundary conditions so that
N1 = Ω and Nkmax = 0 for all times. We focus our analysis
on the propagation of fully formed travelling wave solutions
whose leading edge is at a distance from the boundary, so
that the initial and boundary conditions do not influence
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FIG. 4. Instantaneous travelling wave profile in the stochastic Fisher-Kolmogorov equation (13) with parameters D = 10, λ = 1,h = 1, kmax= 200, and Ω= 100.
The random walk part of the model used for (a) is based on (9), whereas for (b) it is based on (11). The initial condition in each case was a traveling wave
approximation and the plots shown were taken after a sufficiently large time to allow a stable travelling wave to form in each case. Each plot shows the average
of 256 different realisations, and the bars indicate the corresponding standard deviation. (a) Conventional random walk. (b) Difference random walk.

the propagating wave. In Figure 4, we present snapshots
of the average travelling wave profile from 256 different
realisations of the stochastic Fisher-Kolmogorov equation
(13). In Figure 4(a), the random walk is modelled with the
exact model, (9), whereas in Figure 4(b), it is based on the
difference model, (11). The results appear indistinguishable,
indicating that (11) can reproduce the mean behaviour of
(9). On closer inspection of the standard deviations, shown
by the bars, we note that at the wave front (that is, in the
regions where the solution involves small, but non-zero Nk),
Figures 4(a) and 4(b) look similar, whereas away from the
wave front (that is, in the regions where the solution fluctuates
around hΩ = 100), Figure 4(b) has significantly less noise
around the mean than Figure 4(a). The lower noise levels do
not appear to have a significant effect on the shape or speed of
the travelling wave. For a quantitative comparison of the two
models, we plot the travelling wave speeds of the exact model
(9) as well as the conditional difference model (12) in Figure 5.
This is also a good testing ground for our algorithm, as the
wave speed is known to be modified by stochastic effects,35

Here, we have obtained the wave speed in the same way as in
Ref. 16, averaging over 256 different simulations in each case,

FIG. 5. Mean travelling wave speed for the stochastic Fisher-Kolmogorov
equation (13) when D = 1, λ = 1, kmax= 200, and of the carrying capacity
Ω. The solid line shows the wave speed for the conventional random walk
model (9), the dotted line the difference model (11) (Θ= 0), and the dashed
line the conditional difference model (12) (Θ= 5). Each plot was obtained by
averaging over 256 realisations and measuring the speed at 5 time intervals
for each simulation.

and measuring the speed at 15 different time intervals. We see
that for low carrying capacities (Ω = 100), the wave speed
obtained by using the random walk difference model (11)
(Θ = 0) differs by approximately 1% from the travelling wave
speed obtained by the conventional random walk (9), whereas
the wave speed from the conditional difference model (12)
differs by less than 1%. Furthermore, increasing the carrying
capacity improves the agreement between the models. This
is expected, as all three models converge to the mean field
model given by Equation (15) in the limit as Ω → ∞, and the
mean field model has a wave speed close to the continuum
model wave speed of 2

√
Dλ.16

B. Min oscillations in E.coli

We now investigate a model describing the interactions
of Min proteins in E.coli. The deterministic PDE model
was originally described in Ref. 36, and stochastic versions
were studied in Refs. 37 and 38. We focus on a one-
dimensional version of this model. The model describes
reactions and diffusion of the molecules MinD and MinE
which can exist in several states. MinDADP and MinDATP

denote MinD sequestered in the cytosol and bound to ADP
or ATP, respectively, whereas the sequestered form of MinE
is simply denoted by MinE. The membrane-bound form of
MinD is denoted by MinD(M), and MinDE(M) denotes the
membrane-bound form of a complex of MinD and MinE. The
reactions are defined by

MinDADP k1−→ MinDATP,

MinDATP k2−→ MinD(M),
MinDATP +MinD(M) k3−→ 2MinD(M),

MinDATP +MinDE(M) k3−→ MinDE(M) +MinD(M),
MinE +MinD(M) k4−→ MinDE,

MinDE(M) k5−→ MinDADP(M) +MinE.

(17)

Furthermore, the cytosolic species MinDADP, MinDATP

and MinE are able to diffuse through the cytosol with
a macroscopic diffusion constant D = 2.5 µm2/s, which
translates, as before, into rates on our lattice given by D

h2 .
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FIG. 6. Distribution of the number of Min molecules with an initial number of 1400 MinE and 6700 MinD proteins. We compare simulations of the stochastic
model where diffusion is modeled by the conditional difference model, Equation (12), with a threshold of Θ= 1, and the case of the exact model, which is here
obtained by choosing a threshold of Θ= 100 000. The histograms are obtained from the molecular numbers in a central compartment, k = 20, at time t = 300 s,
from 128 simulations of the model.

We assume diffusion on the membrane of MinD(M) and
MinDE(M) is negligible.

The 1D model is obtained from the 3D model on a cylinder
of length L = 4 µm and radius R = 0.5 µm, by assuming that
diffusion occurs only along the main axis. We discretize along
the length of the cylinder into cross-sectional disk-shaped
compartments of length h = 0.1 µm. Then, the reaction rates
of the stochastic reaction, based on the PDE model,36 are given
by k1 = σADP→ ATP

D = 1 s−1, k2 =
2σD
R
= 0.1 s−1, k3 =

σdD

πR2h
= 0.019 s−1, k4 =

σE

πR2h
= 1.18 s−1, k5 = σde = 0.7 s−1. Here,

we use the original parameters σ from Ref. 36, to estimate the
reaction rates. We compare simulations of this system, when
diffusion is described by the conditional difference model
(12), with others where diffusion is modelled by the exact
random walk model (9).

Figure S5 of the supplementary material33 shows the
space-time evolution of the number of cytosolic MinE
molecules with an initial total number of 1400 MinE and
6700 MinD proteins, for three different threshold values
Θ = 0,1,10, and the case of the exact random walk model (9),
which corresponds to the conditional difference model with
a large threshold. All four cases yield qualitatively similar
results, with stable oscillations appearing shortly before
t = 100 s, with a period of approximately 70 s. However,
noise levels are higher for the exact model, and when Θ = 10,
than when Θ = 0,1. We then quantified the distribution of
molecular numbers. Figure 6 shows the distribution of four
different molecular species, in the center of the simulation
domain, corresponding to compartment k = 20, at time
t = 300 and for 128 simulations. We see that MinDADP and
MinDATP numbers (Figures 6(a) and 6(b)) are unimodally
distributed around a peak, and the conditional difference
model withΘ = 1 yields a narrower distribution than the exact

model. By contrast, the distributions for MinE and MinD(M)
(Figures 6(c) and 6(d)) appear to decay monotonically with a
peak at 0, and we observe no significant deviations between the
exact model and the conditional difference model. To obtain
more significant data, we average the standard deviations
of these distributions over 200 time measurements (from
t = 300 s to t = 500 s, with measurements every 1 s to
avoid transient effects associated with the formation of the
oscillations), in each compartment, and from each of the 128
different simulations. Figure 7 shows these standard deviations
for five threshold values (Θ = 0,1,2,10,100 000), where the
last case coincides with the exact model. We see that for
MinE and MinD(M), there is excellent agreement between the
different thresholds, whereas the standard deviations of the
conditional difference models are slightly lower than those
for the exact model for MinDADP and MinDATP. However, in
these cases, relative noise is small as particle numbers are, on
average, relatively large (see Figure S6 of the supplementary
material,33 which also confirms that the means are almost
identical for all chosen thresholds). Focusing on performance,
we note that the computational cost decreases dramatically
as Θ decreases. Figure 8 shows that absolute simulation
time when Θ = 10 decreased about 7 fold compared to the
exact model, with a further 2 fold gain for thresholds of
Θ = 0,1,2. Based on these results, we conclude that choosing
a threshold of Θ = 10 offers excellent performance gains
while maintaining the stochastic fluctuations associated with
the exact model.

We stress that performance gains and quantitative
similarity are parameter-dependent. In Figure S7 of the
supplementary material,33 we present results for the same
scenario as before, but with only 25% of the particles
present. We note that the standard deviations, similar to
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FIG. 7. Standard deviations from the distributions shown in Figure 6. We have performed 128 simulations, and averaged the standard deviations over each space
and time point, from t = 300 s until t = 500 s.

FIG. 8. Simulation time on a 3 GHz Xeon machine of the simulations shown
in Figures 6 and 7.

those shown in Figure 7, are similar for different thresholds.
Corresponding performance gains are shown in Figure S8 of
the supplementary material.33 The gains are small for Θ = 10,
but for Θ = 0,1,2, the performance gains range from 13 to
25 fold. Hence, in this case, fixing Θ = 2 may be preferred,
as it offers great performance gains, but the behaviour of the
species with the highest levels of relative fluctuation, MinE,
behaves in a similar manner to the case of the exact random
walk model.

V. CONCLUSIONS

In this paper, we have presented an algorithm which
alters the transition rates that appear in reactions of the
chemical master equation so that when two reactions have
opposite effects on the state of the system, and when the
particle number exceeds a threshold value, we replace the two
reactions by a single reaction which represents the net effect

of these two reactions. The mean behaviour of the stochastic
model is preserved by this change of transition rates, and
by setting the threshold sufficiently high it is possible to
preserve essential stochastic features of the original model,
such as variances, first-passage time in random walk models,
or the stochastically modified wave speed in the stochastic
Fisher-Kolmogorov equation.

We have applied the algorithm to diffusion and reaction-
diffusion problems as diffusion often generates many practi-
cally unobservable events such as the swapping of positions of
two identical particles, and such events are easily eliminated
by our algorithm. Furthermore, as diffusion rates can often
be considerably higher than reaction rates, our algorithm can
help to significantly speed up simulations of the stochastic
reaction-diffusion systems while preserving essential stochas-
tic features. We have confirmed this for the problem of first-
passage time, the modification of the wave speed of the Fisher-
Kolmogorov system due to stochastic effects, and the distribu-
tion of particles in low copy numbers in the oscillatory system
of Min proteins. Our current focus was on one-dimensional
models. Future work will include a more detailed investigation
of lattice dependencies, which can have an important effect
on the behaviour of stochastic reaction-diffusion systems,39–41

or generalizations to more complex geometries as carried out
in Refs. 42 and 43. There is also a need to test our method
on simple lattices in higher dimensions. While the number of
Gillespie events will be reduced in a similar manner as in one
spatial dimension, events in the conditional difference model
will lead to shifts in the total propensity, whereas movements
in the bulk of the exact random walk model will only lead to
local changes of propensities. This might make optimisations
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of the Gillespie algorithm in terms of efficient calculation of
propensities potentially difficult.

A main advantage of our method for increasing the
simulation speed of stochastic reaction or reaction-diffusion
models is its simplicity of implementation. Unlike other
algorithms designed to improve the simulation speed of
such models, such as Refs. 12–20, ours can be implemented
by simply redefining the transition rates in the Gillespie
algorithm. Furthermore, it does not depend on the actual
implementation used to simulate the stochastic process. Whilst
we have used the Gillespie algorithm in this paper, it is
straightforward to combine our algorithm with other solution
methods of the master equation including the algorithms
mentioned above.
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