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Flow analysis of the low-Reynolds number swimmer C. elegans
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Swimming cells and microorganisms are a critical component of many biological processes. In
order to better interpret experimental studies of low Reynolds number swimming, we combine
experimental and numerical methods to perform an analysis of the flow-field around the swimming
nematode Caenorhabditis elegans. We first use image processing and particle tracking velocimetry to
extract the body shape, kinematics, and flow-fields around the nematode. We then construct a three-
dimensional model using the experimental swimming kinematics and employ a boundary element
method to simulate flow-fields, obtaining very good quantitative agreement with experiment. We
use this numerical model to show that calculation of flow shear rates using purely planar data results
in significant underestimates of the true three-dimensional value. Applying symmetry arguments,
validated against numerics, we demonstrate that the out-of-plane contribution can be accounted
for via incompressibility and therefore simply calculated from particle tracking velocimetry. Our
results show how fundamental fluid mechanics considerations may be used to improve the accuracy
of measurements in biofluiddynamics.

∗ These authors contributed equally to this work.
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I. INTRODUCTION

The study of microorganism and cell swimming has numerous applications in both industry and medicine, for
instance in the context of mammalian reproduction [1, 2], biofuel production [3], and the design of artificial biomedical
systems [4]. Many of these swimmers, such as mammalian spermatozoa, self-propel by generating traveling undulations
along their body [5, 6]. One such undulatory swimmer is the biological model organism Caenorhabditis elegans, a
multi-cellular, free-living slender nematode worm found in soil environments.

The genetics and physiology of this nematode are well-studied. Its genome has been completely sequenced [7] and a
complete cell lineage has been established [8]. The neuromuscular system of C. elegans controls its body undulations
which allow it to swim, dig, and crawl through diverse environments. The wealth of available biological knowledge
thus makes C. elegans an ideal candidate for investigations that combine aspects of biology, biomechanics, and the
fluid mechanics of propulsion.

Recently, C. elegans has been used extensively as a model system for experimental studies of propulsion, particularly
at low Reynolds number, due to its simple planar swimming gait and size [9–15]. The nematode generates planar
bending waves through contractions of its ventral and dorsal muscles, producing a quasi-two-dimensional (2D) traveling
sinewave along its body [10, 16, 18]. At around 1 mm in length and 75 µm in diameter, C. elegans is significantly larger
than the majority of low-Re undulatory swimmers, enabling high-resolution reconstruction and analysis of planar flow
fields from particle tracking data. The resulting flow-fields can be used to probe properties of both the swimmer and
fluid, providing new insights into the physics of undulatory propulsion [11–15, 19–21].

However, despite exhibiting a planar swimming stroke, the flow around C. elegans has a complex three-dimensional
structure (Fig. 1) which is difficult to capture experimentally. Many useful flow properties, such as the shear rate, are
dependent upon out-of-plane flow contributions not measured by planar velocimetry data; in essence, one measures
a 2D slice of a three-dimensional (3D) field. This limits, for example, our ability to accurately determine drag and
propulsion forces experienced and exerted by the swimming nematode. In this work, we show that numerical and
theoretical fluid mechanics techniques can be used to improve the processing and analysis of these experimental
flow-fields.

We first obtain detailed (experimental) imaging data on the shape and kinematics of a swimming C. elegans,
together with particle-tracking data for flow-field reconstruction. We then develop a numerical boundary element
model of the nematode, with geometry and boundary conditions specified directly from the experiments, and use this
model to improve the processing of particle tracking velocimetry results. Using simulated flow-fields, we examine the
spatial distribution of flow shear rate, an important quantity related to power dissipation and relevant for studies on
locomotion in complex, shear-dependent fluids. We show that using purely planar data significantly underestimates
the true value of the shear rate throughout the field. We then use symmetry arguments validated against numerics to
show that the 2D measurements can be corrected for out-of-plane effects by applying the incompressibility constraint.
Our work shows that fundamental fluid mechanics tools can be used alongside experimental measurements to improve
our understanding of the biomechanics of locomotion.

FIG. 1. Instantaneous flow streamlines genetrated by C. elegans, computed numerically from experimental waveform data.
The streamlines show a complex, three-dimensional flow-field. Color bar: speed mm/s.
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FIG. 2. (a) Image of the nematode C. elegans. The yellow line shows the “skeletonized” body, and the red arrows denote the
velocities of each body-segment. The blue arrow indicates the swimming direction. (b) Three-dimensional mesh constructed
from the experimentally-obtained body-shape and kinematics of the nematode for the same snapshot. (c) Experimentally-
measured streamlines for one snapshot of swimming C. elegans, produced using particle tracking velocimetry techniques. (d)
Flow-field produced using the reconstructed 3D mesh and a numerical model for the same snapshot. Color bar: speed mm/s.

II. METHODS

We first describe the technical improvements carried out in this work. In order to compare the results of the
numerical model directly with our experimental data, we use the same swimming movie to construct experimental
velocity fields and to obtain the motion of the nematode, which provides the nematode’s geometry and kinematics
for the numerical simulations.

Particle tracking procedures around swimmers entail a delicate balance between maximizing the quantity of statistics
from which to construct a velocity field, and the precision of those measurements. For C. elegans, one needs enough
statistics to construct a smooth, differentiable velocity field, yet the most precise particle tracking data is located
strictly at the nematode z-mid-plane (direction across the depth of field). Additionally, due to the fact that our
microscope objectives have a depth of field of approximately 20 µm, our experiments represent a depth-averaged 2D
slice of a 3D flow-field over this thickness.

In this paper, simulation provides benchmark flow-fields, allowing greater selectivity for our particle identification
and tracking algorithms. This selection ensures that we only choose particles close to the z-mid-plane, shifting the
balance from maximizing the number of statistics to maximizing the precision of our measurements. In regions where
we have limited data, we use gentle maximum value and bilateral filtering algorithms to smooth our experimental
results so that they can be differentiated.

A. Data acquisition and processing

Experiments with C. elegans are performed in Newtonian, water-like (µ ≈ 1 mPa · s and ρ ≈ 103 kg/m3) M9 buffer
solutions [7] in a sealed fluid chamber 20 mm in diameter and 1 mm in depth. Images are captured using standard
bright-field microscopy (Infinity K2/SC microscope with a CF-4 objective, and an IO Industries Flare M180 camera at
150 frames per second). The depth of focus of the objective is approximately 20 µm, and we ensure that the focal plane
is in the middle of the chamber in order to minimize wall effects. The nematode beats primarily in the observation
plane; the out-of-plane beating amplitude is less than 6% of its in-plane motion, and therefore confinement effects are
minimal [17]. Given that the flow decay is expected to be exponential, we also anticipate negligible influence of the
chamber boundaries on the flow field (see Fig. 4) [28]. All data presented here pertain to nematodes swimming at
the centre of the fluidic chamber and out-of-plane recordings are discarded to avoid nematode-wall interactions and
to minimize three-dimensional flow effects.

In-house software is used to track the swimming motion of C. elegans. The position of the nematode’s centroid is
differentiated with respect to time to obtain swimming speed (U ≈ 0.3 mm/s), the head position is used to compute
an average amplitude (A ≈ 0.25 mm), and a comparison of periodic body shapes is used to estimate the nematode’s
beating frequency (f ≈ 2 Hz). Beyond average kinematic properties, the nematode body contour is automatically
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extracted for each image frame, skeletonized (yellow line in Fig. 2a), and divided into segments that are tracked to
obtain local body velocities. Sample velocity vectors of the body are shown in Fig. 2a in red. This body shape
and associated velocities are used to create an approximate 3D model of the nematode and its surface velocities, as
illustrated in Fig. 2b.

Particle tracking velocimetry is used to measure the velocity fields generated by swimming C. elegans. In short, we
seed the chamber with 3 µm polystyrene tracer particles (Fig. 2a) that are tracked using with in-house algorithms.
We track the flow for approximately 8 beat-cycles, and divide each cycle into approximately 50 phases. Because the
nematode’s swimming stroke is highly periodic (∼ 2 Hz) [17], we can construct a “master” swimming cycle using a
least-squares fit of the nematode’s body shapes. This phase-averaging technique considerably improves the spatial
resolution of the experimental velocity fields. In order to estimate the flow-field around the nematode’s body more
accurately, we include velocities within the contour of the the swimmer-fluid interface, assuming a no-slip boundary
condition. Finally, the data points for each phase, including tracking plus boundary conditions, are averaged into
gridded spaces of size 13.2 µm. The resulting experimental streamlines are illustrated in Fig. 2c for one particular
phase.

B. Numerical model

In the experimental setup, C. elegans moves through a water-like Newtonian buffer solution [7]. Thus, the charac-
teristic Reynolds number for the flow, Re = ρUL/µ, is less than unity (Re ≤ 0.3). As such, the dynamics of the flow
driven by the swimming nematode is well-modeled by the Stokes flow equations

µ∇2u−∇p = 0, ∇ · u = 0, (1)

where u is the fluid velocity and p the dynamic pressure.
In order to solve Eqs. (1) in the fluid surrounding the nematode, we employ the regularized stokeslet boundary

element method [22, 23]. The velocity throughout the domain is given by integrals of stokeslets S and stresslets T
over the nematode’s surface, S

λuj(x0) =

∫
S

Sεij(x,x0)fi(x)

− ui(x)T εijk(x,x0)nk(x) dSx, (2)

for unknown surface tractions, f , and surface velocity u specified from experimental data.
Note that in the majority of implementations of the method of regularised stokeslets, the stresslet “double-layer”

ui(x)T εijk(x,x0)nk(x) term in equation (2) is eliminated, and the constant λ = 1 [25]. However the surface tractions
solved for in the simplified “single layer” formulation are a modified force density dependent upon a fictitious “com-
plementary” flow inside the worm. In order to provide a general method that might in the future be used to examine
the energetics of locomotion and force generation inside the worm, the full formulation is used.

In our case, the constant λ is given at leading order by λ ≈ 1/2 + κε/4, where κ is the mean local curvature of the
surface at x0 [24]. We use the regularized form of the stokeslet Sεij and stresslet T εijk [22],

Sεij(x,x0) =
δij(r

2 + 2ε2) + rirj
r3ε

, (3a)

T εijk(x,x0) = −6rirjrk
r5ε

− 3ε2 (riδjk + rjδik + rkδij)

r5ε
, (3b)

derived from a regularisation of the dirac delta function of the form

φε(x− x0) =
15ε4

8πr7ε
, r2ε = r2 + ε2, (4)

where ri = (x− x0)i, r = |x− x0| and ε� 1 (with ε = 10−4L in our simulations). The implementation uses routines
adapted from BEMLIB [26] and the authors’ boundary element library RegBEM Phoretic [27], which employs a linear
panel representation of the unknown surface tractions fi(x) with adaptive Fekete quadrature for near-singular element
integrals [24].
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FIG. 3. Spatial distribution of the (a) experimentally-measured x-component u(x, y), (b) simulated x-component, (c)
experimentally-measured y-component v(x, y), and (d) simulated y-component. Experimental measurements demonstrating
good agreement with simulation. Color bars: component velocity magnitude mm/s.

The nematode geometry is meshed with piecewise-quadratic triangular elements (Fig. 2b) using a custom routine
which extrudes a circle of radius a(s) along the experimentally-captured nematode centerline, and caps the head and
tail of the worm with a section of a sphere. The radius a(s) is given as a function of arc-length s by fitting a quadratic
through the nematode’s radius at the midpoint a1 and the head a2, so that for a nematode of length L we have

a(s) =
4(a2 − a1)

L2

(
s− L

2

)2

+ a1. (5)

The velocity boundary condition (no-slip) is then imposed on the mesh surface directly from experimental data via
time-centered finite differences of the nematode centerline.

III. RESULTS AND DISCUSSION

A. Comparison of experiments and simulations

Fig. 2 shows the streamlines computed experimentally using particle tracking velocimetry (c) and numerically
using simulated flow-fields (d). These streamlines show strong agreement, with both methods capturing head and
tail vortices of similar shape and size. A visual comparison of the x- and y-components of the velocity field, u and
v respectively, again shows very good agreement between experiment and simulation (Fig. 3). In order to quantify
this comparison, Fig. 4(a,b,c) shows the distributions of velocity components u and v and speed |u| for experimental
and simulated fields. These plots show that the experiments capture the majority of velocities, with the exception of
the highest velocities corresponding to points closest to the nematode, where it is difficult to obtain accurate particle
tracks. Experiments also predict a larger proportion of zero velocities, which is again associated with the difficulty of
extracting smooth, small, but non-zero, velocities from noisy particle data.

Finally, we calculate the spatial decay of the flow speed away from the body of the swimmer. For an undulatory
swimmer, we expect to observe an exponential flow decay [28],

|u|
|ub|

= exp

(
−2πr

αL

)
, (6)

where |u| is a velocity measurement, |ub| is the speed of the swimmer’s body, assuming a no-slip boundary condition,
r is the normal distance from each velocity measurement to the swimmer’s body, L is a characteristic length-scale of
the swimmer (we take L ≈ 1 mm), and α is an exponential parameter that specifies the rate of decay. We find that
the simulations and experiments are in good agreement with αexp = 0.74 and αsim = 0.85, showing a difference of
just 13% in the exponent (Fig. 4, last panel).
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FIG. 4. Comparison of flow structure between experiment and simulation: (a) distribution of u, (b) distribution of v, (c)
distribution of speed |u|, and (d) decay rate |u|/|ub|.

B. Shear rate calculation and correction

A particularly salient characteristic of the flow-field is the spatial ditribution of shear rate, γ̇ =
√

ε(u) : ε(u)/2
with ε(u) = ∇u + ∇uT , which is important for calculation of power dissipation, the energetics of locomotion, and
is also relevant for studies on locomotion in complex, (shear) rate-dependent fluids. Since the beat-pattern of the
nematode is planar, there is no flow in the z-direction in the swimmer mid-plane. However the z-derivatives of the
mid-plane velocity will make, in general, non-trivial contributions to the shear rate. Writing the shear rate in 2D and
3D explicitly, we see

γ̇2D = [2u2x + (uy + vx)2 + 2v2y]1/2, (7a)

γ̇3D = [2u2x + (uy + vx)2 + 2v2y

+ 2w2
z + (uz + wx)2 + (vz + wy)2]1/2, (7b)

where u, v, w are the x, y, z components of the velocity field, and subscripts denote derivative components.
Because of the additional terms in the 3D formula, we expect calculation of the shear rate from 2D particle tracking

flow-fields will likely result in a systematic underestimate of the true 3D value. Fig. 5a shows that this is indeed
the case; the spatial distribution of the relative percentage error in the simulated shear rate calculated with the 2D
formula (7a) compared with the true 3D value spatial distribution of the shear rate as calculated by the 3D (7b) is
significant, even reasonably far from the worm, and is around 30% close to the worm. Indeed the integrated root mean
square error in this field is 14%. Thus, we see that we have significant errors throughout the field, but particularly
close to the worm where calculations of shear rate are of particular interest.

We wish to correct for this error without resorting to Boundary Element calculations, and so require estimates of
the unknown quantities in the 3D formula (7b). Since the worm kinematics is planar, we have the symmetry z → −z,
and so there is no z-flow in the mid-plane and the quantities wx and wy are zero. Furthermore, the quantities uz and
vz are also zero by this symmetry. These observations are confirmed by our numerical simulation, which calculates the
above quantities to be zero within numerical error. However, the z-component of the velocity w changes sign through
the mid-plane, and thus its z-derivative wz makes a significant contribution to the shear rate. The 3D formula (7b)
can thus be simplified,

γ̇pl = [2u2x + (uy + vx)2 + 2v2y + 2w2
z ]

1/2. (8)

Since the flow is incompressible, we have ∇ · u = 0, so that wz = −(ux + vy), giving the final formula

γ̇pl = [2u2x + 2v2y + (uy + vx)2 + 2(ux + vy)2]1/2, (9)

purely in terms of planar components obtainable via planar particle tracking. Applying the adjusted formula (9) to
our numerical data, the error is eliminated to within 0.01% which is attributable to the accuracy of our numerical
scheme.

The principal advantage of this approach is that it can be applied in just as simple a manner to incompressible non-
Newtonian flows, such as shear-thinning and viscoelastic fluids. Such fluids have complex non-Newtonian constitutive
laws, and do not readily admit simple three-dimensional simulation.
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FIG. 5. Shear rate error, calculation, and correction: (a) The percentage relative error in the shear rate as calculated using
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calculated with the 2D formula (7a), (c) 3D simulation calculated with the full formula (7b), and (d) corrected “3D” experiments
calculated with the corrected formula (9). (e) Distribution of shear rates for planar experiments, 3D simulation, and corrected
experiments. Note the marked improvement in similarity between shear rate distribution for the corrected experiments and
that of the full 3D simulation.

We now directly compute the 2D (7a) and the estimated 3D (9) shear rate field for our experimental data (Fig. 5b).
Figure 5 shows a comparison between the “corrected” 3D shear rate field from experiments and the 3D shear rate
field from simulations (c,d). We find the corrected field from experiments and the simulated 3D field have a strikingly
similar structure and an RMS error of only 14%, compared to an RMS error of roughly 20% before the correction was
applied. We note, however, that there are discrepancies near the head and tail of the worm, where the simulations
suggest a slightly higher shear rate (≈ 10%); these regions of high velocity near the swimmer-fluid interface are in
locations where we expect particle tracking techniques to pose the greatest challenge.

To quantify the differences between the shear rate fields of the simulations and experiments, as well as demonstrate
the effectiveness of our correction factor for 2D data, we show the distribution of shear rate for the raw experimental
data, corrected experimental data, and the full 3D simulations (Fig. 5e). We find that a 2D calculation of shear rate
using our experimental data underestimates shear rate for values of γ̇ > 25 s−1 compared to the 3D simulated shear
rate field. When the Eq. 9 is applied to the experimental data, we capture the same shear rate distribution as the
3D simulations up to γ̇ = 60 s−1. For larger shear rates (γ̇ > 60 s−1), we see only minor deviations from the 3D
simulations, suggesting that the corrected shear rate field significantly improves our ability to estimate the shear rate
magnitude from planar data.

Since the shear rate is calculated using derivatives of the velocity field, small fluctuations or errors in the velocity
field are magnified substantially. Nonetheless, we obtain good agreement between experiment and simulation, with
errors being confined to regions of high shear rate; importantly, we find that the application of the analytical correction
factor greatly improves our estimate of the maximum shear rate around the swimmer, which is particularly useful
for swimming applications with non-Newtonian fluids. These results indicate that the local shear rate near a low
Reynolds number swimmer is likely much higher than previously thought, due to contributions in the third dimension
that planar particle tracking velocimetry does not directly measure. As a result, non-Newtonian effects as a result of
locomotion in complex fluids may be much larger than anticipated. Examples include the role of elastic stretching,
measured by the Weissenberg number Wi = λE γ̇ where λE is the longest relaxation time of the fluid, and shear-
thinning viscosity behavior, measured by the Carreau number Cr = λCr γ̇ where λCr is a timescale that represents
the onset of shear-thinning effects; our accounting for the shear rate in the third dimension therefore suggests that a
planar experimental measurement may under-represent non-Newtonian effects near the body of a the swimmer.

IV. CONCLUSION

In this work, we used theoretical and numerical techniques to improve the processing of experimentally-obtained
particle tracking data, producing smooth velocity fields quantifying the flow around the swimming nematode C. el-
egans in a Newtonian solution. We compared our results with a 3D boundary element model of the nematode,
generated directly from experimentally obtained nematode kinematics, finding good agreement between numerics and
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experiment.
We argued that when calculating derivative flow quantities, the only non-trivial out-of-plane component is wz: the

z-derivative of the z-flow. This observation was validated by simulation, showing that excluding wz when calculating
the flow shear rate results in a significant underestimate. Accounting for the wz component via incompressibility from
2D data eliminated this error.

Our work illustrates how theory may be used to improve experimental measurements in biological fluid mechanics,
and will be directly applicable to investigations of bio-locomotion in complex fluids. Furthermore, we anticipate
that as technology for the acquisition and processing of experimental flow-fields continues to improve, these out-of-
plane effects will represent a hard barrier to increasing the accuracy of results, making such techniques increasingly
important.
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