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Abstract: 

Concrete corrosion due to sulphuric acid attack is known to be one of the main contributory 

factors for degradation of concrete sewer pipes. This paper proposes to use a novel data 

mining technique, i.e. evolutionary polynomial regression (EPR), to predict (i) the mass loss 

and (ii) the compressive strength of concrete subject to sulphuric acid attack. A 

comprehensive dataset from literature is collected to train and develop the EPR models. The 

results show that the EPR models can successfully predict the mass loss and compressive 

strength of concrete specimens exposed to sulphuric acid. Parametric studies of the models 

show that the proposed models are capable of representing the degree to which individual 

contributing parameters can affect the mass loss and compressive strength of concrete. In 

addition, based on the developed EPR models and using optimisation techniques, the 

optimum concrete mixture to provide maximum resistance against sulphuric acid attack is 

obtained. 

 

Keywords: Evolutionary computing; genetic algorithm; evolutionary polynomial regression; 

optimisation; hybrid techniques; data mining; sulphuric acid attack; degradation; corrosion; 

sewer pipes 
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1. Introduction 

Sewer systems are essential infrastructures that play a pivotal role in economy, prosperity, 

social well-being, quality of life and especially the health of a country. The nature of the 

wastewater and the propensity for anaerobic conditions in the buried pipes lead to complex 

chemical and biochemical transformations in the pipes, resulting in the inevitable 

deterioration of pipe materials due to a variety of mechanisms such as hydrogen sulphide 

induced corrosion of concrete. The sewer networks have had to expand as a result of 

population growth and thus the extended hydraulic retention time of wastewater in the sewer 

pipes tends to create a suitable environment for sulphide production, leading to the corrosion 

of pipes. In addition the widely projected climate change induced temperature rise will 

further accelerate corrosion. This pipe corrosion results in the reduction of wall thickness, 

leading to the collapse of the pipes and possibly the whole system, unless proactive 

intervention is carried out in a timely manner, based on an accurate prediction of their 

remaining safe life. The consequences of the collapses of sewers are socially, economically 

and environmentally devastating, causing enormous disruption of daily life, massive costs, 

and widespread pollution and so on. 

Concrete corrosion due to sulphuric acid attack is known to be one of the main contributory 

factors for degradation of concrete sewer pipes. Sulphate, which exists in wastewater, is 

reduced to sulphide by anaerobic bacteria. These bacteria are present in a thin slime layer on 

the submerged surface of the sewer pipe and the production of sulphide occurs in this slime 

layer. The generated sulphide escapes to the exposed sewer atmosphere where it is 

transformed to sulphuric acid by aerobic bacteria. The acid reacts with calcium hydroxide in 

the cementitious sewer pipe which forms gypsum and causes corrosion [1-3]. 
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Pomeroy 1976 [2] proposed a model to predict the corrosion rate in cementitious sewer pipes.  

 𝑐 = 11.5
𝑘∅()
𝐴  (1) 

In this equation, 𝑐  is the average rate of corrosion of the material (mm/yr), k is a factor 

representing the acid formation based on climate condition, ∅()  is the average flux of 

sulphide to the pipe wall (𝑔/𝑚/ − ℎ𝑟) and 𝐴 is the alkalinity of the pipe material.   

Equation 1 shows that among various pipe material properties, only alkalinity (𝐴) influences 

the corrosion of concrete sewer pipes. Many researchers have investigated the effect of acid 

attack on different mixtures and admixtures of concrete. Attiogbe and Rizkalla [4] evaluated 

the response of four different concrete mixtures including two different cement types (ASTM 

Type I and ASTM Type V) to accelerated acid attack. The concrete samples were immersed 

in sulphuric acid solutions with a pH of 1.0. This concentration of sulphuric acid was selected 

since it was a representative of what is expected in sewer pipes in the process of 

deterioration. After 70 days of immersion, the results of the experiment showed that the 

weight loss of concrete samples with cement Type V is slightly more than those samples 

created with cement Type I. It was concluded that in the long term, the sulphate resistant 

cement does not contribute to an improved resistance of concrete compared to ordinary 

Portland cement when they are subject to sulphuric acid attack. Ehrich et al. [5] carried out 

biogenic and chemical sulphuric acid tests to monitor the corrosion of different cement 

mortars. They used ordinary and sulphate resistant Portland cement as well as calcium 

aluminate cement to produce different mortars. The biogenic tests were carried out using a 

simulation chamber where the temperature, humidity and amount of sulphide were monitored 

and controlled. For the chemical test, the mortar samples were immersed in PVC containers 

filled with sulphuric acid. The results of both chemical and biogenic tests showed that 
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calcium aluminate cement mortars had greater resistance against both types of acid attacks. 

Monteny et al. [6] simulated chemical and biogenic sulphuric acid corrosion of different 

concrete compositions including ordinary and polymer cement concrete. For the biogenic 

tests, they put small concrete samples in a microbiological suspension containing bacteria, 

sulphur and nutrients which generated sulphuric acid in a biogenic manner. The chemical 

tests were performed using a rotating apparatus. Concrete samples were set up on an axis 

which was rotating in such a way that the concrete samples were only partially immersed in a 

solution of sulphuric acid with a pH of around 1.0. The results of both tests revealed that 

concrete mixtures with styrene-acrylic ester polymer showed a higher resistance compared to 

the concrete with high sulphate resistance cement. On the other hand the concrete mixtures 

with acrylic polymer and styrene butadiene polymer showed a lower strength than the high 

sulphate resistance concrete. De Belie et al. [7] presented the results of biogenic and chemical 

sulphuric acid tests carried out on different types of commercially produced concrete sewer 

pipes. They performed both types of tests on different mixtures of concrete including 

different aggregate and cement types. The results of both chemical and biogenic tests showed 

that the aggregate type had the largest effect on degradation of concrete samples. In addition, 

based on the results obtained from their studies, they proposed an equation to predict the 

degradation depth taking into account both alkalinity and water absorption of concrete 

(Equation 2).            

 𝐶 =
𝑐5
𝐴 + 𝑐/𝑊 (2) 

where 𝐶  is degradation depth after four cycles of the microbiological test (mm), 𝐴  is 

alkalinity, 𝑊  is water absorption (%) and 𝑐5  and 𝑐/  are the coefficients of the equation. 

Chang et al. [8] investigated the use of different aggregates and cements to improve the 

resistance of concrete subject to sulphuric acid attack. The concrete samples were produced 
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with limestone, and siliceous aggregate, and Portland, binary and ternary cements. The 

water/cement ratio was kept constant (i.e. W/C=0.4) for all the samples. The concrete 

specimens were immersed into a sulphuric acid solution with a pH between 1.27 and 1.35. 

The changes in weight and compression strength of samples were examined at different ages 

up to 168 days. It was shown that the use of limestone aggregates and ternary cement 

containing silica fume and fly ash will help to reduce the weight loss and reduction in 

compressive strength of concrete under sulphuric acid attack. Hewayde et al. [9] carried out 

an investigation on 78 different concrete mixtures including different cement types, different 

water/cement ratios and various admixtures subject to sulphuric acid attack. The concrete 

samples were immersed in sulphuric acid solutions with pH levels of 0.3, 0.6, and 1.0. The 

authors stated that the solution with a pH of 0.6 represents conditions with a high count of 

anaerobic bacteria that exist in the submerged surface of the sewer pipes, while the solution 

with a pH of 0.3 represents a supercritical condition that may occur in industrial sewer 

systems subject to high temperature and humidity. The experiment consisted of determining 

the compressive strength of samples at different ages and measuring the changes in weight at 

different pH values. Using the data collected from the tests, they developed two artificial 

neural network (ANN) models to predict the mass loss and compressive strength of concrete. 

They showed that the developed ANN models are capable of predicting both compressive 

strength and mass loss of concrete samples under exposure to sulphuric acid, providing the 

required parameters (i.e. the concrete contents) have been inputted. The studies presented 

above and many more in literature show that the constituents of concrete mix including 

admixtures play an important role in the alkalinity of concrete and consequently its 

vulnerability to sulphuric acid induced corrosion. However, insufficient work has been 

carried out in relation to the modelling and prediction of deterioration and compressive 

strength of concretes with various mixtures subject to sulphuric acid. No doubt the 
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development of such model(s) would help industry to evaluate and possibly improve the 

concrete mix design of their sewer pipes. In addition if the concrete content of existing pipes 

is known, water companies can carry out proactive intervention, based on the accurate 

predictions provided by such models.                    

The rapid development in computational software and hardware in recent decades has 

introduced several soft computing and data-driven approaches to modelling engineering 

problems. Although there are various data-driven techniques based on artificial intelligence, 

artificial neural network (ANN) and genetic programming (GP) are among the best known 

techniques that have been used to model civil and mechanical engineering problems. ANN 

uses models composed of many processing elements (neurons) connected by links of variable 

weights (parameters) to form black box representations of systems. ANNs are capable of 

dealing with a large amount of data and can learn complex model functions from examples, 

by training sets of input and output data. ANNs have the ability to model complex, nonlinear 

processes without having to assume the form of the relationship between input and output 

variables [10, 11]. However, ANN has shown to possess some drawbacks. A major 

disadvantage of ANN is the large complexity of the network structure; it represents the 

knowledge in terms of a weight matrix and biases which are not accessible to the user. ANN 

models, as a black box class of models, gives no information on how the input parameters 

affect the output(s). In addition, parameter estimation and over-fitting are other disadvantages 

of models constructed by ANN [12, 13]. Genetic programming (GP) is another modelling 

approach that has been used to model engineering phenomena. GP is an evolutionary 

computing method that generates transparent and structured mathematical expressions to 

represent the system being studied. The most common type of GP method is symbolic 

regression, which was proposed by Koza [14]. This technique creates mathematical 

expressions to fit a set of data points using the evolutionary process of genetic programming. 
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The genetic programming procedure mimics natural selection as the ‘fitness’ of the solutions 

in the population improves through successive generations. However, GP also has some 

limitations. It is proven that GP is not very powerful in finding constants and, more 

importantly, that it tends to produce functions that grow in length over time [12]. 

In this paper, using a dataset collected from literature and a novel hybrid data-driven 

technique that overcomes the shortcomings of ANN and GP, models are developed to predict 

the degradation and compressive strength of concrete subject to sulphuric acid attack. This 

new data mining technique, called evolutionary polynomial regression (EPR), provides a 

structured, transparent and concise model representing the behaviour of the system. A brief 

description of the EPR technique is provided in what follows. Then development of the 

models to predict the degradation and compressive strength of concrete subject to acid attack 

is presented. Using the developed models and optimisation techniques, the optimum contents 

of concrete mixtures to resist against acid attack is obtained. 

 

2. Evolutionary Polynomial Regression 

Evolutionary polynomial regression (EPR) is a new hybrid technique for creating true or 

pseudo-polynomial models from observed data by integrating the power of least square 

regression with the efficiency of genetic algorithm. A typical formulation of EPR can be 

expressed in the following equation [12]: 

 𝑦 = 	 𝐹(𝐗, 𝑓 𝐗 , 𝑎@)
A

@B5

+ 𝑎C (3) 

In this equation, 𝑦 is the estimated output of the system; 𝑎@ is a constant value; 𝐹 is a function 

constructed by process; 𝐗 is the matrix of input variables; 𝑓 is a function defined by user; and 
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𝑚 is the number of terms of expression excluding the bias term 	𝑎C. The general functional 

structure represented by 𝐹(𝐗, 𝑓 𝐗 , 𝑎@)  is constructed from elementary functions by EPR 

using genetic algorithm (GA). The function of GA is to select the useful input vectors from 𝐗 

to be combined together. The building blocks (elements) of the structure of 𝐹 are defined by 

the user based on understanding of the physical process. While the selection of feasible 

structures to be combined is done through an evolutionary process, the parameters 𝑎@  are 

estimated by the least square method.       

The modelling process of EPR starts by evolving equations. As the number of evolutions 

increases, EPR gradually picks up the different contributing parameters to form equations 

representing the system being studied. Accuracy of the developed models is measured at each 

stage using the coefficient of determination (CoD): 

where 𝑌E is the actual input value; 𝑌F is the EPR predicted value and N is the number of data 

points on which the CoD is computed. If the model fitness is not acceptable or other 

termination criteria (e.g., maximum number of generation and maximum number of terms) 

are not satisfied, the current model should go through another evolution in order to obtain a 

new model [15]. 

In order to provide the best symbolic model(s) of the system being studied to the users, EPR 

is facilitated with different objective functions to optimise. The original EPR methodology 

used only one objective (i.e., the accuracy of data fitting) to explore the space of solutions 

while penalising complex model structures using some penalisation strategies [12]. However 

the single-objective EPR methodology showed some shortcomings, and therefore the multi-

 CoD = 1 −
(YK − YL)/M

(YK −
1
N YKM )/M

 (4) 
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objective genetic algorithm (MOGA) strategy has been added to EPR [16]. The multi-

objective EPR optimises two or three objective functions in which one of them will control 

the fitness of the models, while at least one objective function controls the complexity of the 

models. The multi-objective strategy returns a trade-off surface (or line) of complexity versus 

fitness which allows the user to achieve a lot of purposes of the modelling approach to the 

phenomenon studied [16]. In this study the multi-objective EPR is used to develop the EPR-

based models. Further details of the EPR technique can be found in [12, 15-16]. 

The EPR technique has been successfully applied to modelling a wide range of complex 

engineering problems including modelling sewer failure [17], pipe break prediction [18], 

mechanical behaviour of rubber concrete [19], torsional strength of reinforced concrete 

beams [20] and many other applications in civil and mechanical engineering. EPR is proven 

to be capable of learning complex non-linear relationships from a set of data, and it has many 

desirable features for engineering applications. 

 

3. Development of Models 

3.1 Database 

The database to train and develop EPR models is collected from a study by Hewayde [21]. 

Hewayde [21] carried out a set of experiments to evaluate the compressive strength and mass 

loss of different concrete mixtures under sulphuric acid attack. The experiment program 

involved the preparation of several concrete cylinders with different contents, and then 

immersing them in sulphuric acid solutions with different pH values. The compressive 

strength at age 7, 28 and 120 days, as well as the weight loss of concrete samples, were 

measured and recoded. Two different cements (ASTM Type I and ASTM Type V), siliceous 
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fine and coarse aggregate and various admixtures including silica fume, metakaolin, 

geopolymer cement, organic corrosion inhibitor (OCI), Caltite, and Xypex were used to 

prepare concrete specimens. The effect of using ASTM Type V cement in the mixtures were 

presented in terms of percentage of slag since Type V cement is a blended cement made of 

65% ordinary Portland cement and 35% finely ground granulated blast furnace slag. The 

concrete samples had different values of water/cement ratio and aggregate contents as well as 

various percentages of superplasticizer and admixtures which made a very suitable collection 

of data to train and develop EPR models. Further details of the experiments are described in 

[9, 21]. 

 

3.2 EPR procedure           

Two separate models are developed to predict the mass loss and compressive strength. The 

input and output parameters of each model and their units are presented in Table 1. 

Usually in data mining techniques based on artificial intelligence such as neural network, 

genetic programming and EPR, the data is divided into two independent training and 

validation sets. The construction of the model takes place by adaptive learning over the 

training set and the performance of the constructed model is then appraised using the 

validation set. In order to select the most robust representation of the whole data for training 

and validation sets, a statistical analysis was carried out on the input and output parameters of 

several randomly selected sets of data. The purpose of the analysis is to ensure that the 

statistical properties of the data in each of the subsets were as close to each other as possible. 

After the analysis, the most statistically consistent combination was used for construction and 

validation of the EPR models. In addition the statistical analysis will help to keep the 

validation data in the range of the maximum and minimum values of the training data as 
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generally the EPR technique (like other data-mining techniques) is stronger in interpolation 

than extrapolation over the data. Maximum, minimum, average and standard deviations are 

the parameters used to perform the analysis. 

Once the training and validation sets are chosen, the EPR process can start. To develop the 

EPR models, a number of settings can be adjusted to manage the constructed models in terms 

of the type of the functions, number of terms, range of exponents, etc. [15]. When the EPR 

starts, the modelling procedure commences by evolving equations. As the number of 

evolutions increases, EPR gradually learns and picks up the participating parameters in order 

to form equations. Each proposed model is trained using the training data and tested using the 

validation data. The level of accuracy at each stage is measured using the CoD (Equation 4). 

Several EPR runs were carried out and the analysis was repeated with various combinations 

and ranges of exponents, different functions and different numbers of terms in order to obtain 

the most suitable form for the model. As mentioned earlier the MOGA-EPR returns a trade-

off curve of the model complexity versus accuracy which allows the user to select the most 

suitable model based on his judgement and knowledge of the problem. The results of the EPR 

were analysed based on the simplicity of the models and the CoD values of both training and 

testing datasets. After analysis of different alternative models the following expressions are 

found to be the most robust models for predicting mass loss (model I) and compressive 

strength (model II). Among the developed models provided by EPR the ones with the least 

number of terms that include all the parameters and have the highest possible CoD have been 

chosen. 
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The symbols used in these equations are described in Table 1. The predictions provided by 

model I and model II for both training and validation data is illustrated in Figure 1 and Figure 

2 respectively. The CoD values of model I and model II are presented in Table 2. From 

Figures 1 and 2 and Table 2 it is evident that the EPR models perform well and represent a 

very accurate prediction for unseen cases of data. 

 

3.3 Parametric study           

A parametric study was carried out for further examination of the prediction capabilities of 

the proposed EPR models. The parametric study will help to assess the extent to which the 

EPR models represent the physical relationships between different parameters and the effects 

of different input parameters on the model output. All the input parameters except the one 

being examined were set to their mean values and the model predictions for different values 

of the parameter being studied were investigated. Each parameter was varied within the range 

of its maximum and minimum values. Figure 3 shows the results of the parametric study 

conducted to investigate the effect of change in cement content and W/C ratio on model I. 

𝑀𝐿 = 1.5×10ST𝑆𝑔/ + 4.7×10SX𝑊𝑆𝐹 𝑆 − 2.2×10SZ𝑊 𝐻𝐶𝑙𝑡𝑆 + 1.6×10S/ 𝐺𝑆𝑔 − 1.5×10SX𝐻𝐺𝑒𝑜 𝐺𝑝𝐻𝑊𝑆𝑔 +

2.8×10SZ𝑋 𝐺𝑆𝑀 − 1.3×10SZ𝐺𝑊 𝑝𝐻 + 1.9×10Sg𝐺/ 𝑊 − 9.4×10S55𝐺/𝑆𝑔𝑆 − 3.2×10ST 𝐶𝑆 + 5.6×

10Sg𝑆𝑝𝐻 𝐶𝑊𝐺𝑒𝑜 − 7.2×10S5h𝐺h𝑝𝐻/ − 5.8×10SZ𝑝𝐻/𝐻𝐶 𝑆𝐹𝑊 − 5.2×10SX𝐶𝑊 𝐻 + 3.3×10Si𝐶 𝐺 − 2.2×

10S5i𝐻h𝑆h𝐶 𝐺𝑋𝑝𝐻 − 1.2×10S5C𝐶/ 𝐺𝑆𝑂𝐶𝐼  

(5) 

𝑓l = 3.6 𝑡 − 1.7𝑆𝑔 − 5.1×10SX𝑊h 𝑋 − 9.0×10S5C𝑡h𝑆 𝑊 + 2.1×10Si𝑆/ 𝐺𝑆𝑔 − 2.3×10Sg𝑆h 𝐺𝑆𝑔 − 2.8×

10Sm𝐻h𝑆𝑔/𝐺𝑊 − 3.5×10S5/𝑆/𝐺/ 𝐻𝑀 + 5.2×10S55𝐺h𝑆𝐹 𝑊𝑋 + 1.2×10Sh𝑆𝐻 𝐶 + 7.2×10S55𝑆𝑔h𝑆 𝐶𝑊𝐻 +

4.5×10S5/𝑆h𝑊 𝐶 + 8.5×10S5/𝑆/𝐶𝑊𝑀 + 5.0×10S5/𝑆𝑔h𝐶 𝐺𝑆𝑀 + 1.0×10S5/𝐻h𝐶𝐺𝑆𝑊𝑂𝐶𝐼 𝑡𝑆𝑔 + 1.6×

10S5C𝐺h𝐶𝑂𝐶𝐼 𝑆𝐹𝐶𝑙𝑡𝐺𝑒𝑜 − 1.8×10S5/𝑊h𝐶/𝐻𝑂𝐶𝐼 𝑋𝑡 + 4.0×10S5h𝐶/𝑆/𝑡 𝑋  

(6) 
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The results are presented for three different pH values (i.e. 0.3, 0.6 and 1.0). The results show 

that the mass loss of concrete subject to sulphuric acid attack escalates by increasing cement 

content or reduction in W/C ratio. Both of these behaviours are consistent with previous 

studies [9]. These results show that as the cement content of concrete increases, the sulphuric 

acid will expand its reaction with the cement which leads to further corrosion of the concrete. 

The sensitivity of the EPR model I to one of the admixtures (OCI) is presented in Figure 4. It 

is evident from this figure that as the amount of OCI increases the mass loss is reduced. This 

indicates that adding a limited amount of OCI as a partial replacement of cement will reduce 

the deterioration of concrete against sulphuric acid.  

In Figure 5 changes of compressive strength (model II) with cement content is presented. As 

expected the compressive strength of concrete samples exposed to sulphuric acid will rise as 

the cement content increases. This figure also shows that the compressive strength predicted 

by model II will improve as the age of concrete increases.    

The same procedure was also used to determine the ability of model II to capture the 

sensitivity of compressive strength to variations of the Metakaolin and silica fume; the results 

are presented in Figures 6 and 7 respectively. These predictions are in agreement with those 

reported in [21]. 

It can be seen from the figures above that both models I and II were successful in capturing 

the sensitivity of mass loss and compressive strength to changes of different concrete mixture 

and admixture contents. 

3.4 Simplified Models 

As shown in previous sections, Equations 5 and 6 are the general EPR models that include all 

the mixture and admixture parameters and can accurately predict the deterioration and 
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compressive strength of concrete exposed to sulphuric acid. However it is also possible to use 

these models for the concretes that have been prepared with no admixtures or with only some 

of the admixtures. This can be done by evaluating Equations 5 and 6 when those admixture 

parameter(s) are equal to zero. The results of such evaluations lead to the generation of more 

concise and practical equations that include all the essential concrete mixtures. As an 

example, Equations 5 and 6 are evaluated here for the case when no admixture is used, pH 

value is equal to 0.6 and the age of concrete to examine compressive strength is 28 days. The 

results of this simplification are presented in Equations 7 and 8. 

The accuracy and sensitivity of Equations 7 and 8 were tested and verified to ensure that they 

provide reliable results. 

 

4. Optimum mixture of concrete subject to sulphuric acid attack 

From the results of parametric study it is evident that concrete contents may have different 

effects on the mass loss and compressive strength of concrete. For example while increasing 

cement content will improve the compressive strength of concrete it can cause further 

corrosion due to the mass loss. Therefore it is important to find a concrete mixture that can 

minimise the deterioration or maximise the compressive strength, or both at the same time, 

when the concrete is exposed to sulphuric acid attack. In this section, using optimisation 

techniques and simplified models (Equations 7 and 8), two different optimum concrete 

𝑀𝐿 = −9.8×10SX𝐺𝑊 + 1.9×10Sg𝐺/ 𝑊 − 3.2×10ST 𝐶𝑆 − 2.6×10S5h𝐺h 𝐶𝑊

− 5.2×10SX𝐶𝑊 𝐻 + 3.3×10Si𝐶 𝐺 
(7) 

𝑓l = 4.5×10S5/𝑆h𝑊 𝐶 + 1.2×10Sh𝑆𝐻 𝐶 − 2.0×10Si𝑆 𝑊 + 19.0 (8) 
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mixtures are presented that can provide maximum strength and minimum mass respectively. 

In addition, using a multi objective optimisation technique, a set of concrete mixtures that 

provide maximum strength and minimum mass loss is presented. Although only main 

concrete contents (i.e. cement, gravel, sand, water and superplasticizer) are optimised here, 

the technique can be extended to find both the optimum mixtures and admixtures using 

Equations 5 and 6. 

 

4.1 Finding minimum mass loss 

Equation 7 was minimised using a nonlinear programming optimisation technique. Lower 

limits and upper limits of each variable in the equation were set based on the minimum and 

maximum values of those parameters in the dataset. A constraint was defined to ensure that 

the total volume of concrete is always equal to unit value during the optimisation process 

(Equation 9). In addition, to obtain a practical solution W/C ratio was limited to 0.5.   

The results of this optimisation are presented in Table 3. The results show that the presented 

combinations of concrete mixture will lead to a minimum 10% mass loss.  

4.2 Finding maximum compressive strength 

A similar procedure to that presented to find minimum mass loss was carried out to maximise 

Equation 8 in order to find the optimum concrete mixture that results in maximum 

compressive strength. The results of the optimisation are presented in Table 4. Table 4 shows 

that the above combination of concrete content will provide compressive strength of 72 MPa. 

It can be seen that, while the amount of aggregates has not changed much, the water and 

𝑉opEqrs + 𝑉tEuv + 𝑉wrArux + 𝑉)Exrp + 𝑉(yFrpFsE(xzlz{rp = 𝑉l|ulprxr = 1.0	𝑚h (9) 
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cement content of the mixture with maximum compressive strength is significantly different 

from those with minimum mass loss. This indicates the important role of the W/C ratio in 

concrete subject to sulphuric acid attack. While it seems that a higher W/C ratio is suitable to 

minimise the mass loss, it may result in a reduction of compressive strength of the concrete 

prepared with ordinary Portland cement. This has also been reported by other researchers in 

previous studies [22]. 

 

4.3 Multi-objective optimisation 

A multi-objective genetic algorithm (MOGA) is used here to obtain optimum solution(s) that 

provide the minimum mass loss and maximum compressive strength of concrete 

simultaneously. The MOGA returns a Pareto front curve which contains a set of solutions 

rather than a single solution and the user can select the most suitable results based on the 

requirement of its own project. The same upper and lower limits and constraints to those of 

single-objective optimisation were set to perform the MOGA. In addition, different values of 

water/cement constraint were imposed to investigate the effect of these values.  The GA was 

run several times for each W/C ratio to ensure that the final results are consistent and similar 

to each other. Once the optimisation terminated one solution from the Pareto front curve was 

selected for each W/C ratio as the optimum solution. The results are shown in Figure 8 and 

Table 5. The results of multi-objective optimisation, presented in Figure 8, also confirm the 

importance of water-cement ratio in the mass loss of concrete. The concrete mixture 

corresponding to each point on this graph is presented in Table 5. Similar optimisations can 

be run to obtain the optimum amount of other admixtures in concrete. 
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5. Summary and Conclusions 

Sulphuric acid attack is recognised as one of the main causes for concrete sewer pipe 

degradation. Degradation of sewer pipes results in a reduction of the pipe’s wall thickness 

and the eventual breakdown of the system. The collapse of sewer systems can incur many 

financial and social problems. 

In this paper a new approach is presented for the prediction of degradation and compressive 

strength of concretes subject to sulphuric acid attack. Using a fairly comprehensive dataset 

from several acid attack experiments on various concrete mixtures and admixtures and a 

hybrid data mining technique (EPR), two models were developed and validated to predict the 

mass loss percentage and compressive strength of concrete when it is exposed to sulphuric 

acid. EPR integrates numerical and symbolic regression to perform evolutionary polynomial 

regression. The strategy uses polynomial structures to take advantage of their favourable 

mathematical properties. The developed EPR models present a structured and transparent 

representation of the system, allowing a physical interpretation of the problem that gives the 

user an insight into the relationship between degradation and various contributing parameters. 

An interesting feature of EPR is the possibility of getting more than one model for complex 

phenomena. The best model is chosen on the basis of its performances on a test set of unseen 

data. For this purpose, the initial dataset is split into two subsets, (i) training and (ii) 

validation. The validation data set is not seen by EPR in the model construction phase and 

predictions provided by EPR models based on this data can be used as an unbiased 

performance indicator of generalisation capabilities of the proposed models. Another major 

advantage of the EPR approach is that, as more data becomes available, the quality of the 

prediction can be easily improved by retraining the EPR model using the new data.  
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A parametric study was conducted to evaluate the effect of the contributing parameters (i.e. 

concrete contents) on the predictions of the proposed EPR models. Combined effects of the 

parameters were also considered in the sensitivity analysis to investigate the 

interdependencies of parameters and their effect on the EPR predictions. The results show 

that the developed EPR models provide very accurate predictions for both mass loss and 

compressive strength of concrete and are easy to use from a practical viewpoint. Using the 

developed EPR models, two simplified models were obtained in which they only include the 

essential concrete contents (i.e. cement, gravel, sand, water and superplasticizer). The 

proposed EPR models were optimised in order to find the optimum concrete mixture that 

provides the maximum resistance against sulphuric acid attack. The results of the 

optimisation confirmed that, similar to compressive strength, degradation or mass loss is 

highly dependent on water-cement ratio. 
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