

University of Birmingham

Hybrid Genetic Bees Algorithm applied to single
machine scheduling with earliness and tardiness
penalties
Yuce, B.; Fruggiero, F.; Packianather, M. S.; Pham, D. T.; Mastrocinque, E.; Lambiase, A.;
Fera, M.
DOI:
10.1016/j.cie.2017.07.018

License:
Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Yuce, B, Fruggiero, F, Packianather, MS, Pham, DT, Mastrocinque, E, Lambiase, A & Fera, M 2017, 'Hybrid
Genetic Bees Algorithm applied to single machine scheduling with earliness and tardiness penalties', Computers
& Industrial Engineering. https://doi.org/10.1016/j.cie.2017.07.018

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 25. Apr. 2024

https://doi.org/10.1016/j.cie.2017.07.018
https://doi.org/10.1016/j.cie.2017.07.018
https://birmingham.elsevierpure.com/en/publications/73b1966c-fac1-484a-a251-00aab9004613

Hybrid Genetic Bees Algorithm applied to Single Machine Scheduling with Earliness and

Tardiness Penalties

B. Yuce1*, F. Fruggiero2, E. Mastrocinque3, M.S. Packianather4, D.T. Pham5, A. Lambiase6 and

M. Fera 7

1 BRE Centre for Sustainable Engineering, School of Engineering, Cardiff University, CF24 3AA Cardiff, UK,
2 School of Engineering, University of Basilicata, Via Ateneo Lucano 10, 85100 Potenza, Italy,
3 Faculty of Engineering, Environment and Computing, Coventry University, Priory Street, CV1 5FB, Coventry,
UK
4 High Value Manufacturing Group, School of Engineering, Cardiff University, CF24 3AA Cardiff, UK,
5 School of Mechanical Engineering, University of Birmingham, B15 2TT, Birmingham, UK
6 Department of Industrial Engineering, University of Salerno, Fisciano, Italy,
7 Dept. of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa, Italy,
*Correspondent Author email address: yuceb@cardiff.ac.uk

ABSTRACT This paper presents a hybrid stochastic based solution for the single machine scheduling

problem. The proposed hybrid algorithm also addresses the enhancement of the Bees Algorithm on its

global search stage. Although the algorithm has several successful implementation on several

different types’ optimisation problems, it suffered from NP-hard combinatorial problems. To

overcome this difficulty, it has been proposed an enhancement on the global search stage of the

algorithm. In this work, the algorithm is reinforced with Genetic Algorithm on the global search stage,

this new meta-heuristic approach was called Genetic Bees Algorithm (GBA). The combination of the

exploration capability by means of a reinforced Global Search and a jumping - mutating function,

together with the exploitation strength of the bees approach is implemented. Computational

experiments over 280 well-known benchmark problems show the effectiveness of the proposed

approach compared to traditional heuristics. The GBA allows to improve scheduling while avoiding

getting stuck in local optima. GBA overcomes BA if compared in terms of time to convergence

around 60% less and quality of results around 30% better for highly constrained jobs. Although, the

performance of the proposed approach is not optimal in lightly constrained tasks, it increases quality

of the results over 3 times if compared with the basic Bees Algorithm approach.

KEYWORDS: Swarm-Based Optimisation; Bees Algorithm (BA); Genetic Bees Algorithm (GBA);

Single Machine Scheduling Problem (SMSP).

1. INTRODUCTION

Nowadays, firms have to offer a great variety of different products while customers expect orders

of goods to be delivered on time. In order to meet these kinds of requirements, Lean Manufacturing,

Fit Manufacturing, Just In Time (JIT) production need to be implemented. All these approaches

require that jobs are expected to be punctual, since the late as well as early delivery is seen negatively.

In JIT production due dates can occur as common due dates, whatever a set of jobs is needed

simultaneously for the assembly at the higher stage of the production. Regarding scheduling for

optimization in operations management, the identification of bottleneck machine that strongly

influences performances of systems can be treated as a single machine scheduling issue where

multiple jobs need to be arranged and delivered on time.

This paper addresses the single machine scheduling of a set of jobs with a common due date and

the objective of minimizing the job’s total earliness and tardiness.

In Single Machine Earliness/Tardiness Problem (SMETP), performance is measured by the

minimization of the weighted sum of earliness and tardiness penalties of jobs. In this paper a hybrid

Genetic Bees Algorithm (GBA) is proposed in order to solve the SMET problem. The proposed meta-

heuristic aims to combine the Genetic Algorithms’ exploration performances (Goldberg, 1989) with

the exploitation capacity of the Bees Algorithm (Pham et al., 2005). This paper is organized as

follows: firstly, a literature review on the single machine scheduling problem and the heuristics used

is given; secondly, an overview on the Bees Algorithm followed by the proposed hybrid Genetic Bees

Algorithm (GBA) is presented; finally the tuning phase of the GBA and its application on benchmarks

of different sizes and complexities are shown. Performances have been measured and compared to the

basic Bees approach and other well-known heuristics, by the minimization of the weighted sum of

earliness and tardiness penalties. Discussion about the role of algorithm parameters in terms of

efficacy (i.e., objective function) and effectiveness (i.e., computational time) is reported.

2. BACKGROUND

The problem of considering optimal due date assignment together with the definition of an optimal

scheduling policy was firstly considered by Seidmann et al., (1981) and Panwalkar et al., (1982) using

analytical approaches. Moreover, considering the problem of processing jobs within a time window

has been showed to be a NP-hard (Lee et al., 1991).

Cheng, (1984) demonstrated how, under certain production conditions in which jobs

‘completion can be anticipated, an optimal due date assignment can be defined. Single machine

scheduling problem considering lateness performance under constrained due date, was firstly

discussed by Gupta et al., (1987). Complexity of this problem was studied in the work of Lauff and

Werner, (2004) where the aim was to minimize the sum of the absolute deviations of the completion

times from the due. Open and job shop systems where compared with two machine flow shop

environment in the case of restrictive and non-restrictive due date and it was proven that flow shop

environment is NP-hard in the strong sense. In the work of Bagchi et al., (1986) was asserted that

value of the due date might influence the computational complexity. The optimal objective function

value of a certain problem cannot increase by increasing the due date while keeping constant all the

others parameters. As a consequence, there is a time period in which the products should finish and

then the delivery to customers should be arranged. The restricted common due date problem is

generally much more difficult to solve than a non-restricted one (Baker and Scudder, 1990). It is

appropriate to consider that in the case of a single machine scheduling, the optimal penalty cost

cannot decrease with the increase in the common due date (Webster, 1997). For the case of single

machine scheduling under due date penalties, Kanet in 1981 was the first to assume a problem in

which penalties occur when a job is completed early or late to restrictive assumptions on the due dates

and in penalty functions for jobs.

Tardiness penalties due to delivery after a contractually arranged due date, consider the loss

of customers’ goodwill and damage reputation as well as delay of payment and shortages. This also

entails extra costs including late charges (Fisher and Jaikumar, 1978). On the other hand, completing

a job before the due date increases the cost or probability of related cost due to insurance, inventory

carrying, holding, theft, perishing and loss of product quality, bounded capital (Webster, 1997).

The due date assignment problem makes practical sense when the company plans delivery to clients.

Moreover, the increasing adoption of the JIT approach in industries has made due date backward

assignment an active area of scheduling research (Li et al., 2006). Inventory management such as JIT

concepts is mainly dependent by the certainty of production capacity and lead time. In JIT systems,

jobs have to be completed neither too early nor too late (Monden, 1983). This leads to the scheduling

problems with both earliness and tardiness penalties.

Single machine scheduling problem occurs every time a closed continuous flow is arranged or

whatever bottlenecks characterize the overall performances of the considered system. Thus, meeting

common due dates has always been one of the most important objectives in scheduling and supply

chain management. At the same time, the common due date makes sense whenever it is not required

detailed control for jobs or better when all goods and services are comparable in terms of resources

allocation (Cheng, 1988).

Common due date helps managers to get economies of scale and facilitate control (Gordon et

al., 2002). Moreover, besides the delivery of tardy services, the main issue to be taken into account is

the cost discount that can be derived whenever a warehouse does not exist and products do not have

obsolescence or extra costs.

The problem of common due date for single machine scheduling definition was firstly

analysed in Panwalker et al., (1982). Common due date can be either externally defined and imposed

by the market (Baker and Scudder, 1990), or internally defined as a time line manager wants to

achieve.

In literature, several pieces of works have been conducted on the solution of the SMETP problem

(e.g., Panwalkar, et al., (1982); Cheng, (1984); Janiak, (1991); Cheng et al., (2004); Mosheiov and

Yovel, (2006); Lin et al., (2007); Nearchou, (2008); Gordon and Strusevich, (2009); Wang and

Wang, (2010); Li et al., (2011); Nearchou, (2011); and Yang et al., (2014)).

Benchmarks for scheduling with common due date were presented in the paper of Biskup and

Feldmann (2001). They generated benchmark data set for SMETP which then became popular among

the researchers and solved 280 instances using two dedicated heuristics for identifying the upper

bounds on the optimal function values. Instances and values are currently available in order to test

performances of newly heuristics. These benchmarks are widely used to test performances in SMETP

(Feldmann and Biskup, (2003); Chen and Sheen, (2007); Nearchou (2008); Lin et al., (2007); and

Nearchou, (2011). Further, the benchmark problem generation process for single machine early/tardy

scheduling is proposed by Abdul-Razaq and Potts, (1988); Li, (1997); and Liaw, (1999), and widely

utilised in the heuristics as stated in Valente and Alves, (2005); Valente et al., (2006); Lin et al.,

(2007); Valente (2008); Valente and Schaller, (2012); and Sundar and Singh, (2012). The

performance of proposed approaches in the last two papers are not presented with exact solutions

values. However, there is a relative comparison between heuristics results and upper boundaries.

Due to the complexity of SMETP local search, meta-heuristics approach are mainly introduced as

solution method. The total tardiness/earliness problem was first studied by Emmons in late sixties

(Emmons, 1969). Up to the early seventies, all the work done in this area were basically practice

oriented, aiming at designing fast enumerative algorithm to find an optimal schedule. Pseudo

polynomial time algorithm were proposed by Lawler, (1979) in approximation scheme.

Adbul-Razaq and Potts, (1988) developed a branch-and-bound algorithm that employs lower

bounds by the dynamic programming state space relaxation technique. Satisfactory solution are

obtained in large number of jobs (up to 25 jobs) with lower processing times. Moreover, an efficient

heuristic based on branch-and-bound algorithm with decomposition of problem into two sub-problems

and two efficient multiplier adjustment is proposed in the work of Li, (1997) for up to 50 jobs.

Moreover, a combination of priority dispatching rules with local improvements is used for eliminating

unpromising nodes in the branch-and-bound algorithm of Liaw, (1999). Valente and Alves, (2005)

demonstrated the influence of initial sequence on lower bound as stated in Li, (1997); and Liaw,

(1999). A survey regarding algorithms and approaches for SMETP were reported in the works of

Crauwels et al., (1997). Hybrid constructive strategies for SMETP are performed in Hino et al.,

(2005). The role of almost all dispatching rules for the optimal SMTP (earliness is not included)

issues was stated in Valente and Schaller, (2012). Heuristics approaches to solve SMETP have been

applied by Yeung et al., (2001). In particular, they developed a branch a bound algorithm to

minimize, under common due windows, earliness and tardiness penalties. Three meta- heuristics

approaches for stable scheduling on a single machine based mainly on Branch & Bound and Genetic

operators are reported in the work of Ballestin and Leus, (2008) when deviation between planned and

actual job starting time occurs. Beams search heuristics with recovery procedures is used in the work

of Valente in 2008 with optimal performance for small and medium SMETP instances. If pre-

evaluation in beam is included based on dispatching rules Excessive computational time is required

for medium and large (more than 75 jobs) instances. Filtered beam search method for near optimal

sequences of jobs was proposed by Ow and Morton, (1989). Another study using the genetic operators

in non-dominated sorting algorithm combined with quantum bit representation are proposed by Liu et

al., (2013); and Jolai et al., (2007). A combination of GA with 14 local search and initialization

procedures is developed and tested on the randomly generated instances in Valente et al., (2006).

They demonstrate that, behind the quality of results, the combination of fitness evaluation and GA is

greatly accelerate the convergence, and will reduce number of iterations and computational time at

nearby optimal schedule when compared to heuristics based on dispatching and local searches. Hybrid

permutation-coded evolutionary approach - confirming the requirement of combining steady state

genetic schedules with adjacent pairwise interchange procedure – demonstrates the robustness of

genetics and the average gain in computational effort by comparing the fitness evaluation strategies

inside GA by Singh, (2010). Another methods used for SMETP is memetic approach, presented by

Franca et al., (2001). Greedy Randomized Adaptive Search Procedure (GRASP) is used in Norgueira

et al., (2014). Heuristics based on mathematical programming are proposed by Della Croce et al.,

(2014), to obtain better performances for very large scale problems. A combination of local search

heuristics, using dispatching and hill climbing and simulated annealing, with evolutionary algorithm

is proposed by M’Hallag, (2007), where it was clear the role of hybridization as to improve the

solution quality at a reasonable cost in terms of run time. Another hybrid approach is presented by

Sundar and Singh, (2012). They proposed a local search approach combined with Artificial Bees

Colony (ABC). The results are reported based on the optimum solutions presented by Valente et al.,

(2006). The authors demonstrated the superior performances of ABC on quality of solution and

convergence rate on the instances with 50, 75 and 100 jobs, compared to GA results. However the

convergence performance is slower for the instances greater than 250 jobs. Another approach is based

on Tabu Search and Simulated Annealing and Neighbourhood Search, proposed by Almeida and

Centeno, (1998), which is utilised the random generated SMTEP instances. Finally, complete surveys

of heuristic methodologies for solving SMETP are reported in the work of Gupta and Sen, (1983); Sen

et al., (1996); Chen, (1996); Su and Chang, (1998); Gordon et al., (2002); and Schaller, (2007).

In this paper, it is investigated the performances of a new enhanced hybrid version of the Bees

Algorithm, called Genetic Bees Algorithm (GBA), which is enhanced with genetic operators. Since

the basic Bees Algorithm may have limitation to converge the optimum solution in the desired time

scale by Yuce et al., (2014). The genetic algorithm operators such as crossover and mutation operators

are included in order to increase convergence rate by increasing the ability of the global search, the

details of the proposed algorithm is defined in section 4.2. The validation and performances of the

proposed approach - because of the easily access to the database and optimum solutions- are evaluated

in the test data, presented by Biskup and Feldman, (2001). However, there are still other data sets

available to be utilised in the literature presented by Valente et al., (2006), Singh (2010); and Sundar

and Singh, (2012). Notwithstanding, we will benchmark our results with other meta-heuristics from

the major class of pure and hybrid approaches. It has been assumed that restrictive and relaxed

common due date exists. For each job, individual earliness and tardiness completion time penalties are

given in advance. Validation of the proposed meta-heuristic is presented in terms of computational

time, effort and quality of solutions by means of the upper bound as used by Feldman & Biskup,

(2003); Hino et al., (2005); and as reported in the GA+ greedy local search and SA + greedy local

search of Lin et al., (2007).

3. THE SINGLE MACHINE SCHEDULING PROBLEM

The optimal allocation of scarce resources to certain activities is the objective of the scheduling.

Scheduling problems become sequence whenever constraints regarding priorities are not included

(Carlier, 1982). A single machine scheduling problem is a well-studied optimisation problem where a

set of n-jobs with given deterministic processing times Ti and due date, have to be processed on a

machine according to some constraints. The goal is to find a schedule for the n-jobs which minimizes

the sum of all the penalties occurring due to the constraints. This is a challenging optimization

problem and therefore it is chosen to test the performance of the proposed GBA.

In the SMETP, resources are commonly referenced as machines Mk that can perform at most one

activity - one job Ji i.e., an open or close sequence of tasks i with time Tijk (i.e., the time T of a task i

as part of the job j which requires the resource k) - at any time t.

Ubiquity of task is not enabled. All the information that defines a problem instance is known in

advance. This characterizes a deterministic scheduling as part of the combinatorial optimisation. In

the following we use the 3-parameter classification introduced by Graham et al., (1979). Then,

SMETP is formally classified as n/1//ET (French, 1982).

Let: J={J1, J2, …., Jj-1, Jj, Jj+1, …, Jn} the set of the n jobs existing inside the system to be

processed without interruption on a single machine Mk (i.e., k here is equal to 1) that can handle only

one job at a time. Each job Jj is available at time zero, requires a positive process time Tjk and ideally

must be completed exactly on a specific constant due date D proportionally to the amount of 𝐶𝐶𝑘𝑘 =

 ∑ 𝑇𝑇𝑗𝑗𝑘𝑘𝑛𝑛
𝑗𝑗=1 and common for all jobs.

Penalties occur every time the job j is completed before or early the fixed due date D.

The common due date D on machine k (i.e., Dk) is calculated by

 𝐷𝐷𝑘𝑘 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�∑ Tjkn
j=1 × ℎ� (1)

where round[X] gives the biggest integer which is smaller than or equal to X; parameter h is used to

calculate more or less restrictive common due dates.

An early Ekj=max (0, Dk-Tjk) or a tardy Rkj=max (0, Tjk-Dk) occurs if the job j is not completed

exactly on the specific assigned Dk. The possibility to accumulate Rkj – whatever its amount is

preferable to Ejk because of its excessive penalties - in non-restrictive cases is allowed in order to get

optimality. The objective is therefore to find a processing order for the n jobs that minimises the

following objective:

𝑂𝑂𝑂𝑂𝑂𝑂 = ∑ �𝛼𝛼𝑗𝑗𝑘𝑘𝐸𝐸𝑘𝑘𝑗𝑗 + 𝛽𝛽𝑗𝑗𝑘𝑘𝑅𝑅𝑘𝑘𝑗𝑗�𝑛𝑛
𝑗𝑗=1 (2)

Where αjk and βjk are respectively the earliness and tardiness non negative penalties for the job j as

processed on machine k and they constitute the deterministic input for the benchmarks. Thus, an

optimal solution to unrestricted SMETP (h ≥ 0.4) may exist if no idle time in scheduling occurs and

the starting time of the first job could not start at time zero (Cheng and Kahlbacher, 1991). Close jobs

is a necessary but a not sufficient condition to the optimization. Here, the complexity is related more

to the arbitrary starting date than to the close sequence of jobs. The restrictive form of SMETP is

much more complex than the unrestricted one given the NP-hard nature of the problem (i.e.,

excluding optimum schedule a priori when the n>20) (Du and Leung, 1990).

In order to generate data tests, a set of n jobs with deterministic processing times Tjk and a

common due date Dk are given. 7 data files were used in this study according to the number of jobs n

which are equal to 10, 20, 50, 100, 200, 500, 1000 and with different restricted (h = 0.2 and h = 0.4)

and unrestricted (h = 0.6 and h = 0.8) constraints in due date (Dk) on one machine (k=1). Jobs have to

be processed on one machine and, for each of the jobs, an individual earliness Ej and tardiness Tj

penalties are given, if a job is finished before or after the common due date D, respectively1.

4. THE ENHANCEMENT OF THE BEES ALGORITHM WITH GENETIC OPERATORS

4.1 THE BEES ALGORITHM

A colony of bees exploits, in multiple directions simultaneously, food sources in the form of antera

with plentiful amounts of nectar or pollen. They are able to cover kilometric distances for good

foraging (Gould, 1975). Flower paths are covered based on a stigmergic approach – sites with higher

nectar content should be visited by more bees (Crina and Ajith, 2006). The foraging strategy starts by

scout bees, which represent a percentage of the beehive population. They wave randomly from one

patch to another. Returning at the hive, those scout bees deposit their nectar or polled and start a

recruiting mechanism called waggle dance (Von Frisch, 2014). Bees, stirring up for discovery, flutter

from one to one hundred circuits with a waving and returning phase. The waving phase contains

information about direction and distance of flower patches. The waggle dance is used as a guide or a

map to evaluate merits of explored different patches and to exploit better solutions. After waggle

dancing on the dance floor, the dancer (i.e., the scout bee) goes back to the flower patch with follower

bees that were waiting inside the hive. A squadron moves forward into the patches. More follower

bees are sent to more promising patches, while harvest paths are still explored but not in the long

1 Common due date scheduling, OR-Library, Available at:
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/schinfo.html [Accessed on 2nd April 2014].

http://people.brunel.ac.uk/%7Emastjjb/jeb/orlib/schinfo.html

term. This behaviour represents a swarm intelligent approach (Yuce et al., 2013), which allows the

colony to gather food quickly and efficiently with a recursive recruiting mechanism (Seeley, 2009).

The Bees algorithm approach is inspired to such a natural communication mechanism.

The Bees Algorithm (BA) is a type of Swarm Based Optimisation Technique (SBOT) mimicking

the foraging behaviour of honey bees (Pham et al., 2005; Fera et al., 2013; and Yuce et al., 2014).

Like any other optimization technique it has two basic concepts namely global and local search. The

Global Search is conducted by scout bees which fly out from the hive in search of potential flower

patches randomly. The returning scout bees communicate the following information to the recruit

worker bees by means of the waggle dance. Information includes the direction of the source, the

distance of the source from the hive and the quality of the food source (Gould 1975; and Von Frisch,

2014). This is indicated by the orientation of the bee with respect to the sun, the duration of the

dance, and the frequency of the waggles in the dance and buzzing respectively (Huang, 2008). This

will influence the number of recruited worker bees which will carry out a local search. Over time

old patches which have been exploited fully by worker bees will be abandoned and new patches

explored by scout bees for further exploitation. This process continues in an iterative manner until a

stopping criteria is met. The process will become random if it is dominated by Global Search and, on

the other hand, run the risk of getting stuck in a local optimum if the focus is on local or

neighbourhood search. Hence a good optimization algorithm must conduct a thorough Local Search

while maintaining the Global Search perspective. The BA due to its inherent nature, is expected to get

stuck in local optima and in order to overcome this problem the proposed a hybrid Genetic Bees

Algorithm (GBA) relies on two extra components to modify or evolve the search similar to that of

Genetic Operators. These components are the Reinforced Global Search frame and a jumping function.

The standard Bees Algorithm first developed by Pham et al., in 2005 requires a set of parameters

as reported in Table 1: no. of scout bees (ns), no. of elite sites selected out of ns visited sites (ne), no.

of best sites out of ne selected sites (nb), no. of bees recruited for the best nb sites (nrb), no. of bees

recruited for the other nb-ne selected sites (nrb), initial size of patches (ngh). According to the

flowchart in Fig. 1, the BA has the following steps: the first step is placing the ‘ns’ scout bees on the

search space, and then in the next step, fitness values of the visited patches are evaluated.

Subsequently the best patches with respect to their fitness value are selected and then split into two

groups containing more scout bees to the elite patches ‘ne’, and less scout bees to the non-elite best

patches ‘nb–ne’. The next step covers the neighbourhood search in the patches given beforehand, and

so according to the neighbourhood search, the patches’ fitness values are evaluated. Then, the

remainder bees, which are created in initial population ‘ns-nb’, will be recruited for the random

search to find better random solutions. Finally, the random patches’ fitness values are evaluated and

this process continues until one of the stopping criteria is met: the solution found is equal to the real

optimum value, the number of iterations reaches the pre-set value, if there is no significant

improvement in the consecutive solutions found, e.g. stuck in local minima.

Table 1 The initial parameters of the BA.

ns Scout bees

ne Elite sites (with ne<nb)

nb Best sites

nre Bees in elite sites

nrb Bees in best sites

ngh Initial size of patches

Itr Iterations

Fig. 1 The flow chart of the basic Bees Algorithm (BA).

4.2 THE BEES ALGORITHM REINFORCED WITH GENETIC OPERATORS

The weakness of the BA is associated with its inability to diversify the global search in order to

explore the solutions space when the search algorithm reaches a plateau or local minima. As shown

in Fig. 2, the GBA keeps the same structure as BA with the addition of two components namely

Reinforced Global Search and Jumping Function. The pseudo-code of hybrid GBA is given in Fig. 3.

Fig. 2 The flow chart of Genetic Bees Algorithm (GBA).

Reinforced Global Search

In the GBA, the global search is enhanced by introducing a genetic mutation operator. In

particular, remaining ns-nb bees do not perform a normal random search for the flower patches but,

each flower patch where the bees would be sent is a mutation of the best food source found by the

algorithm until that point. In other words, considering the analogy between the bee and the flower

patch, mutating the best solution is equivalent to mutating the best bee, i.e., creating a Superbee.

The aim of the Reinforced Global Search is to create ns-nb Superbees to replace the bees in the initial

population.

In the Reinforced Global Search procedure, the length of the mutated string is equal at the most to

half the dimension of the vector of the solution. In this way, the mutated solution preserves at least

50% of the original solution. Furthermore, the beginning of the mutation can start from any point of

the solution vector. If the algorithm finds a solution close to the optimum, the Reinforced Global

Search allows it to converge faster. In other words, the Reinforced Global Search represents the frame

upon which the jumping block function is built.

Fig. 3 The pseudo code of the GBA.

Jumping Function

In reality, the global search is not enough to find the optimum of the objective function. The

problem related to the Reinforced Global Function is that the ns-nb solutions are generated not

completely randomly, but keep alpha% of the original solution. If the original solution is a local

minimum, the algorithm will converge to this solution without considering other possible solutions

which could be better. For this reason a jumping function is introduced. The jumping function acts to

enhance the global search phase and include crossover (i.e., one-point and multi-point crossover are

Step 1. 1. Parameters setting: ns,ne,nb,nre,nrb,ngh,itr.
Step 2. 2. Data set loading: load dataset
Step 3. 3. Initial bees population generating: X=Xrandom; job(ns, njob);

4. Fitness function evaluation:
 F=funObj(ns,C, njob, ptime, ddate, X, data)

5. Ascending sorting of the values of F: [Fsorted, Xsorted]=sorting(F, X, ns)
Step 4. 6. For 1< q <itr

7. For 1< i <ne
8. Generating, for each solution i, the neighborhood matrix MATRscout
9. Randomly allocating of the nre bees to the solutions of MATRscout

10. Generating a matrix X1 with the nre solutions related with the bees
11. Evaluating X1 → F1 = funObj(…)
12 Sorting (X1 e F1) →[F1 , X1] = sorting (F1 , X1 , ne)
13. If the first element of F1 is minor than the i-th element of Fsorted
14. updating Fsorted and Xsorted with the new found solution
15. End
16. End
17. For (ne+1)< i <nb
18. Generating, for each solution i, the neighborhood matrix MATRscout
19. Randomly allocating of the nrb bees to the solutions of MATRscout
20. Generating a matrix X2 with the nre solutions related with the bees
21. Evaluating X2 → F2 = funObj(…)
22. Sorting (X2 e F2) → [F2 , X2] = sorting (F2 , X2 , ne)
23. If the first element of F2 is minor than the i-th element of Fsorted
24. updating Fsorted and Xsorted with the new found solution
25. End
26. End

Step 5. 27. For nb< k <ns
28. Generating indexes, which contains the indexes of the elements to be mutated
29. Mutating the best solution GX= mutation (Xsorted(:, 1), indexes)
30. Evaluating GX using FX=funObj
31. If GX is better than Xsorted(:, 1)
32. Replacing → Xsorted(:, k)=GX
33. Replacing → Fsorted(:, k)=FX
34. End
35. End
36. Sorting the population of Xsorted and the vector Fsorted

Step 6.37. If for 10 iterations the best solution Xsorted(:, 1) does not change
38. While NEWsol is worse than Xsorted(:, 1) or whilestop is not met
39. Employing jumping to Xsorted(:, 1) obtaining NEWsol
40. Evaluating NEWsol
41. End
42. If NEWsol is better than Xsorted(:, 1)
43. Replacing Xsorted(:, 1) with NEWsol and updating Fsorted(1, 1)
44. End
45. End
46. End

implemented), mutation and randomization stages, working consecutively to update solution. It is

composed of four steps: one-point crossover, multi-point crossover, mutation operator, and

randomization as shown in Fig. 4. The jumping function starts when the algorithm gets stuck in a

local minimum for a certain number of iterations. The first step consists of applying the one-point

crossover operator to the best solution. If this operation is enough to fix the problem, the algorithm

comes back to the main cycle updating the old solution with the new one; if the problem is not

solved, the one-point crossover operator works until a certain number of iterations (or until a

stopping criteria). When the stopping criteria are met, without finding any better solution, then the

multi-point crossover operator starts, working with the same logic as the previous operator. If this

fails, then the mutation operator is introduced. If these three operators are not able to find any better

solutions, the complete randomization of the solution is used.

 Fig. 4 The flowchart of the jumping Function used in GBA.

Finally, the output of the jumping function can either be the same as the input solution or better than

the input solution (see experiments section).

5. EXPERIMENTAL ANALYSIS AND RESULTS

5.1 TUNING PHASE AND MAIN PERFORMANCES

The numerical experiments used the set of 280 test problems proposed by Biskup and Feldman,

(2001), and available on internet at (http://people.brunel.ac.uk/~mastjjb/jeb/orlib/schinfo.html). The

problem set is divided by size into 7 groups having n= 10, 20, 50, 100, 200, 500, 1000 jobs,

respectively with each category containing 10 instances (in# is the instance amount) to be tested. The

value of h= 0.2, 0.4, 0.6, 0.8 classifies the problem as less or more restricted against common due date

D. The proposed GBA was implemented in Intel® Core™ i7 CPU @ 2.93GHz. Since the Bees

Algorithm is a stochastic based method, it generally requires to report an average amount while

considering %offset over different runs to have a meaningful results.

The advantage of GBA over BA is due to its power to avoid getting stuck in local minima of the

objective function values. In other words, GBA performs a Reinforced Global Search and employs a

Jumping Function in order to unblock the search and venture into new space when it gets stuck in

local minima. As shown in figure 5 and 6, whenever both algorithms utilise the same initial

parameters set for the number of patches, the number of elite and the non-elite best patches, there is a

considerable gain in quality of solution at a fixed iteration number. However, the convergence

performance of the both algorithms are totally different.

Fig. 5 and 6 show the comparison of performances between GBA and basic BA in a constrained test

problem (h=0.2) from Biskup and Feldman, (2001) at the optimum for SMETP. Reinforcing Global

Search procedure and jumping mutating function increase the capability of exploration and

exploitation of the basic Bees Algorithm. While the GBA reaches the optimum value after 10

iterations, the BA needs 4000 iterations (on the same test problem under the same algorithm

parameters).

http://people.brunel.ac.uk/%7Emastjjb/jeb/orlib/schinfo.html

Fig. 5 The performance of the BA for n=10 and h=0.2- optimum value 1936 (tuning under

parameters: ns=50; nb=5; ne=3; nrb=5; nre=5; ngh=5.

Fig. 6 The performance of the GBA for n=10 and h=0.2- optimum value 1936 (tuning under

parameters: ns=50; nb=5; ne=3; nrb=5; nre=5; ngh=5).

However, the larger population size influences on exploitation in solution while gaining in exploration

of the domain. The larger colony size causes the longer processing time to achieve the optimum

solution (following a non-polynomial trend). As a matter of fact, a relation between computational

time and number of iteration to an optimum set can be constructed as shown in Fig. 7, evolving

linearly with the test data. In condition of highly restricted scheduling instances (ℎ ≤ 0.4), the GBA

is capable of finding the optimum solution in small size (n<100) instances with low computational

effort. Time for a stable solution for benchmark instances is less or around seconds (Feldmann and

Biskup, 2003). In almost all the highly restricted instances, the GBA shows superior performances

compared to the meta- heuristics proposed by Biskup and Feldman, (2001), and comparable with the

Upper Bound of the literature (Lin et al., 2007). However, for value of h>0.4 and number of jobs

higher than 200, given the NP-hard nature, the problem required a much more strong computational

effort (see Fig. 7).

Fig. 4 Computational Time in seconds to OPT and Iteration to OPT for different SMETP instances

under varying h-constraint for values as reported in Biskup and Feldman, (2001).

In figure 7, we presented the referral value of calculation time in seconds and number of iterations

which the GBA achieved its best solution in the specific test problem of the restricted class (this mean

convergence to a fixed optimal amount). In order to tune the GBA, we used an approach based on the

analysis of the % effort= (IOPT/TI) x 100, where IOPT is the iteration at which the algorithm achieved its

best solution over ten runs for a specific test problem and TI is the computation time.

The %effort as defined in Nearchou, (2008) is remarkably higher (more than 30%) for the proposed

GBA in comparison with the DE approach of Nearchou, (2008). %effort is then reported as average

value among ten runs according to Bonferroni correction (Fig. 8). Results show that when the problem

size increases, the time to reach an optimal solution increases even though the number of iterations

remains almost constant (Fig. 7). Moreover, %effort seems to decrease when GBA parameters

increase. This requires analysis of interactions between parameters under different case study. This

behaviour is almost similar for the basic BA, although the %effort is more than two order higher than

the GBA as shown - from visual comparison - in Fig. 9 and 10.

Interaction between parameters was evaluated based on Taguchi orthogonal arrays (Taguchi, 1986)

and the corresponding results are shown in reports of Fig. 8. Each line corresponds to a different data

test (i.e., n= 10, 20, 50, 100, 200 with h=0.2 - mean across ten instance of each class) and reported the

%efforts in regards to various configurations. The average value of 10 repetitions is reported in Fig. 8.

A larger population size will make the algorithm working more slowly but will eventually achieve a

better solution. However, the correct tuning depends on the problems being solved. The run duration

requires more %effort as the problem increases in size and the amount of parameters increases. There

is an evident optimal value of ngh around 10 that can be used for all tests, while an optimal value of

nre around 12 can be used. There is a suggest value of nrb around 8. The influence in terms of %effort

of nrb and nre is remarkable between tests as its correspondent value increases. Generally, this

remarks in %efforts is not so evident for ns and nb and ne values of 100, 50 and 8, respectively. These

considerations were set in GBA for outputs as per the results section.

(a)

(b)

c)

d)

2001801601401201008060504020

100

80

60

40

20

0

ns

M
ea

n
of

 %
ef

fo
rt

10
20
50

100
200

n

%effort varying ns for different case study n

100908070605040302010

100

80

60

40

20

0

ne

M
ea

n
of

 %
ef

fo
rt

10
20
50

100
200

n

%effort varying ne for different case study n

111098765432

100

80

60

40

20

0

nb

M
ea

n
of

 %
ef

fo
rt

10
20
50

100
200

n

%effort varying ns for different case study n

50454035302520151085

80

70

60

50

40

30

20

10

0

nrb

M
e

a
n

 o
f

%
e

ff
o

rt

10
20
50

100
200

n

%effort varying nrb for different case study n

e)

f)

Fig. 8 %effort for different values of ns (a), nb (b), ne (c), nrb (d), nre (e), ngh (f) for different tests

data. h=0.2.

For the restricted class n/1/ET large test instance, optimal performances could be achieved in a

computational time around 45 minutes (mean across h≤ 0.4 value for n= 1000) that remains lower

compare to the DE approach (Nearchou, 2008). However, the GBA could suffer of getting stuck in

local optimum when h>0.4. For this reason, tuning become fundamental for the performances of the

GBA, using a Reinforcing Global - it needs to be set on a great ns amount - Search and Jumping

Function - jump based on limited Itr (iteration). The GBA, as explained above, manifests good

performance in terms of exploitation of the domain, but suffers in local exploitation, which sometimes

requires continuous jumping in new patches. As a matter of fact, %effort is high when the GBA

parameters assume low values as shown in Fig. 7 and therefore mutation and crossover need to be

increased.

10090807060504030201210

90

80

70

60

50

40

30

20

10

0

nre

M
ea

n
of

 %
ef

fo
rt

10
20
50

100
200

n

%effort varying nre for different case study n

Fig. 9 BA (blue line) vs. GBA (red line) - comparison in performance under n=10 h=0.2; (tuning

under parameters : ns=50; nb=5; ne=3; nrb=5; nre=5; ngh=5).

Fig. 10 BA (blue line) vs. GBA (red line) - comparison in performance under n=t 50 h=0.2;(tuning

under parameters : ns=50; nb=5; ne=3; nrb=5; nre=5; ngh=5).

5.2 RESULTS

The results obtained by the GBA, applied to the instances proposed by Biskup and Feldmann,

(2001), are given in table 2, 3, 4 and 5. In particular, the computation results, concerning small and

large size benchmark problems, obtained by the GBA, are compared to: those obtained by the BA

(under optimal tuning) and the upper bounds from Feldmann and Biskup, (2003) meta-

heuristics (tables 3 and 4); existing meta-heuristics according to literature review (see table 4 and

5). The comparison between approaches generated using different tunings, ten runs, at fixed h and

5000 iterations are reported in table 2.

Table 2 The BA vs the GBA: n={ 10 & 20 &50 &100 & 200 & 500 & 1000} - mean of ten runs -

h=0.2. Registered performance after 5000 iterations (tuning under parameters : ns=50;nb=5;

ne=3;nrb=5; nre=5; ngh=5), * as optimum.

Itr is the number iteration, UB as F&B is the upper boundary in Feldmann and Biskup, (2003).

The global performance of the GBA and the BA is reported by calculating the %offset under multiple

runs. OBJ value of table 2 as reported are based on the difference between the Upper Bound cost

function and the best solution found over different runs as described in Law and Kelton, (2000) with a

Bonferroni correction due to multiple performance measures used by Quinzi, 2004. The convergence

performance is presented in table 2 based on the following transformation: %offset = 100 (FGBA-

FBA)/FBA. The GBA used genetic operator with multi point (two points) crossover proportionally to

the size of test instances and related to its steady state in local optimum with uniform mutation (for a

fixed-length with upper and lower bound according to the size of test instances and in incremental

shape).

Moreover, it is decided to evaluate relative comparison between GBA and BA when they are looking

for the optimum. A wider comparison is set to evaluate the performance of GBA if compared with the

BA approach

For all the instances, the GBA was settled according to a Taguchi analysis on main and integration

effects with: number of scout bees (ns) = 200; no. of sites selected out of ns visited sites (nb) = 100,

number of elite sites out of nb selected sites (ne) = 11 , number of bees recruited for the best ne sites

(nre) = 8, number of bees recruited for the other nb-ne selected sites (nrb) = 12, initial size of patches

n
BA GBA UB as F&B BA GBA BA GBA

10 5000 5000 1936* 1,936 1,936 0,00% 0,00%
20 5000 5000 4,431 5,297 4,394 19.54% -0.84%
50 5000 5000 42,363 54,334 40,642 28.26% -4.06%

100 5000 5000 156,103 232,170 146,345 48.73% -6.25%
200 5000 5000 526,666 905,572 498,653 71.94% -5.32%
500 5000 5000 3,113,088 3,480,069 2,954,852 11.79% -5.08%

1000 5000 5000 15,190,371 16,143,289 14,054,930 6.27% -7.47%

Itr OBJ %offset

(ngh) = 2. Table 3 reports the percentage offset over different problem size n over in# and 4

restrictive factor h. Multiple runs (10 for each issue) have been computed and an the best out of ten

runs is used for comparison. This procedure follows as similar to methodology proposed by Hino et

al., (2005). The GBA algorithm was implementing using the standard tuning approach. The GBA and

the BA used the same set of parameters over iteration (Itr). This may influence performance of the

approach but it leads to a robust comparison between different test cases. The value of h in the header

of the tables indicates the constrained shape of the instances. According to the experiments, GBA did

not outperform over the BA in all instances. There are some particular instances where the BA gains

better outcome - but it manifests a mean global outperformance.

Table 3 The percentage offset (mean among 10 benchmarks under different restrictive factor (h) of

the GBA and the BA.

The results obtained with the proposed algorithm based on the time in minutes and Itr at best - over 10

runs - (as per table 3 and 5) are presented in table 4. Computation time is about an hour for

unrestricted large instances. This is longer in relation to what Lin et al., (2007) presented in the

Genetic Algorithm and Simulated Annealing with greedy local exploration search. These two

approaches will be, hereafter, indicated as GA/SA + greedy local search. For the class of 1000 jobs,

Lin et al., (2007) obtained an average optimal value after 81.749 seconds, however it is found as

44.42 minutes using GBA. Notwithstanding, GBA- as per the results of table 5 - obtain generally the

best performances in terms of quality of results.

As it is highlighted in table 4, that the GBA is quite fast for the instances up to 200 jobs, such as the

average CPU time is under 0.46 seconds for small size problem (n=10), and it is found an average

CPU time under 37 seconds for problems with n≤50. The corresponding average CPU time reported

by Feldman and Biskup (2003) are approximatively 87.3 seconds for n≤50 jobs.

h n Mean

10 20 50 100 200 500 1000
0.2 0.00% 0.00% -0.09% -0.29% -2.42% -5.56% -4.74% -1.87%
0.4 -0.37% -0.03% -0.45% -0.93% -3.11% -3.69% -3.48% -1.72%
0.6 -1.39% -1.39% -1.12% -2.55% -5.04% -3.17% -2.36% -2.43%
0.8 -0.31% -0.31% -0.56% -0.31% 0.00% -4.76% 0.00% -0.89%

Mean -0.52% -0.43% -0.56% -1.02% -2.64% -4.30% -2.65% -1.73%

Table 4 Running times (minutes) on Intel® Core™ i7 CPU @ 2.93GHz at the best out ten runs (mean

among in#) for GBA.

For an absolute remarks and the relative comparison with other meta-heuristics, it can be observed

from the work of Pham et al., (2011) where the data of table 5 are partially originated. This approach

provides to demonstrate the absolute presentation of the proposed solutions.

Each cell of the table 5 represent the average % difference for the 10 instances (in#) of the

corresponding size n and restricted factor h. It can be noted that the GBA outperforms the BA in all

instances. The mean of difference in quality of computational solution is about -1.73% and

remarkable gain is obtained when the size of the problem increases. The GBA is showing an

improvement in the solution for all the scenarios and the BA is manifesting not good quality of results

whatever unrestricted are implemented (h>0.4). The application of heuristics in this context is

justified by the quality of the solution compared with the Feldmann and Biskup, (2003) benchmarks

but for the class of problem in issue running time is sometimes an open issue compare to the shortest

one (GA/SA+greedy local search).

n
Time Itr Time Itr Time Itr Time Itr Time Itr Time Itr Time Itr

h=0.2 0.007 11 0.017 20 0.321 281 4.301 2152 3.457 1141 15.649 1831 39.463 2607
h=0.4 0.003 2 0.016 18 0.227 169 5.000 2078 3.936 936 19.717 2159 49.767 3275
h=0.6 0.007 5 0.231 140 1.504 1102 2.936 1554 16.055 1158 25.956 2629 34.264 4420
h=0.8 0.008 6 0.019 15 0.426 162 4.090 1359 5.215 1009 16.463 1962 54.203 3850

500 100010 20 50 100 200

Table 5 The maximum deviation between heuristics with regard to h - best among ten runs, mean

across in# - (Best results so far in the literature are reported in bold).

* DPSO: Discrete Particle Swarm Optimization; TS: Tabu Search, GA: Genetic Algorithm; HTG: Tabu Search + Genetic
Algorithm, HGT: Genetic algorithm + Tabu Search; Differential Evolution; Genetic Algorithm or Simulated Annealing +

greedy local search; BA: Bees Algorithm, GBA: Genetic Algorithm + Bees Algorithm.

According to Table 5, the presented results summarize the performances among problems with

different n values for each h value, considering the best (out of 10 runs and mean across in#)

performance results as compared in Hino et al., (2005); Pan et al., (2006); Lin et al., (2007); and

Nearchou (2008) . Hino et al., (2005), proposed approaches include Tabu Search (TS), Genetic

Algorithm (GA), Hybrid of Tabu search and Genetic algorithm (HTG) and Hybrid of Genetic

algorithm and Tabu search (HGT). Pan et al., (2006) reported the Discrete Particle Swarm

Optimization algorithm (DPSO). Nearchou, (2008) used Differential Evolution (DE) as the

optimization heuristic to solve this problem. Note that Feldman and Biskup, (2003) used five

heuristics (namely, Evolution Search (ES), Simulating Annealing (SA), Threshold Accepting (TA)

and TA with a back step (TAR)) and the best solution among heuristics is presented. Results

illustrates performances in constrained instances (i.e., h ≤ 0.4), there is a good improvement (about -

0.012) in gain compare to the best (in average the BA reported, if GBA is not included, the best

n

DPSO TS GA HTG HGT DE

GA/SA +
greedy local

search BA GBA DPSO TS GA HTG HGT DE

GA/SA +
greedy local

search BA GBA
10 0.00 0.25 0.12 0.12 0.12 0.00 0.00 0.00 0.00 0.00 0.24 0.19 0.19 0.19 0.00 0.00 0.00 0.00
20 -3.84 -3.84 -3.84 -3.84 -3.84 -3.84 -3.84 -3.84 -3.84 -1.63 -1.62 -1.62 -1.62 -1.62 -1.63 -1.63 -1.63 -1.63
50 -5.70 -5.70 -5.68 -5.70 -5.70 -5.69 -5.70 -5.70 -5.71 -4.66 -4.66 -4.60 -4.66 -4.66 -4.66 -4.66 -4.66 -4.68
100 -6.19 -6.19 -6.17 -6.19 -6.19 -6.17 -6.19 -6.19 -6.21 -4.94 -4.93 -4.91 -4.93 -4.93 -4.89 -4.94 -4.94 -4.99
200 -5.78 -5.76 -5.74 -5.76 -5.76 -5.77 -5.78 -5.78 -5.92 -3.75 -3.74 -3.75 -3.75 -3.75 -3.72 -3.75 -3.75 -3.87
500 -6.42 -6.41 -6.41 -6.41 -6.41 -6.43 -6.43 -6.43 -6.79 -3.56 -3.57 -3.58 -3.58 -3.58 -3.57 -3.58 -3.57 -3.70
1,000 -6.76 -6.73 -6.75 -6.74 -6.74 -6.72 -6.77 -6.76 -7.08 -4.37 -4.39 -4.40 -4.39 -4.39 -4.38 -4.40 -4.35 -4.50

Avg. -4.96 -4.91 -4.92 -4.93 -4.93 -4.95 -4.96 -4.96 -5.08 -3.27 -3.24 -3.24 -3.25 -3.25 -3.26 -3.28 -3.27 -3.34

n

DPSO TS GA HTG HGT DE

GA/SA +
greedy local

search BA GBA DPSO TS GA HTG HGT DE

GA/SA +
greedy local

search BA GBA
10 0.00 0.10 0.03 0.03 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20 -0.72 -0.71 -0.68 -0.71 -0.71 -0.72 -0.72 -0.72 -0.72 -0.41 -0.41 -0.28 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41
50 -0.34 -0.32 -0.31 -0.27 -0.31 -0.32 -0.34 -0.34 -0.34 -0.24 -0.24 -0.19 -0.23 -0.23 -0.24 -0.24 -0.24 -0.24
100 -0.15 -0.01 -0.12 0.08 0.04 -0.13 -0.15 -0.15 -0.15 -0.18 -0.15 -0.12 -0.08 -0.11 -0.17 -0.18 -0.18 -0.18
200 -0.15 -0.01 -0.13 0.37 0.07 0.23 -0.15 -0.15 -0.15 -0.15 -0.04 -0.14 0.26 0.07 0.20 -0.15 -0.15 -0.15
500 -0.11 0.25 -0.11 0.73 0.15 1.72 -0.11 -0.11 -0.11 -0.11 0.21 -0.11 0.73 0.13 1.01 -0.11 -0.11 -0.12
1,000 -0.06 1.01 -0.05 1.28 0.42 1.29 -0.06 -0.05 -0.05 -0.06 1.13 -0.05 1.28 0.40 2.79 -0.06 -0.05 -0.05

Avg. -0.22 0.04 -0.20 0.22 -0.05 0.30 -0.22 -0.22 -0.22 -0.16 0.07 -0.13 0.22 -0.02 0.45 -0.16 -0.16 -0.16

h 0.2 h 0.4

h 0.6 h 0.8

among other) among the heuristics in mean - between classes - value. In highly constrained problems

(h=0.2), there is generally a great difference (0.024) over the best results so far in the literature. Here

GBA outperforms compare to others heuristics, if the large the population sizes (i.e., n≥ 100 test data)

are utilised, there is an average of 5.92 gain in performance. When problem size increases, the GBA

performances such as exploration of domain and time to convergence worsen (even though

comparable with other heuristics except) compare to the best solutions with the differential

evolutionary approach presented by Nearchou, (2008). In condition of h>0.4, the GBA generally

confirmed its good capability in solving the problem, however the gain is null compare to the bests

found by other heuristics.

It is also worth to note that the search process starts with a randomly generated population set, as for

the DE approach of Nearchou, (2008), however, the solution obtained by GBA are greatly better in

terms of % effort (for the case of 1000 jobs the DE approach obtained optimum in the average among

in# of 141 minutes with no comparable performances in terms of average quality of objectives).

Moreover, another important properties of GBA is not to have any priority rules to find the optimum

solution. Since, there are three types of rules have been presented to achieve the optimum schedule in

literature (Feldmann and Biskup, (2003); and Lin et al., (2007)), these rules are as following: 1) the

optimum schedule would not have any idle times between consecutive jobs, 2) the optimum schedule

would not have an increasing order of ratios (Tj/αj) for the jobs completed before and starting after

due date (D), and 3)an optimum schedule will be achieved with either by starting the first job at time

zero or by completing one job at the time D. Most of the heuristics utilises these three priority rues to

achieve the optimum schedule, however, there is no need for GBA to find the optimum schedule.

Since the random initialisations and additional genetic operators allows the algorithm to search for the

optimum schedule. To avoid the randomness of the quality of solution, the best of the 10 runs is

considered during the experiments as shown in table 5. Since the usage of single solutions may not

provide the robustness of the algorithm, however the average of the multi-results are the robust and

trustable results. Based on the results presented in table 5, the performance of the GBA can be

observed very table 5 clearly, that the GBA generates very high quality results in average.

Finally, as a matter of fact, when the class of the problem increases, the GBA is surpassed by the

DPSO that has the advantage of minimum time convergence.

6. CONCLUSION

In this paper, a novel Genetic Bees Algorithm (GBA) has been introduced. The proposed GBA has

been applied to solve the Single Machine Scheduling problem with earliness and tardiness penalties

and the results show that its performance is better in most cases when h value is low. The Genetic Bees

algorithm is a new evolutionary optimization method that has been used in a wide range of

applications. In this paper it is evaluated for the optimization of different combinatorial problems

under different sets.

The algorithm is conceived without inclusion of idle time between tasks and this mainly affects

performances of the approach in lightly constrained (h>0.4) jobs. In terms of exploitation and

number of iteration, the proposed metaheuristic achieves better performance compare to the upper

bound and the Basic Algorithm. The hybrid Genetic Bees Algorithm has proven to be more stable

and robust than the basic Bees Approach.

Possible direction for future researches include employing the same GBA approach in the case of

multi-machine (m-machine) scheduling problem with general non-linear earliness and tardiness

penalities to find an optimal solution in case of real test instances.

Further, an initialization procedure can also be introduced to improve the quality of solution in terms

of percentage effort and in particular time for CPU time.

ACKNOWLEDGEMENTS

Authors would like to thank to all participants with their direct and indirect contributions.

REFERENCES

Abdul-Razaq, T. S., and Potts, C. N. (1988). Dynamic programming state-space relaxation
for single-machine scheduling. Journal of the Operational Research Society, 39, 141–152.

Almeida, M. T., and Centeno, M. (1998). A composite heuristic for the single machine
early/tardy job scheduling problem. Computers & Operations Research, 25(7), 625-635.

Bagchi, U., Sullivan, R. S., and Chang, Y. L. (1986). Minimizing mean absolute deviation of
completion times about a common due date. Naval Research Logistics Quarterly, 33(2), 227-
240.

Baker, K. R., and Scudder, G. D. (1990). Sequencing with earliness and tardiness penalties: a
review. Operations research, 38(1), 22-36.

Ballestín, F., and Leus, R. (2008). Meta-heuristics for stable scheduling on a single machine.
Computers & operations research, 35(7), 2175-2192.

Biskup, D., and Feldmann, M. (2001). Benchmarks for scheduling on a single machine
against restrictive and unrestrictive common due dates. Computers & Operations Research,
28(8), 787-801.

Carlier, J. (1982). The one-machine sequencing problem. European Journal of Operational
Research, 11(1), 42-47.

Cheng, T. C. E. (1984). Optimal due-date determination and sequencing of n jobs on a single
machine. Journal of the Operational Research Society, 433-437.

Cheng, T. C. E., and Kahlbacher. H. G. (1991). A proof for the longest-job first policy in one
machine scheduling. Naval Research Logistics, 38,715-720.

Cheng, T. E. (1988). Optimal common due-date with limited completion time deviation.
Computers & operations research, 15(2), 91-96.

Chen, Z. L. (1996). Scheduling and common due date assignment with earliness-tardiness
penalties and batch delivery costs. European Journal of Operational Research, 93(1), 49-60.

Cheng, T. C. E., Kang, L., and Ng, C. T. (2004). Due-date assignment and single machine
scheduling with deteriorating jobs. Journal of the Operational Research Society, 198-203.

Chen, W. Y., and Sheen, G. J. (2007). Single-machine scheduling with multiple performance
measures: Minimizing job-dependent earliness and tardiness subject to the number of tardy
jobs. International Journal of Production Economics, 109(1), 214-229.

Crauwels, H. A. J., Potts, C. N., and Van Wassenhove, L. N. (1997). Local search heuristics
for single machine scheduling with batch set-up times to minimize total weighted completion
time. Annals of Operations Research, 70, 261-279.

Crina, G., and Ajith, A. (2006). Stigmergic optimization: Inspiration, technologies and
perspectives. In Stigmergic optimization (pp. 1-24). Springer Berlin Heidelberg.

Della Croce, F., Salassa, F., and T'kindt, V. (2014). A hybrid heuristic approach for single
machine scheduling with release times. Computers & Operations Research, 45, 7-11.

Du, J., and Leung, J. Y. T. (1990). Minimizing total tardiness on one machine is NP-hard.
Mathematics of operations research, 15(3), 483-495.

Emmons, H. (1969). One-machine sequencing to minimize certain functions of job tardiness.
Operations Research, 17(4), 701-715.

Feldmann, M., and Biskup, D. (2003). Single-machine scheduling for minimizing earliness
and tardiness penalties by meta-heuristic approaches. Computers & Industrial Engineering,
44(2), 307-323.

Fera, M., Fruggiero, F., Lambiase, A., Martino, G., and Nenni, M. E. (2013). Production
scheduling approaches for operations management - INTECH Open Access Publisher.

Fisher, M. L., and Jaikumar, R. (1978). An algorithm for the space-shuttle scheduling
problem. Operations Research, 26(1), 166-182.

Franca, P. M., Mendes, A., and Moscato, P. (2001). A memetic algorithm for the total
tardiness single machine scheduling problem. European Journal of Operational Research,
132(1), 224-242.

French, S. (1982). Sequencing and scheduling: an introduction to the mathematics of the job-
shop (Vol. 683, p. 684). Chichester: Ellis Horwood.

Goldberg, D. E. (1989). Genetic algorithms in search optimization and machine learning
(Vol. 412). Reading Menlo Park: Addison-wesley.

Gordon, V., Proth, J. M., and Chu, C. (2002). A survey of the state-of-the-art of common due
date assignment and scheduling research. European Journal of Operational Research,
139(1), 1-25.

Gordon, V. S., and Strusevich, V. A. (2009). Single machine scheduling and due date
assignment with positionally dependent processing times. European Journal of Operational
Research, 198(1), 57-62.

Gould, J. L. (1975). Honey bee recruitment: the dance-language controversy. Science,
189(4204), 685-693.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. R. (1979). Optimization and
approximation in deterministic sequencing and scheduling: a survey. Annals of discrete
mathematics, 5, 287-326.

Gupta, S. K., and Sen, T. (1983). Minimizing a quadratic function of job lateness on a single
machine. Engineering Costs and Production Economics, 7(3), 187-194.

Gupta, S.K., and Kyparisis, J. 1987. Single machine scheduling research, OMEGA 15 207-
227.
Hino, C. M., Ronconi, D. P., and Mendes, A. B. (2005). Minimizing earliness and tardiness
penalties in a single-machine problem with a common due date. European Journal of
Operational Research, 160(1), 190-201.

https://scholar.google.it/citations?view_op=view_citation&hl=it&user=gEnkw5kAAAAJ&citation_for_view=gEnkw5kAAAAJ:3fE2CSJIrl8C
https://scholar.google.it/citations?view_op=view_citation&hl=it&user=gEnkw5kAAAAJ&citation_for_view=gEnkw5kAAAAJ:3fE2CSJIrl8C

Huang, Z. (2008). Behavioral Communications: The Waggle Dance, Available at: http
http://photo.bees.net/biology/ch6/dance2.html [Accessed: 11th February 2012].

Janiak, A. (1991). Single machine scheduling problem with a common deadline and resource
dependent release dates. European Journal of Operational Research, 53(3), 317-325.

Jolai, F., Rabbani, M., Amalnick, S., Dabaghi, A., Dehghan, M., and Parast, M. Y. (2007).
Genetic algorithm for bi-criteria single machine scheduling problem of minimizing maximum
earliness and number of tardy jobs. Applied Mathematics and Computation, 194(2), 552-560.

Kanet, J. J. (1981). Minimizing the average deviation of job completion times about a
common due date. Naval Research Logistics Quarterly, 28(4), 643-651.

Lauff, V., and Werner, F. (2004). On the complexity and some properties of multi-stage
scheduling problems with earliness and tardiness penalties. Computers & Operations
Research, 31(3), 317-345.

Law, A.M. and Kelton, W.D., 2000. Simulation Modeling and Analysis. New York:
McGraw-Hill.

Lawler, E. L. (1979). Fast approximation algorithms for knapsack problems. Mathematics of
Operations Research, 4(4), 339-356.

Lee, C. Y., Danusaputro, S. L., and Lin, C. S. (1991). Minimizing weighted number of tardy
jobs and weighted earliness-tardiness penalties about a common due date. Computers &
Operations Research, 18(4), 379-389.

Li, G. (1997). Single machine earliness and tardiness scheduling. European Journal of
Operational Research, 96, 546–558.

Li, L., Fonseca, D. J., and Chen, D. S. (2006). Earliness–tardiness production planning for
just-in-time manufacturing: A unifying approach by goal programming. European Journal of
Operational Research, 175(1), 508-515.

Li, S., Ng, C. T., and Yuan, J. (2011). Group scheduling and due date assignment on a single
machine. International Journal of Production Economics, 130(2), 230-235.

Liaw, C. F. (1999). A branch-and-bound algorithm for the single machine earliness and
tardiness scheduling problem. Computers & Operations Research, 26, 679–693.

Lin, S. W., Chou, S. Y., and Ying, K. C. (2007). A sequential exchange approach for
minimizing earliness–tardiness penalties of single-machine scheduling with a common due
date. European Journal of Operational Research, 177(2), 1294-1301.

Lin, S. W., Chou, S. C., and Chen, S. C. (2007). Meta-heuristic approaches for minimizing
total earliness and tardiness penalties of single-machine scheduling with a common due date,
Journal of Heuristics, 13(2), pp. 151-65.

Liu, F., Wang, J. J., and Yang, D. L. (2013). Solving single machine scheduling under
disruption with discounted costs by quantum-inspired hybrid heuristics. Journal of
Manufacturing Systems, 32(4), 715-723.

M’Hallah, R. (2007). Minimizing total earliness and tardiness on a single machine using a
hybrid heuristic. Computers & Operations Research, 34(10), 3126-3142.

http://photo.bees.net/biology/ch6/dance2.html

Monden, Y. (1983). Toyota Production Systems Industrial Engineering and Management
Press. Norcross, Ga.

Mosheiov, G., and Yovel, U. (2006). Minimizing weighted earliness–tardiness and due-date
cost with unit processing-time jobs. European Journal of Operational Research, 172(2), 528-
544.

Nearchou, A. C. (2008). A differential evolution approach for the common due date
early/tardy job scheduling problem. Computers & Operations Research, 35(4), 1329-1343.

Nearchou, A. C. (2011). An efficient meta-heuristic for the single machine common due date
scheduling problem. In Intelligent Production Machines and Systems-2nd I* PROMS Virtual
International Conference 3-14 July 2006 (p. 431). Elsevier.

Nogueira, J. P. C. M., Arroyo, J. E. C., Villadiego, H. M. M., and Goncalves, L. B. (2014).
Hybrid GRASP Heuristics to Solve an Unrelated Parallel Machine Scheduling Problem with
Earliness and Tardiness Penalties. Electronic Notes in Theoretical Computer Science, 53-72.

Ow, P. S., and Morton, T. E. (1989). The single machine early/tardy problem. Management
Science, 35(2), 177-191.

Pan, Q. K., Tasgetiren, M. F., and Liang, Y. C. (2006). A discrete particle swarm
optimization algorithm for single machine total earliness and tardiness problem with a
common due date. In Evolutionary Computation, 2006. CEC 2006. IEEE Congress on (pp.
3281-3288). IEEE.

Panwalkar, S. S., Smith, M. L., and Seidmann, A. (1982). Common due date assignment to
minimize total penalty for the one machine scheduling problem. Operations research, 30(2),
391-399.

Pham, D. T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., and Zaidi, M. (2005). The bees
algorithm. Technical note. Manufacturing Engineering Centre, Cardiff University, UK, 1-57.

Pham, D. T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., and Zaidi, M. (2011). The Bees
Algorithm–A Novel Tool for Complex Optimisation. In Intelligent Production Machines and
Systems-2nd I* PROMS Virtual International Conference 3-14 July 2006 (p. 454). Elsevier.

Quinzi, A.J., (2004) A Sequential Stopping Rule For Determining The Number Of
Replications Necessary When Several Measures Of Effectiveness Are Of Interest. In
proceedings of Tenth U.S. Army Conference on Applied Statistics.

Schaller, J. (2007). A comparison of lower bounds for the single-machine early/tardy
problem. Computers & operations research, 34(8), 2279-2292.

Seeley, T. D. (2009). The wisdom of the hive: the social physiology of honey bee colonies.
Harvard University Press.

Seidmann, A., Panwalkar, S. S., and Smith, M. L. (1981). Optimal assignment of due-dates
for a single processor scheduling problem. The International Journal of Production
Research, 19(4), 393-399.

Sen, T., Dileepan, P., and Lind, M. R. (1996). Minimizing a weighted quadratic function of
job lateness in the single machine system. International journal of production economics,
42(3), 237-243.

Singh, A. (2010). A hybrid permutation-coded evolutionary algorithm for the early/tardy
scheduling problem, Asia-Pacific Journal of Operational Research, 27, 713–725.

Su, L. H., and Chang, P. C. (1998). A heuristic to minimize a quadratic function of job
lateness on a single machine. International Journal of Production Economics, 55(2), 169-
175.

Sundar, S., and Singh A., (2012). A swarm intelligence approach to the early/tardy
scheduling problem. Swarm and Evolutionary Computation, 4, 25-32.

Taguchi, G. (1986). Introduction to quality engineering: designing quality into products and
processes.

Valente, J. M. S., and Alves, R.A.F.S. (2005). Improved heuristics for the early/tardy
scheduling problem with no idle time. Computers & Operations Research, 32(3), 557–569.

Valente, J. M. S., Gonçalves, J. F., and Alves, R. A. F. S. (2006). A hybrid genetic algorithm
for the early/tardy scheduling problem, Asia-Pacific Journal of Operational Research, 23,
393–405.

Valente, J. M. (2008). Beam search heuristics for the single machine early/tardy scheduling
problem with no machine idle time. Computers & Industrial Engineering, 55(3), 663-675.

Valente, J. M., and Schaller, J. E. (2012). Dispatching heuristics for the single machine
weighted quadratic tardiness scheduling problem. Computers & Operations Research, 39(9),
2223-2231.

Von Frisch, K. (2014). Bees: their vision, chemical senses, and language. Cornell University
Press.

Wang, X. Y., and Wang, M. Z. (2010). Single machine common flow allowance scheduling
with a rate-modifying activity. Computers & Industrial Engineering, 59(4), 898-902.

Webster, S.T. (1997).The Complexity of Scheduling Job Families about a Common Due
Date. Oper. Res. Lett. 20, 65 – 74.

Yang, D. L., Lai, C. J., and Yang, S. J. (2014). Scheduling problems with multiple due
windows assignment and controllable processing times on a single machine. International
Journal of Production Economics, 150, 96-103.

Yeung, W. K., Oguz, C., and Cheng, T. E. (2001). Single-machine scheduling with a
common due window. Computers & Operations Research, 28(2), 157-175.

Yuce, B., Packianather, M. S., Mastrocinque, E., Pham, D. T., and Lambiase, A. (2013).
Honey bees inspired optimization method: the Bees Algorithm. Insects, 4(4), 646-662

Yuce, B., Mastrocinque, E., Lambiase, A., Packianather, M. S., and Pham, D. T. (2014). A
multi-objective supply chain optimisation using enhanced Bees Algorithm with adaptive
neighbourhood search and site abandonment strategy. Swarm and Evolutionary Computation,
18, 71-82.

