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Viscous decay of bubble oscillations

Viscous decay of nonlinear oscillations of a spherical bubble at large Reynolds number

W. R. Smith1, a) and Q. X. Wang1

School of Mathematics, University of Birmingham, Edgbaston, Birmingham,

B15 2TT, UK

(Dated: 22 July 2017)

The long-time viscous decay of large-amplitude bubble oscillations is considered in

an incompressible Newtonian fluid, based on the Rayleigh–Plesset equation. At large

Reynolds number, this is a multi-scaled problem with a short time scale associated

with inertial oscillation and a long time scale associated with viscous damping. A

multi-scaled perturbation method is thus employed to solve the problem. The leading-

order analytical solution of the bubble radius history is obtained to the Rayleigh–

Plesset equation in a closed form including both viscous and surface tension effects.

Some important formulae are derived including: the average energy loss rate of the

bubble system during each cycle of oscillation, an explicit formula for the dependence

of the oscillation frequency on the energy, and an implicit formula for the amplitude

envelope of the bubble radius as a function of the energy. Our theory shows that the

energy of the bubble system and the frequency of oscillation do not change on the

inertial time scale at leading order, the energy loss rate on the long viscous time scale

being inversely proportional to the Reynolds number. These asymptotic predictions

remain valid during each cycle of oscillation whether or not compressibility effects are

significant. A systematic parametric analysis is carried out using the above formula

for the energy of the bubble system, frequency of oscillation and minimum/maximum

bubble radii in terms of the Reynolds number, the dimensionless initial pressure of

the bubble gases and the Weber number. Our results show that the frequency and

the decay rate have substantial variations over the lifetime of a decaying oscillation.

The results also reveal that large-amplitude bubble oscillations are very sensitive to

small changes in the initial conditions through large changes in the phase shift.

PACS numbers: 47.55.dd

a)W.Smith@bham.ac.uk
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Viscous decay of bubble oscillations

I. INTRODUCTION

The nonlinear dynamics of vapour and gas-filled bubbles is of fundamental interest in

fluid dynamics, which is associated with the wide and important applications in science and

technology1–4. Rayleigh initiated the study of bubble dynamics with his investigation of the

collapse of an empty spherical bubble in a large mass of liquid5. His model, known as the

Rayleigh equation, neglected surface tension, liquid viscosity and thermal effects. Plesset

developed the full form of the equation and applied it to the problem of travelling cavitation

bubbles6. The effect of surface tension has been incorporated7,8 and a viscous term was first

included by Poritsky 9 , viscous effects being significant for microbubble dynamics and/or

long time behaviour of bubbles2,10. The resulting equation, known as the Rayleigh–Plesset

equation, models the oscillations of a gas-filled spherical bubble in an infinite incompres-

sible liquid. Both the Rayleigh equation and Rayleigh–Plesset equation are nonlinear and

therefore numerical methods are often utilised in their solution10. However, in recent years,

approximate and analytical solutions have been sought to these equations, since analyti-

cal analysis is a powerful tool for improved understanding of the qualitative behaviour and

trends of phenomena.

Substantial progress has been made in the study of the Rayleigh equation. Accurate

explicit analytical approximations for the collapse of an empty spherical bubble have been

derived11. Each approximation is the product of two factors: a function which models the

algebraic singularity at the collapse time; and the sum or partial sum of a power series

about the initial time. Furthermore, they showed that their simple analytical expressions

are consistent with observations of cavitation data obtained in microgravity. Subsequently,

a rigorous justification and explanation for the remarkable accuracy of these approximations

to the solutions of the Rayleigh equation has been developed12. In the following year, an

implicit analytical solution to the Rayleigh equation for an empty bubble (in terms of the

hypergeometric function) and for a gas-filled bubble (in terms of the Weierstrass elliptic

function) was found13. These implicit formulae may be simply solved numerically to obtain

the bubble radius. The parametric rational Weierstrass periodic solutions have been found

using the connection between the Rayleigh–Plesset equation and Abel’s equation14.

The N -dimensional Rayleigh and Rayleigh–Plesset equations were considered by Pro-

speretti 3 and Klotz 15 , where N ≥ 3. Numerical simulations and analytical results were
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employed to investigate the properties of higher dimensional bubbles, new formulae for the

Rayleigh collapse time and the frequency of small-amplitude oscillations being obtained.

The dynamics were found to be faster in higher dimensions. Subsequently, Kudryashov and

Sinelshchikov 16 found implicit analytical solutions to the Rayleigh and Rayleigh–Plesset

equations in N -dimensions. Van Gorder 17 made a theoretical study for N -dimensional bub-

bles with arbitrary polytropic index of the bubble gas.

Viscous effects are neglected in the above theoretical studies. The purpose of this article

is to investigate the long term viscous decay of large-amplitude bubble oscillations in an

incompressible Newtonian fluid, to evaluate the time histories of the frequency, amplitude

envelope, decay rate and phase shift of bubble oscillation. Microbubble dynamics are asso-

ciated with important applications such as the cavitation damage to pumps, turbines and

propellers1,4,18–21. Ultrasound-driven microbubbles are widely used in biomedical techno-

logy22–26, sonochemistry27 and ultrasonic cavitation cleaning28.

The viscous bubble dynamics are described by a short time scale associated with inertial

oscillation and a long time scale associated with viscous damping, and is thus analysed using

a multi-scaled perturbation method. There are two essential challenges in this approach.

One of them is to determine the leading-order solution. The other is to remove secular

terms (terms in the asymptotic expansion which grow without bound) arising in problems

with oscillatory solutions. The equations used to remove the secular terms are known as

the secularity conditions. Kuzmak 29 and Luke 30 developed this method for studying nonli-

near oscillations and the nonlinear dispersive wave problems. This asymptotic method has

successfully determined the decay rate of large-amplitude oscillations of an incompressible

viscous drop31 and a generalization of the Landau equation for travelling waves in two-

dimensional plane Poiseuille flow32. It is particularly suitable for the multi-scaled nonlinear

oscillations which occur in fluid mechanics.

The remainder of the paper is organized as follows. In Sec. II, the Rayleigh–Plesset

equation is analysed using a multi-scaled method with a short time scale associated with

inertial oscillation and a long time scale with viscous damping. The leading-order problem

is solved analytically on the inertial oscillation time scale. At next order, two secularity

conditions are obtained to determine the variations of the energy of the bubble system,

the oscillation frequency and the minimum and maximum bubble radii, in terms of the

long viscous time scale. A further order solution is studied to derive another secularity
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condition in order to determine the phase shift on the viscous time scale. In Sec. III, the

analytical solutions are firstly compared with experimental observations, numerical solutions

of the Rayleigh–Plesset equation and linear theory. A systematic parametric analysis is

then carried out with the above theory for the energy of the bubble system, frequency and

amplitude of oscillation in terms of the Reynolds number, the dimensionless initial pressure

of the bubble gases and the Weber number. Finally, in Sec. IV, this study is summarized

and the key outcomes are identified.

II. ASYMPTOTIC ANALYSIS

A. Introduction

We study the well-known Rayleigh–Plesset equation for a gas bubble in an incompressible

liquid under isothermal conditions33

R̄
d2R̄

dt̄2
+

3

2

(

dR̄

dt̄

)2

=
1

ρ

[

Pv − P∞ +
GT

R̄3
−

2σ

R̄

]

−
4µ

ρR̄

dR̄

dt̄
,

where R̄(t̄) is the spherical bubble radius at time t̄, ρ the liquid density, Pv the saturated

vapour pressure of the liquid, P∞ the far-field pressure, G a known constant proportional

to both the specific gas constant and the mass of the gas, T the temperature, σ the surface

tension and µ the liquid viscosity. The term GT/R̄3 is the partial pressure of bubble gas,

assuming that the gas behaves as an ideal gas. For isothermal process considered here,

temperature and chemical composition within the bubble are assumed uniform, with water

vapour freely entering the bubble with minimal change in surface temperature. Discussions

on the heat and mass transfer for oscillating bubbles may reference to Prosperetti 34 and

Bergamasco and Fuster 35 . The initial conditions are

R̄(0) = R̄M ,
dR̄

dt̄
(0) = 0,

in which R̄M is the initial maximum bubble radius. Here we consider both the viscous and

surface tension effects.

We scale this equation using R̄ = R̄MR and t̄ = R̄M t/U , where ∆ = P∞ − Pv and the

reference velocity U =
√

∆/ρ. The dimensionless Rayleigh–Plesset equation takes the form

R
d2R

dt2
+

3

2

(

dR

dt

)2

=
pg0
R3

−
2

WeR
− 1−

4ǫ

R

dR

dt
, (1)
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in which pg0 = GT/∆R̄3
M is the dimensionless initial pressure of the bubble gases, We =

R̄M∆/σ is the Weber number, Re = ρUR̄M/µ is the Reynolds number and ǫ = 1/Re is a

small parameter. The critical parameters in the bubble behaviour are pg0 and We. The

initial conditions are given by

R(0) = 1,
dR

dt
(0) = 0. (2)

After multiplying by R2dR/dt, equation (1) can be rewritten in the form

dE

dt
= −4ǫR

(

dR

dt

)2

, (3)

where the energy of a bubble system E(t) is defined as follows

E(t) =
R3

2

(

dR

dt

)2

− pg0 ln(R) +
R2

We
+

R3

3
. (4)

The first term on the right-hand side of (4) is the kinetic energy of the bubble system, the

third term is the potential energy associated with surface tension, and the remaining two

terms are associated with the potential energy of the compressibility of the bubble gases.

This definition of energy, which corresponds to the Hamiltonian function in Feng and Leal 33 ,

remains constant for the inviscid incompressible problem.

The compressible effects of the surrounding liquid are not included in the Rayleigh–Plesset

equation, but they are described by the Keller–Miksis equation33,36,37. General perturba-

tions of a spherical gas bubble in a compressible and inviscid fluid with surface tension

were carried out by Shapiro and Weinstein 38 and Costin, Tanveer, and Weinstein 39 . In

particular, they proved that the amplitude of oscillation, in the linearized approximation,

decays exponentially, in the form e−Γt, Γ > 0, as time advances. Furthermore the decay

rate parameter Γ was derived in terms of the Mach number and the Weber number. The

damped oscillation of a bubble in a compressible liquid is associated with the loss of energy

of a bubble system due to acoustic radiation and/or the emission of shock waves to the far

field40–43.

The Rayleigh–Plesset will predict the energy loss for each cycle due to viscous effects even

if acoustic radiation is considered, because the energy loss due to acoustic radiation happens

during a very short period at the end of the collapse when viscous effects are insignificant.

The damping due to viscous effects is thus mainly contributed during the remaining time

when the compressible effects are negligible43.
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Short time scale 2 �/�

of inertial oscillation

Long time scale O(Re) of 

viscous damping

t

R

FIG. 1. Typical transient behaviour of a bubble undergoing oscillations in an incompressible

viscous fluid, in terms of the bubble radius history R(t). The period 2π/ω of inertial oscillation

is the short time scale associated with changes in the bubble radius; whereas, the period and

minimum/maximum bubble radii vary on a long viscous time scale of the order of the Reynolds

number Re.

B. The leading-order solution

A bubble in an incompressible Newtonian fluid undergoes a damped oscillation, with the

amplitude and period reducing gradually, as illustrated in Figure 1. The time scale, over

which the bubble radius R changes significantly, is the period 2π/ω of inertial oscillation,

where the (angular) frequency is ω. However, the time scale for the variation of the period (or

frequency) and the minimum/maximum bubble radii is the long time scale associated with

viscous damping of the order of the Reynolds number Re. We therefore introduce two time

variables ti and tv associated with the inertial and viscous time scales29,44,45, respectively,

dti
dt

= ω, (5a)

tv = ǫt, (5b)

d

dt
= ω

∂

∂ti
+ ǫ

∂

∂tv
, (5c)

where the (angular) frequency of oscillation ω needs to be chosen so that, in terms of ti, the

period of oscillation of the leading-order solution is independent of tv. The period on this

ti scale is then an arbitrary constant which we specify to be 2π without loss of generality.
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FIG. 2. Schematic of the time history of the radius of an oscillating bubble in terms of (a) the

dimensionless time t with oscillation period 2π/ω and (b) the inertial oscillation time scale ti with

constant oscillation period chosen to be 2π. The phase shift Ψ is defined by taking ti + Ψ = 0 at

R0 = Rmax and ti +Ψ = π at R0 = Rmin.

Figures 2(a) and 2(b) illustrate the time history of an oscillating bubble in terms of the

dimensionless time t and the inertial oscillation time ti, respectively.

Using (5c), the Rayleigh–Plesset equation (1) becomes

R

(

ω2∂
2R

∂t2i
+ 2ǫω

∂2R

∂ti∂tv
+ ǫ

dω

dtv

∂R

∂ti
+ ǫ2

∂2R

∂t2v

)

+
3

2

(

ω
∂R

∂ti
+ ǫ

∂R

∂tv

)2

=
pg0
R3

−
2

WeR
− 1−

4ǫ

R

(

ω
∂R

∂ti
+ ǫ

∂R

∂tv

)

. (6)

We introduce an expansion for the bubble radius of the form

R ∼ R0(ti, tv) + ǫR1(ti, tv) + ǫ2R2(ti, tv), (7)

as ǫ → 0. At leading order in (6) we obtain

ω2R0
∂2R0

∂t2i
+

3

2
ω2

(

∂R0

∂ti

)2

=
pg0
R3

0

−
2

WeR0

− 1. (8)
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The higher order equations will be discussed in Sec. II C and Sec. IID. We also introduce

an expansion for the energy of the bubble system of the form

E ∼ E0(tv) + ǫE1(ti, tv) + ǫ2E2(ti, tv), (9)

where the dependence of E0 only on tv and

E0(tv) = ω2R
3
0

2

(

∂R0

∂ti

)2

− pg0 ln(R0) +
R2

0

We
+

R3
0

3
(10)

follow from (3) and (4), respectively.

Equation (8) is readily integrated to yield

Q2 = ω2

(

∂R0

∂ti

)2

=
2

R3
0

{

E0(tv) + pg0 ln(R0)−
R2

0

We
−

R3
0

3

}

, (11)

where

Q = ω
∂R0

∂ti
= ±

√

2

R3
0

{

E0(tv) + pg0 ln(R0)−
R2

0

We
−

R3
0

3

}

. (12)

The negative sign above is associated with the collapse stage from the maximum bubble

radius to the minimum bubble radius and the positive sign above with the expansion stage

from the minimum bubble radius to the maximum bubble radius.

For an oscillating bubble, as ∂R0/∂ti = Q = 0, R0 reaches its maximum or minimum.

Using (11), we define the maximum radius Rmax(E0, pg0,We) and the minimum radius

Rmin(E0, pg0,We) to be the two successive roots of

g(R0, E0, pg0,We) = 2

{

E0(tv) + pg0 ln(R0)−
R2

0

We
−

R3
0

3

}

= 0 (13)

such that g(R0, E0, pg0,We) > 0 for 0 < Rmin(E0, pg0,We) < R0 < Rmax(E0, pg0,We). As

the bubble oscillates, there are two positive roots of g(R0, E0, pg0,We) = 0 for given values

of E0, pg0 and We, as illustrated in Figure 3. The parameter regimes associated with bubble

oscillation will be discussed in Sec. III.

For an oscillating bubble, the periodicity of R0(ti, tv) in terms of ti follows from the

definition of frequency ω = ω(tv) in (5a), the period having been chosen to be 2π (see

Figure 2(b)). Equation (12) shows that Q is an odd function of ti and therefore R0 is an

even function of ti. Accordingly, the dependence of R0 and Q on ti are fully specified if they

are determined on a half period of oscillation. We adopt the half period corresponding to the

collapse stage from the maximum bubble radius Rmax to the subsequent minimum bubble

8
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RmaxRmin

RmaxRmin

(b)(a)
R0 R0

gg

FIG. 3. The nonlinear function g(R0, E0, pg0,We) of (13) in terms of R0 for three different values

of E0 = 0.3, 0.4 and 0.5 in which the smaller root corresponds to Rmin(E0, pg0,We) and the larger

to Rmax(E0, pg0,We) with parameter values We = 160, (a) pg0 = 0.25 and (b) pg0 = 0.5.

radius Rmin. Furthermore, if we denote ti = −Ψ at the maximum bubble radius R0 = Rmax,

then ti = π − Ψ at the minimum bubble radius R0 = Rmin, where Ψ(tv) is known as the

phase shift (see Figure 2(b)). We specify the leading-order solution Q for the collapse stage

or ti +Ψ(tv) ∈ (0, π) to be

Q = ω
∂R0

∂ti
= −

√

g(R0, E0, pg0,We)

R3
0

. (14)

The leading-order solution R0 for the collapse stage is then obtained by integrating (14)

from ti = −Ψ, at the maximum bubble radius R0 = Rmax, to ti < π −Ψ as follows

∫ R0

Rmax(E0,pg0,We)

−
√

R̂3dR̂
√

g(R̂, E0, pg0,We)

=
1

ω(E0(tv), pg0,We)

∫ ti

−Ψ(tv)

dt̂ =
1

ω(E0(tv), pg0,We)
(ti +Ψ(tv)). (15)

Otherwise, if ti + Ψ(tv) 6∈ (0, π), then R0 and Q may be calculated using the parity and

periodicity properties

R0(ti +Ψ, tv) = R0(2π − (ti +Ψ), tv), Q(ti +Ψ, tv) = −Q(2π − (ti +Ψ), tv), (16a)

R0(ti +Ψ, tv) = R0(ti +Ψ− 2nπ, tv), Q(ti +Ψ, tv) = Q(ti +Ψ− 2nπ, tv), (16b)

for any integer n. We thus specify the phase shift Ψ by taking R0 to be even (and Q to be

odd) about ti + Ψ = nπ, with Q < 0 for 0 < ti + Ψ < π. We may then express ω in terms

9
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of E0(tv), pg0 and We via

ω(E0, pg0,We)

∫ Rmax(E0,pg0,We)

Rmin(E0,pg0,We)

√

R̂3dR̂
√

g(R̂, E0, pg0,We)
= π. (17)

It remains to determine the energy E0(tv) of the bubble system and the phase shift Ψ(tv).

The secularity conditions to derive these quantities will be obtained from the equations for

R1 and R2 in Sec. II C and Sec. IID, respectively.

C. The first correction

At next order in (6) we have

ω2R0
∂2R1

∂t2i
+ 3ω2∂R0

∂ti

∂R1

∂ti
+

(

ω2∂
2R0

∂t2i
+

3pg0
R4

0

−
2

WeR2
0

)

R1

= −2ωR0
∂2R0

∂ti∂tv
−

(

dω

dtv
R0 + 3ω

∂R0

∂tv
+

4ω

R0

)

∂R0

∂ti
. (18)

The right-hand side of (18) contains secular terms which, if not removed, would force R1

to grow and eventually make the asymptotic expansion (7) for R non-uniform. In this

subsection, these secular terms are eliminated.

Equation (18) is a linear equation and thus its solution can be constructed from the two

linearly independent solutions of its homogeneous equation, using the method of variation

of parameters. It can be verified by differentiation of (8) by ti and E0 that two solutions of

the homogeneous problem for (18) are Q and

S =
∂R0

∂E0

(ti, tv;E0, pg0,We),

respectively, in which ω(E0(tv), pg0,We) in (14)-(16) is treated as independent of E0. In

order to show that these two solutions are linearly independent, we evaluate the Wronskian

W of the two solutions Q and S,

W = S
∂Q

∂ti
−Q

∂S

∂ti
,

by differentiating (11) with respect to E0 in which, again, ω(E0(tv), pg0,We) is treated as

independent of E0. Hence, we obtain

W = −
1

ωR3
0

(19)
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which is apparently nonzero, and thus Q and S are linearly independent.

We apply the method of variation of parameters to solve the inhomogeneous equation for

R1 by writing

R1 = α(ti, tv)Q+ β(ti, tv)S, (20)

where α(ti, tv) and β(ti, tv) are to be determined. As usual in the method of variation of

parameters, we impose the following condition

Q
∂α

∂ti
+ S

∂β

∂ti
= 0. (21)

Substituting (20) into (18) and using (21) yields

ω2R0

(

∂Q

∂ti

∂α

∂ti
+

∂S

∂ti

∂β

∂ti

)

= −2ωR0
∂2R0

∂ti∂tv
−

(

dω

dtv
R0 + 3ω

∂R0

∂tv
+

4ω

R0

)

∂R0

∂ti
. (22)

We note that Q is periodic, but S is not periodic in ti + Ψ. It is desirable to rewrite

equation (20) for R1 in terms of two periodic functions in order to help in identifying the

secular terms. The structure of R0 and Q take the form (in view of (14)-(16))

R0 = R0

(

ti +Ψ(tv)

ω(E0(tv), pg0,We)
;E0(tv), pg0,We

)

, (23a)

Q = Q

(

ti +Ψ(tv)

ω(E0(tv), pg0,We)
;E0(tv), pg0,We

)

. (23b)

It follows from differentiation of R0 with respect to tv that X, defined by

X = S −
dω/dtv(ti +Ψ)

ω2dE0/dtv
Q, (24)

is periodic in ti + Ψ, with period 2π, and is even about ti + Ψ = nπ46. The expression for

R1 in (20) may now be written in terms of the two periodic functions Q and X. Using (24),

the solution for R1 given in (20) can be rewritten as

R1 = γQ+ βX, (25)

where

γ(ti, tv) = α(ti, tv) +
dω/dtv(ti +Ψ)

ω2dE0/dtv
β(ti, tv).

After solving the system of two equations (21) and (22) for the two unknowns ∂α/∂ti

and ∂β/∂ti, we find

∂β

∂ti
=

R2
0Q

ω

[

−2ωR0
∂2R0

∂ti∂tv
−

(

dω

dtv
R0 + 3ω

∂R0

∂tv
+

4ω

R0

)

∂R0

∂ti

]

, (26)

∂γ

∂ti
=

dω/dtv
ω2dE0/dtv

β −
R2

0X

ω

[

−2ωR0
∂2R0

∂ti∂tv
−

(

dω

dtv
R0 + 3ω

∂R0

∂tv
+

4ω

R0

)

∂R0

∂ti

]

. (27)
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The suppression of secular terms on the right-hand side of (18) now requires that the right-

hand sides of (26) and (27) have zero average over a single cycle of oscillation.

An expression for the first derivative of E0 may be derived by differentiation of (10) as

follows

dE0

dtv
= ω

dω

dtv
R3

0

(

∂R0

∂ti

)2

+ ω2R3
0

∂R0

∂ti

∂2R0

∂ti∂tv

+R2
0

∂R0

∂tv

[

3

2
ω2

(

∂R0

∂ti

)2

−
pg0
R3

0

+
2

WeR0

+ 1

]

= ω
dω

dtv
R3

0

(

∂R0

∂ti

)2

+ ω2R3
0

∂R0

∂ti

∂2R0

∂ti∂tv
− ω2R3

0

∂R0

∂tv

∂2R0

∂t2i
. (28)

Using (28), it is straightforward to show that (26) is equivalent to

∂β

∂ti
= −4ωR0

(

∂R0

∂ti

)2

−
1

ω

dE0

dtv
− ω

∂

∂ti

(

R3
0

∂R0

∂ti

∂R0

∂tv

)

. (29)

As discussed above, the suppression of secular terms in (26) requires
〈

∂β

∂ti

〉

= 0,

where

〈 . 〉 =
1

2π

∫ 2π−Ψ

−Ψ

. dti

denotes the average value over a single cycle of oscillation. The third term on the right-hand

side of (29) has zero average due to periodicity, therefore the average of (29) yields

dE0

dtv
= −4

〈

R0Q
2
〉

. (30)

Equation (30) is the first of our secularity conditions and it may be derived much more

directly from (3).

We now consider the secularity condition for the phase shift Ψ(tv). We define a periodic

function Ω(ti, tv) in ti +Ψ, with period 2π, which is odd about ti +Ψ = nπ, by

∂Ω

∂ti
= −4ω2R0

(

∂R0

∂ti

)2

−
dE0

dtv
. (31)

Integrating
∂β

∂ti
=

1

ω

∂Ω

∂ti
− ω

∂

∂ti

(

R3
0

∂R0

∂ti

∂R0

∂tv

)

,

we obtain

β = β0(tv) +
1

ω
Ω−R3

0

∂R0

∂tv
Q, (32)

12
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where β0(tv) is a further unknown. The structure of the solution (23b) yields

∂R0

∂tv
=

1

ω

dΨ

dtv
Q+

dE0

dtv
X, (33)

∂Q

∂tv
=

1

Q

dE0

dtv

(

1

R3
0

+ ωX
∂Q

∂ti

)

+
dΨ

dtv

∂Q

∂ti
, (34)

where in each case the last term on the right-hand side is even in ti +Ψ and the remaining

terms are odd in ti +Ψ about ti +Ψ = nπ. We also require the result

Q
∂X

∂ti
−X

∂Q

∂ti
=

1

ωR3
0

−
dω/dtv

ω2dE0/dtv
Q2, (35)

to rewrite (27) as

∂γ

∂ti
=

∂

∂ti

(

R3
0

∂R0

∂tv
X

)

+
4

ω
R0QX +

dω/dtv
ω2dE0/dtv

(

β0 +
Ω

ω

)

−
1

ω2

dΨ

dtv
. (36)

The first term on the right-hand side of (36) has zero average due to periodicity. The second

and fourth terms on the right-hand side of (38) have zero average because they are odd. In

order to avoid secularity we require that

dΨ

dtv
= β0

dω/dtv
dE0/dtv

. (37)

Unfortunately, this second secularity condition does not complete the analysis of the

leading-order solution as β0(tv) remains undetermined. We define a periodic function

Λ(ti, tv), such that 〈Λ〉 = 0, which is even about ti +Ψ = nπ, by

∂Λ

∂ti
= −4R0QX −

dω/dtv
ω2dE0/dtv

Ω.

Substituting the equation above into (36) yields

∂γ

∂ti
=

∂

∂ti

(

R3
0

∂R0

∂tv
X

)

−
1

ω

∂Λ

∂ti
.

Integrating the equation above, we thus have

γ = γ0(tv) +R3
0

∂R0

∂tv
X −

1

ω
Λ. (38)

Using our expressions for β in (32) and γ in (38), the solution for R1 in (25) may now be

rewritten as

R1 = γ0(tv)Q+ β0(tv)X +
1

ω
(ΩX − ΛQ), (39)

where γ0 and β0 remain to be determined. However, only the function β0(tv) is required in

the secularity condition (37).

13
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D. A further secularity condition

In order to complete the analysis of the leading-order solution we require the quan-

tity β0(tv) in (37). This may be achieved by obtaining a further secularity condition from

the equation for R2. Alternatively, as R2 is embedded in E2, a more direct approach to

obtaining the required secularity condition is adopted. We substitute the expansions of (7)

and (9) for the radius R(t) and the energy E(t), respectively, into (3) and obtain the following

equation:

ω
∂E2

∂ti
+

∂E1

∂tv
= −4R1Q

2 − 8R0Q

(

ω
∂R1

∂ti
+

∂R0

∂tv

)

. (40)

If we expand (4) and substitute (8), then we have

E1 = R3
0Q

(

ω
∂R1

∂ti
+

∂R0

∂tv

)

−R3
0R1ω

2∂
2R0

∂t2i
.

Using (19), (20) and (32), the equation above simplifies to become

E1 = β0 +
1

ω
Ω. (41)

The right-hand side of (40) should have zero average over a single cycle of oscillation to

avoid secularity. We integrate (40) and (41) to obtain

dβ0

dtv
= −4

〈

R1Q
2 + 2R0Q

(

ω
∂R1

∂ti
+

∂R0

∂tv

)〉

. (42)

Substituting (33) and (39) into (42) and utilizing parity arguments, we find that

dβ0

dtv
= −4

〈

β0XQ2 + 2R0Q

(

ωβ0
∂X

∂ti
+

1

ω
Q
dΨ

dtv

)〉

. (43)

Using (35), (37) and (43), a first-order ordinary differential equation for β0(tv) is obtained

dβ0

dtv
= −4β0

〈

Q2X + 2R0

(

1

R3
0

+ ωX
∂Q

∂ti

)〉

. (44)

In order to simplify (44) we note that, in view of (30),

d2E0

dt2v
= −4

dE0

dtv

〈

Q2X + 2R0

(

1

R3
0

+ ωX
∂Q

∂ti

)〉

.

Therefore,
d

dtv

(

β0

dE0/dtv

)

= 0. (45)

Integrating (45), we obtain

β0 = Ψ1
dE0

dtv
, (46)

14
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where Ψ1 is a constant. Integrating (37) after the substitution of (46), we determine the

phase shift

Ψ = Ψ0 + ω(E0(tv), pg0,We)Ψ1, (47)

where Ψ0 is another constant. We thus obtain a simple formula for the phase shift in terms of

the frequency of oscillation. The two constants, Ψ0 and Ψ1, depend on the initial conditions,

which will be given in Sec. II E. The leading-order solution is now fully determined up to

constants of integration. Alternatively, we note that the viscous term in the Rayleigh–Plesset

equation (1) is purely dissipative, so the phase shift satisfies a homogeneous second-order

ordinary differential equation. Therefore, it is possible to anticipate the solution (47) in

which the Ψ0 term corresponds to the arbitrariness of the origin of ti in the definition (5a)

and the Ψ1 term corresponds to the invariance of (1) under translations of t (as discussed

in Smith et al. 46).

E. Initial conditions

It remains to evaluate the initial condition for energy E0(0) and the constants of integra-

tion Ψ0 and Ψ1 (required in (47) to calculate the phase shift Ψ) from the initial conditions

R(0) ∼ 1 + ǫa1,
dR

dt
(0) ∼ 0.

We derive the following expansions from these initial conditions

R(0)2 ∼ 1 + 2ǫa1, R(0)3 ∼ 1 + 3ǫa1, ln(R(0)) ∼ ǫa1.

Using (4) and these expansions, we obtain our initial condition for the energy of a bubble

system at leading order

E0(0) =
1

We
+

1

3
,

at next order we have

E1(0, 0) = a1

(

2

We
+ 1− pg0

)

. (48)

The initial condition for the phase shift Ψ(0) = 0 may then be determined from (15). Using

(41), (48) and since Ω is odd about ti +Ψ = 0, we obtain the result,

β0(0) = E1(0, 0) = a1

(

2

We
+ 1− pg0

)

. (49)
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It follows that the constants of integration are given by (46) and (47) in the form

Ψ1 = a1

(

2

We
+ 1− pg0

)/

dE0

dtv
(0) , Ψ0 = −ω(E0(0), pg0,We)Ψ1. (50)

A small modification in the initial conditions results in modification of the leading-order

solution for bubble radius via the constants of integration for the phase shift.

III. NUMERICAL RESULTS

As discussed in Feng and Leal 33 , in the inviscid limit of (1), dynamics of a gas bubble

split into three parameter regimes. In the first regime, the response is typical of an ideal gas

bubble when an increase (decrease) in radius is limited by a decrease (increase) in pressure

inside the bubble. There is one stable equilibrium and the bubble oscillates for any initial

condition E0(0). In the second parameter regime, the bubble radius may grow without bound

or it may oscillate depending on the initial condition E0(0). In the final parameter regime,

when the vapour pressure of the bubble dominates, there are no equilibrium solutions and the

bubble radius grows without bound for any initial condition E0(0). In contrast to an ideal gas

bubble, a vapour bubble may fall into any of the three parameter regimes described above,

the classification depending on the relative values of surface tension and vapour pressure.

The above analysis of the three parameter regimes also holds for viscous bubble dynamics

at high Reynolds numbers; however, when the parameters are in an oscillation regime, a

bubble undergoes a damped oscillation. Following their results, our numerical results are

limited to the first regime in which bubble oscillations occur.

At large Reynolds number, the viscous decay over a single cycle of oscillation is very

small. However, over many cycles, these very small amounts of decay accumulate to produce

a substantial change in the bubble radius. In this section, we investigate how the Reynolds

number Re (or ǫ), the dimensionless initial pressure of the bubble gases pg0 and the Weber

number We influence bubble oscillations over a long lifetime.

A. Validation

The average energy loss rate for a bubble system can be rewritten as follows, using (30),

dE0

dtv
=

4ω

π

∫ Rmax(E0,pg0,We)

Rmin(E0,pg0,We)

R0QdR0.

16



Viscous decay of bubble oscillations

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

R
ad

iu
s/

m
m

Time/ms

upper bound
lower bound

experiment
numerical

FIG. 4. Comparison of the experiment10, the numerical solution to (1) and the upper and lower

bounds evaluated using the solution to (51) and the roots of (13) for the decaying bubble oscillation

in silicone oil. The maximum radius of the bubble is 2.525 mm and the radius at rest is 0.8 mm.

The data used for the silicone oil are ρ = 970 kgm−3, σ = 0.0211 Nm−1 and µ = 0.485 Pas. The

dimensionless parameters are pg0 = 0.01, We = 1.2× 104 and ǫ = 0.02 (Re = 50).

Using (14) and (17), the right-hand side may be expressed entirely as a function of E0, pg0

and We as follows

dE0

dtv
= −4

∫ Rmax(E0,pg0,We)

Rmin(E0,pg0,We)

√

√

√

√

2

R̂

{

E0 + pg0 ln(R̂)−
R̂2

We
−

R̂3

3

}

dR̂

∫ Rmax(E0,pg0,We)

Rmin(E0,pg0,We)

√

R̂3dR̂
√

2
{

E0 + pg0 ln(R̂)− R̂2

We
− R̂3

3

}

. (51)

Equation (51) allows the calculation of the energy E0(tv) without prior knowledge of the

leading-order solution R0. From this equation we deduce that dE0/dtv = f(E0, pg0,We),

where f(E0, pg0,We) is the right-hand side of (51), and thus dE0/dt = f(E0, pg0,We)/Re.

Therefore the average loss rate of the energy is inversely proportional to the Reynolds num-

ber Re.

In the following comparisons of asymptotic and numerical solutions, the NAG routine

D02EJF is used for solving the Rayleigh–Plesset equation (1), Euler’s method for the first

derivative in (51), the NAG routine D01ATF for the integrals in (51) and the bisection

algorithm for the roots of (13).

There are circumstances under which a bubble undergoes free oscillations for many cycles

without significant acoustic radiation and/or the emission of shock waves. A bubble may

17



Viscous decay of bubble oscillations

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0  20  40  60  80  100

numerical solution
asymptotic

 0.28

 0.29

 0.3

 0.31

 0.32

 0.33

 0.34

 0  20  40  60  80  100

numerical solution
asymptotic

 0.326

 0.328

 0.33

 0.332

 0.334

 0.336

 0.338

 0.34

 0  20  40  60  80  100

numerical solution
asymptotic

(a)

E

(b)

E

(c) t

E

FIG. 5. Comparison of the numerical solution to (1) and the solution of the first-order ordinary

differential equation for the energy (51). The parameter values are pg0 = 0.25 for (a), pg0 = 0.5

for (b), pg0 = 0.75 for (c), We = 160 and ǫ = 10−2 (Re = 100).
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FIG. 7. Comparison of the frequency obtained using (17) and linear theory (52). The parameter

values are pg0 = 0.25 for (a), pg0 = 0.5 for (b), pg0 = 0.75 for (c), We = 160 and ǫ = 10−2

(Re = 100).

oscillate in a spherical shape for many cycles in a liquid with high viscosity and/or high

surface tension10,47. The compressible effects are the order of the Mach number M = U/c,

where c is the speed of sound in the liquid and the viscous effects are the order of 1/Re. In

the case of high viscosity, we may thus quantify the conditions under which viscosity is the

dominant decay mechanism by the restriction

M ≪
1

Re
≪ 1 or

U

c
≪

µ

ρUR̄M

≪ 1.

In the experiments of Lauterborn and Kurz 10 (figure 32), the compressible effects are neg-

ligible due to high surface tension. The agreement of the experiment and our asymptotic

analysis is shown in Figure 4.

We now perform three integrations of (51) with the Weber number We = 160 and three

different values of the minimum pressure at the maximum radius during the first cycle of

oscillation pg0: pg0 = 0.25, pg0 = 0.5 and pg0 = 0.75. In each case, a full numerical solution

of the Rayleigh–Plesset equation (1) is also obtained from a corresponding initial condition
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FIG. 8. Comparison of the numerical solution to (1) and the upper and lower bounds evaluated

using the solution to (51) and the roots of (13). The parameter values are pg0 = 0.25 for (a),

pg0 = 0.5 for (b), pg0 = 0.75 for (c), We = 160 and ǫ = 10−1 (Re = 10).

using the maximum bubble radius. Figure 5 compares the solution of (51) with the numerical

solution of the Rayleigh–Plesset equation (1) for the time history of the energy of the bubble

system for these three values of pg0, We = 160 and ǫ = 10−2 (Re = 100), the agreement being

excellent in all three cases for the entire lifetime of the damped oscillations. The energy of

the bubble system decreases with time and its rate of change reduces with time too, reaching

a constant during the later stages. There are slight discrepancies between the analytical and

numerical results within each cycle of oscillation. This is because the average energy loss

rate during each cycle of oscillation is calculated in the analytic approach using (51), which

does not track the energy history within each cycle of oscillation. The figures show clearly

that the analytical and numerical results of the time history of the energy agree well at the

end of each cycle of oscillation.

The amplitude envelope of the oscillations are easily determined from E0(tv) using the
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roots of (13). Figure 6 compares the upper and lower bounds of the time history of the

bubble radius, Rmax and Rmin, with a full numerical solution of (1), the agreement again

being excellent for hundreds of cycles of oscillation. The maximum radius decreases with

time, the minimum radius increases with time, and their rates of change first increase and

then decrease with time, both reaching the same constant equilibrium bubble radius during

the later stages. Comparing the results for pg0 = 0.25, 0.5 and 0.75, one can see that the

damping is enhanced as pg0 decreases, the bubble reaches the equilibrium faster at a smaller

value of the dimensionless initial pressure of the bubble gases.

The corresponding frequencies, which are evaluated using equation (17), are compared

with linear theory in Figure 7. Plesset and Prosperetti 48 provide a review of the linear

theory. In the linear theory, frequency is given by

1

Req

√

3pg0
R3

eq

−
2

WeReq

. (52)

The frequency of the present nonlinear theory shows significant variation over the lifetime

of the oscillations. The frequency increases rapidly during the early stages and its rate of

change decreases with time, reaching a constant during the later stages. Our perturbation

method and the linear theory agree when the deviation from the equilibrium radius is small;

that is Rmax −Rmin ≪ 1.

Figure 8 provides a further comparison between the upper and lower bounds, Rmax and

Rmin, with a full numerical solution of (1) at ǫ = 0.1 (Re = 10). The upper and lower

bounds in Figure 8 are only modified by a scaling in time from Figure 6, which is given

by (5b). The errors in our asymptotic approach are of the order of ǫ or 1/Re45. As expected

for the lower Reynolds number, the agreement is not as accurate as in Figure 6, but it is

still very good. Comparing the results for Re = 100 in Figure 6 and Re = 10 in Figure 8,

one can see that the damping is enhanced significantly as Re decreases.

B. The behaviour in each cycle

Within each cycle the bubble oscillation depends on three state variables, the dimensi-

onless initial pressure of the bubble gases pg0, the Weber number We and the dimensionless

energy E0 of the bubble system, the last is a constant during each cycle of oscillation to a

first order approximation. We thus analyze the dependence of the frequency of oscillation,
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FIG. 9. The frequency of oscillation (17) as a function of (a) the Weber number We with pg0 = 0.25

and (b) the parameter pg0 with We = 160 for four values of energy E0 = 0.4, 0.5, 0.6, 0.7. The

linear theory (52) is shown for comparison.

minimum and maximum bubble radii in terms of pg0, We and E0. Figure 9 shows the

dependence of the frequency of oscillation ω on the energy E0 (or equivalently amplitude),

the parameters pg0 and We. The frequency of oscillation decreases with the energy E0, pg0

and We. In both the linear and nonlinear theories, the frequency has large variations for a

change in the quantities. The linear theory will significantly overestimate the frequency for

bubbles oscillating with large energies and amplitudes.

Figure 10 shows the dependence of the minimum bubble radius Rmin on the energy E0 and

the parameters pg0 and We. The minimum radius decreases rapidly with E0 and increases

rapidly with pg0, but it is, to a large extent, independent of the parameter We.

The dependence of the maximum bubble radius Rmax on the energy E0 and the parame-

ters pg0 and We is shown in Figure 11. The maximum bubble radius increases with E0, pg0

and We.

C. The behaviour over many cycles

Figure 12 shows the effect of a variation of the parameter pg0 on the long-time history

of the energy, the maximum bubble radius and the frequency. The simulations all start

from the same initial radius and energy. The energy increases, the maximum bubble radius

increases and the frequency decreases for larger pg0.

The conventional approach to viscous decay in fluid mechanics is to introduce a decay
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pg0 = 0.25 and (b) the parameter pg0 withWe = 160 for four values of energy E0 = 0.4, 0.5, 0.6, 0.7.

rate (see, for example, Lamb 49). In order to adopt this approach for spherical bubbles, the

maximum bubble radius may be approximated by the expression

Rmax(E0, pg0,We) = Req(pg0,We) + α(E0, pg0,We) exp(−λ(E0, pg0,We)tv), (53)

where α(E0, pg0,We) is the amplitude, λ(E0, pg0,We) represents the decay rate andReq(pg0,We)

is the appropriate solution of the cubic equation

R3 +
2

We
R2 − pg0 = 0. (54)

Equation (54) is obtained by setting the time derivatives to zero in (1). If we adopt this

definition, then the variation of decay rate is shown in Figure 13. As large values of pg0
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limit the range of energies (see Figure 5(c)), only one energy is plotted in Figure 13(b).

The decay rate increases with decreasing energy E0 and with decreasing parameters pg0

and We, it being clear that linear theory will significantly overestimate the decay rate for

large-amplitude spherical bubble oscillations. We note that the variation of Rmax does not

follow equation (53) for the smallest values of E0, it having been previously reported that

small-amplitude bubble oscillations decay algebraically for long times50.

D. Sensitivity of the solution to small changes in the initial conditions

We now illustrate how an order ǫ modification in the initial conditions may produce an

order one change in the solution via the phase shift Ψ. We adopt We = 160, pg0 = 0.1,

ǫ = 10−2 and different values of a1 in Sec. II E. Numerical solutions of the Rayleigh–Plesset
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FIG. 13. The decay rate λ as a function of (a) Weber number We for pg0 = 0.25 and four values

of E0 = 0.25, 0.275, 0.3, 0.325 and (b) the parameter pg0 for We = 160 and E0 = 0.33. The decay

rate λ is defined in equation (53).
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FIG. 14. Comparison of the numerical solution of the Rayleigh–Plesset equation (1) withWe = 160,

pg0 = 0.1, ǫ = 10−2 (Re = 100) and three initial conditions: (A) R(0) = 1 − ǫ and Ṙ(0) = 0,

(B) R(0) = 1 and Ṙ(0) = 0, and (C) R(0) = 1+ ǫ and Ṙ(0) = 0. These results illustrate the linear

dependence on a1 in (50).

equation (1) which exhibit the linear dependence on a1 in (50) are shown in Figure 14 with

a1 = −1, 0 and 1. Large-amplitude bubble oscillations are extremely sensitive to small

changes in their initial conditions.

IV. SUMMARY AND CONCLUSIONS

A theoretical study has been carried out to investigate the viscous decay of large-

amplitude oscillations of a spherical bubble in an incompressible Newtonian fluid. At large
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Reynolds number, this is a multi-scaled problem with a short time scale associated with in-

ertial oscillation and a long time scale associated with viscous damping, the ratio of viscous

and inertial oscillation time scales being the Reynolds number. A multi-scaled perturbation

method is thus employed to solve the Rayleigh–Plesset equation. The leading-order analy-

tical solution of the bubble radius history is obtained to the Rayleigh–Plesset equation in a

closed form including both viscous and surface tension effects.

The techniques of strongly nonlinear analysis result in several important analytical for-

mulae including: (i) an explicit expression for the average energy loss rate for the bubble

system for each cycle of oscillation, which allows the calculation of the energy without prior

knowledge of the bubble radius history, (ii) an explicit formula for the dependence of the

frequency of oscillation on the energy, and (iii) implicit formulae for the maximum and mini-

mum radii of the bubble during each cycle of oscillation. Our theory shows that the energy

of the bubble system and the frequency of oscillation do not change during the time scale of

inertial oscillation to a first order of approximation, the energy loss rate on the long viscous

time scale being inversely proportional to the Reynolds number.

These asymptotic predictions have excellent agreement with the numerical solutions of

the Rayleigh–Plesset equation over the lifetime of the damped oscillations of a transient

bubble (for hundreds of cycles of oscillation) and correlate with the linear theory. Syste-

matic parametric analyses are carried out with the above formulae for the energy of the

bubble system, frequency of oscillation and minimum/maximum bubble radii in terms of

the Reynolds number, the dimensionless initial pressure of the bubble gases and the Weber

number. A series of phenomena are observed, which may be summarized as follows.

Over the long lifetime of a decaying oscillation, the energy of a bubble system, amplitude

and frequency of oscillation have large variations. The energy of the bubble system decreases

with time and its rate of change reduces with time too, reaching a constant ultimately. The

maximum radius decreases with time, the minimum radius increases with time, and their

rates of change first increase and then decrease with time, both reaching the same constant

ultimately. The frequency increases rapidly during the early stages and its rate of change

decreases with time, reaching a constant during the later stages.

The frequency, maximum/minimum bubble radii and their changing rates have been

shown to have strong dependence on the energy of a bubble system E0, pg0 and We. The

frequency of oscillation decreases with E0, pg0 and We. The minimum radius decreases
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rapidly with E0 and increases rapidly with pg0, but it is, to a large extent, independent of

the parameter We. The maximum bubble radius increases with E0, pg0 and We.

Our results also show that linear theory will significantly overestimate the frequency and

decay rate of spherical bubble oscillation. The phase shift for decaying bubble oscillations

has two constants of integration, these two constants having been shown to depend on small

perturbations in the initial conditions. In this sense, large-amplitude bubble oscillations

are very sensitive to changes in the initial conditions with the phase being shifted either

backwards or forwards. Furthermore, large-amplitude non-spherical bubble oscillations will

also exhibit similar sensitivity as it is a consequence of the nonlinearity at leading order.

Linear and weakly nonlinear analysis will not predict such sensitivity.

A. Summary of analytical results

In this final subsection, the three main analytical results are summarized for the con-

venience of readers. The results are provided in the dimensionless form. The reference

length and pressure are chosen as the maximum bubble radius R̄M during the first cycle of

oscillation and ∆ = P∞ − Pv, respectively, where P∞ is the ambient pressure and Pv is the

saturated vapour pressure.

Firstly, the average loss rate of the energy E0 of a bubble system may be written as

follows

dE0

dt
= −

4

Re

∫ Rmax(E0,pg0,We)

Rmin(E0,pg0,We)

√

√

√

√

2

R̂

{

E0 + pg0 ln(R̂)−
R̂2

We
−

R̂3

3

}

dR̂

∫ Rmax(E0,pg0,We)

Rmin(E0,pg0,We)

√

R̂3dR̂
√

2
{

E0 + pg0 ln(R̂)− R̂2

We
− R̂3

3

}

,

where the right-hand side is expressed entirely as a function of the Reynolds number

Re = ρUR̄M/µ, E0, the dimensionless minimum pressure pg0 at the maximum bubble ra-

dius during the first cycle, the Weber number We = R̄M∆/σ in which U =
√

∆/ρ, ρ and

µ are the density and viscosity of the liquid surrounding the bubble, respectively. Further-

more, Rmax(E0, pg0,We) and Rmin(E0, pg0,We) are the maximum and minimum radii of the

bubble, respectively. The initial condition for the energy of a bubble system is given by

E0(0) =
1

We
+

1

3
.
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Secondly, the maximum radiusRmax(E0, pg0,We) and the minimum radiusRmin(E0, pg0,We)

are given as the two successive roots of

E0 + pg0 ln(R0)−
R2

0

We
−

R3
0

3
= 0.

Thirdly, we express the frequency ω in terms of E0, pg0 and We via

ω(E0, pg0,We) =
π

∫ Rmax(E0,pg0,We)

Rmin(E0,pg0,We)

√

R̂3dR̂
√

2
{

E0 + pg0 ln(R̂)− R̂2

We
− R̂3

3

}

.

These equations allow the calculation of the energy E0(tv), the frequency ω, the maximum

radius Rmax and the minimum radius Rmin without prior knowledge of the leading-order

solution R0.
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