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ABSTRACT 
 

Directed self-assembly (DSA) was investigated on self-assembled monolayers (SAMs) of 6-(4-nitrophenoxy) 

hexane-1-thiol (NPHT), which were chemically modified by electron beam (EB) irradiation. By irradiating a responsive 

interfacial surface, the orientation and selective patterning of block copolymer domains could be achieved. We 

demonstrated that spatially-selective lamellar orientation of polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) 

could be induced via modification of an underlying SAM; for instance the conversion of an NO2 group to an NH2 group, 

induced by EB. The lamellar orientation of PS-b-PMMA was controlled by the change in the polarity of different regions 

of the SAM using EB lithography. The reductive treatment of SAM substrates plays a crucial role in the orientation of 

block copolymer. This method might greatly simplify block copolymer DSA processes as compared to the conventional 

multi-step chemo-epitaxy DSA process. By examining the lamellae orientation by EB, we found that the vertical 

orientation persists only for appropriate an irradiation dose and annealing temperature. 

 
Keywords: Block copolymer, lamellar orientation, self-assembled monolayer, polarity switch, electron beam 

 

1. INTRODUCTION 
 

With further miniaturization of devices, sub-10 nm feature sizes are anticipated which will not easily be obtained by 

extreme ultraviolet (EUV) or electron beam (EB) lithography techniques in mass production, due to patterning 

limitations, tool costs, or low throughput and so on. The combination of top-down and bottom-up approaches to 

nanopatterning has become an area of research focus because conventional top-down lithographic techniques are now 

approaching such fundamental limitations. Self-assembly of block copolymers enables the fabrication of features of 
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sub-20 nm without using an expensive exposure tool. In particular, DSA of block copolymers has attracted significant 

attention as a promising nanolithography technique to surmount the fundamental limitations of conventional lithography. 

Block copolymers have the potential to be used in semiconductor manufacturing1–6 and directed self-assembly (DSA) is 

currently being considered for future nodes of the ITRS roadmap.7  
 

Up to now, a great deal of effort has been devoted to controlling the self-assembly of block copolymers using the 

techniques of grapho-epitaxy2,8–11 and chemo-epitaxy.12–13 Generally, the orientation of block copolymer can be 

controlled by precisely tuning the chemistry of the interface between the block copolymer and the substrate. The basic 

method for achieving perpendicular orientation of block copolymer is to balance the interfacial interactions of each block 

of the block copolymer with the substrate. Neutral surfaces have been shown to induce a perpendicular domain 

orientation in block copolymer thin films.14,15 This strategy takes advantage of the inherent versatility of random 

copolymers, which allows the surface energy or surface characteristics to be tuned by changing the chemical composition 

of the random copolymer. A more general approach to controlling interfacial and surface interactions using an ultrathin 

crosslinkable film of a random copolymer has been developed.16 In addition, there are several methods such as solvent 

annealing,17 the use of rough substrates,18,19 chemical modification of the substrate15,20,21 and so on to control the 

orientation of domains in block copolymer films. In particular, surfaces with neutral wettability to the 

polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) block copolymers, such as random styrene-methacrylate 

copolymer films (PS-r-PMMA) or self-assembled monolayer (SAM) modified surfaces have been studied to induce 

perpendicular orientation for PS-b-PMMA self-assembly. Pre-patterned surfaces, consisting of alternating neutral and 

preferential surfaces, have been prepared by the selective oxidation of a neutral SAM with resist patterns by advanced 

lithography.16,18,19 However, current methods for achieving a patterned substrate template are generally complex, 

involving a large number of steps. In order to simplify and improve DSA processes, several strategies for controlling 

areas of block copolymer domain orientation using radiation have been reported. Approaches including a photodefinable 

substrate film,22 EB sensitive materials,23 x-ray sensitive self-assembled monolayers,15 the selective cross-linking of 

substrate surface treatments via UV light,24,25 and reactive ion etching26–28 have all been reported. In addition, disordered 

block copolymers that order in response to light29–32 and electrohydrodynamic jet printing33 have been reported. However, 

a number of challenges remain with such approaches.  

 

Controlling the surface chemistry of specific regions, to locally change the orientation of block copolymer domains by 

top-down lithography, is very valuable. In particular, EB lithography is suitable for the modification of the substrate 

surface, and has the advantage that it is easily possible to fabricate feature size patterns as small as 20 nm. In addition to 

high resolution, EB lithography makes it possible to fabricate complex patterns by adjusting the irradiation dose and so 

on. One strategy to induce lamella to form perpendicular to the substrate with controlled orientation in the plane of the 

film is the nanopatterning of substrates with alternating regions that are wetted differently by the different blocks of 

copolymer. In particular, tuning the polarity of the SAM-covered surface can control the wetting behavior of block 
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copolymer films. It has been reported that such a surface pattern could be transferred to films of 

poly(styrene-b-2-vinylpyridine) (P(S-b-2VP)) by using striped SAMs of CH3– and HO–terminated alkanethiols on 

gold.34–36 Also, it has been reported that the wetting behavior of polymer was controlled by the functionality, or surface 

chemistry of the SAMs such as patterned striped SAMs of CH3– and COOH–terminated alkanethiols on gold,37,38 and 

patterned stripes of gold and SAMs of CH3–terminated alkanethiols on gold.39 Moreover, the surface chemistry of the 

SAMs was modified by exposure to x-rays in air to incorporate oxygen into polar function groups on the surface of the 

SAMs.40 However, none of these SAMs have been directly patterned by EB reduction of the SAM to fabricate alternating 

regions that are wetted by the different blocks of copolymer. Instead, patterning of photoresist followed by an etching 

process has been utilized to create a chemical pattern on the buffer layer.26,27 In addition to orientation control, 

photopatternable interfaces have been used to define trenches that guide self-assembly via grapho-epitaxy using 

photolithography2 and to make directing guidelines for chemo-epitaxy with lithography in tandem with other 

processes.13,41–45 

 

In this study, we demonstrate that lamella orientation of PS-b-PMMA films can be performed using EB induced change 

of SAMs, such as the conversion of a NO2 group to an NH2 group upon electron irradiation. Also, we fabricated surface 

topography by EB lithographic patterning and reactive plasma etching of silicon. DSA onto such pre-patterned Si 

substrates modified with PS-r-PMMA results in subdivision of the lithographic patterns into line and space patterns or 

hexagonally packed hole arrays. Furthermore, we present experiments investigating the difference in the direction of a 

diblock copolymer thin film in contact with a chemically patterned substrate surface and surface topography.  

 

2. EXPERIMENTAL 
 

Gold was deposited onto silicon substrates in a sputter coater (Edwards 306 auto), using an argon pressure of 1 Pa, and 

sputtering power 100w, to a thickness of 100nm, (measured on a sacrificial sample using a surface profiler (Dektak 3st). 

The gold coated samples were then cleaned in piranha solution (30:70 v/v solution of 30% hydrogen peroxide and 

concentrated sulfuric acid) for 5 m at room temperature. 6-(4-nitrophenoxy) hexane-1-thiol (NPHT) was prepared as 

detailed elsewhere.46 To deposit the SAMs a 10mmol solution of NPHT was created in ethanol solvent, and the gold 

samples submerged in the solution for 48 h. Deposition was terminated using a 15 s rinse in the solvent and the samples 

were then dried with nitrogen. The rinse and dry was repeated twice to ensure maximum removal of physisorbed 

multilayers. 

 

Samples were then irradiated with EB to produce a patterned SAM layer. They were patterned at exposure doses of 50 

mC/cm2. PS-b-PMMA block copolymer was purchased from Polymer Source, Inc. and used as received. PS-b-PMMA 

block copolymer was spin-coated from propylene glycol mono methyl ether acetate (PGMEA) solutions onto the 

patterned SAM layer coated substrates after EB irradiated. Subsequently, they were annealed at 150 ˚C, 190 ˚C, and 250 
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˚C in a vacuum for a sufficiently long time. The annealed film was also treated with an oxygen reactive ion etching (RIE) 

process in order to selectively remove the PMMA domains and form PS patterns on the substrate. After selective removal 

of one of the blocks, the remaining pattern can be obtained. A thin layer of tungsten was sputter-coated on the sample to 

prevent charging. The resulting morphology was recorded using a field emission-scanning electron microscope (FE-SEM, 

Hitachi-hitec S-5500) operated with an acceleration voltage of 1 kV. 

 

Deep topographic features were also fabricated in silicon (Si) using EB lithography and plasma etching techniques. The 

surface of the lithographically defined templates was coated with PS-r-PMMA by spin-coating from a suitable solvent, 

and the samples were baked on a hotplate at 110 ˚C for 90 s. After baking, PS-b-PMMA block copolymer was 

spin-coated from PGMEA solutions onto the samples, which were then annealed at 190 ˚C for 24 h. After self-assembly 

of the PS-b-PMMA block copolymer, the sample was subjected to an oxygen plasma to remove the PMMA domains. The 

resulting morphology was recorded using FE-SEM after tungsten coating. 

 

3. RESULTS AND DISCUSSION  

 
Figure 1(a) shows a schematic of the typical lithographic patterning method used to chemically pattern a SAM surface, 

in order to subsequently induce directed self-assembly via  chemo-epitaxy. The method typically proceeds by patterning 

of SAMs or grafted polymer monolayers using lithographically defined resist patterns as a mask. However, these 

approaches require a number of complex processes such as resist coating, exposure, development, etch, the difficulty of 

Figure 1. Schematic presentation of block copolymer DSA process using (a) a conventional chemically patterned surface process 

and (b) a directly chemically patternable SAMs method.. 
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surface neutrality, and so on. Compared to the complex processes used for traditional chemo-epitaxy, a directly 

chemically patternable SAMs would greatly simplify the process as shown in Figure 1 (b). Thus, the number of steps can 

be reduced in the DSA process. In addition, this method reduces the probability for defectivity, for instance caused by 

residual resist on the patterned SAM. 

 

 

 

 

 

EB patterning was chosen for manipulating block copolymer features since EB lithography tools can pattern areas nearly 

as small as block copolymer. By exposing a responsive interfacial surface of SAMs to EB, selective orientation of block 

copolymer domain can be achieved. In other words, after EB irradiation the SAMs underwent selective reduction. It has 

previously been reported that EB lithography and x-ray irradiation can induce conversion of the SAM terminal function 

aromatic nitro (NO2) moieties to aromatic amino (NH2) moieties. 46-53 Thus, EB irradiation results in a chemically striped 

patterned substrate consisting of alternating stripes of SAM with an aromatic NO2 terminal functionality and SAM with 

aromatic NH2 terminal functionality, as shown Figure 2. Patterning of SAMs was performed by EB lithography for all 

features with various periods. SAMs were patterned at doses of 40 mC/cm2. The exposed electron dose in this study is 

comparable to the dose of 35000 µC/cm2 required to carry out the large-scale nitro reduction on biphenyl based NO2 

terminated SAM on gold.54 

Figure 2. A scheme of the experimental steps. (Step I) SAM formation, (Step II) Patterning of SAM with EB lithography, and (Step 

III) EB patterning of a SAM, which induces conversion of the SAM terminal functional aromatic NO2 moieties to aromatic NH2 

moieties.. 
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 Figure 3 shows SEM images of PMMA etched lamellar PS-b-PMMA block copolymer on Au coated silicon substrates 

pre-coated with SAM. It is known that the PMMA block preferentially wets on SAMs that contain polar groups. The 

surface NO2 groups of the NPHT become reduced upon EB exposure and are converted to NH2 groups to which the PS 

block preferentially wets. Thus, DSA of PS-b-PMMA block copolymer film on a stripe pattern was expected. However, 

the lamellar assembly of PS-b-PMMA was observed on the surface pattern of SAM irradiated by EB after 24h of 

annealing. The reason why DSA was observed is thought to be for the following two reasons. First was the control of 

stripe width. It has been reported that the amount of defects increased as the density multiplication factor, and the ratio of 

the chemical pattern period to the block copolymer period, increased.55 Also, it is known that if the periods of the surface 

and block copolymer don’t agree within approximately 10%, the morphology of the block copolymer films will not be 

perfect.13 The second reason is that Au surfaces are difficult to modify with thiol monolayers because our annealing 

temperatures are 190 ˚C, which is much greater than the dissociation temperature of the Au-thiol bond. The resulting 

chemical patterns provide neutral surface layers for lamella orientation of PS-b-PMMA domains. Figure 4 shows SEM 

images of PMMA etched lamellar PS-b-PMMA block copolymer on Au deposited silicon substrates pre-coated with 

SAM at the annealing temperature of (a) 150 ˚C and 250 ˚C, respectively. While the self-assembly of PS-b-PMMA didn’t 

occur at the annealing temperature of 150 ˚C, dissociation temperature of the Au-thiol bond would occur at the annealing 

temperature of 250 ˚C. This result indicated the vertical orientation conditions required the appropriate annealing 

temperature. To our knowledge, this is the first example of a neutral layer using reductive treatment of EB irradiation, 

Figure 3. SEM images of PMMA etched lamellar PS-b-PMMA block copolymer on Au deposited silicon substrates pre-coated with 

self-assembly monolayer (SAM). The widths of alternating stripes of SAMs were (a) 150 nm, (b) 150 nm and (c) 300nm , 

respectively. 
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and this work provides insights on tuning the neutral layer and the vertical orientation conditions for appropriate 

irradiation dose and annealing temperature. The main obstacle for this process is controlling the alignment of the 

domains to accomplish DSA. An understanding of the process variables that control this alignment is crucial. Further 

work is required to fully characterize and understand all the mechanisms at play during the fabrication procedure and 

understand in detail the key NO2 to NH2 conversion threshold required to control the alignment of the domains in order 

to give DSA. 

 

Also, we created surface topography by EB lithographic patterning and reactive plasma etching of silicon. Our research 

has focused on self-aligned self-assembly of PS-b-PMMA block copolymer thin film patterns of both line and space 

patterns and hexagonal hole arrays and compared with our simple DSA process. Figure 5 shows SEM images of PMMA 

etched PS-b-PMMA block copolymer patterns on silicon substrates pre-coated with PS-b-PMMA. Line widths on these 

topographically patterned substrate were (a) 300 nm, (b) 100 nm, and (c) 300 nm, respectively. We successfully 

fabricated the DSA of PS-b-PMMA block copolymer onto pre-patterned surfaces resulting in subdivision of the 

lithographic patterns into line and space patterns. The spaces shown in the SEM images in Figure 5 correspond to 

perpendicular PMMA domain orientation within various trenches, and clearly demonstrates  that perpendicular 

orientation of PS-b-PMMA was achieved. It can be seen that the confinement topography induced excellent microphase 

segregation within the trenches irrespective of the channel width with lamella domains orientating perpendicular to the 

substrate surface. However, these patterns lacked long-range alignment. Although the SEM micrograph is not shown 

here, feature sizes of less than 30 nm and other shape of PS-b-PMMA patterns could be easily achieved. 

 

Figure 4. SEM images of PMMA etched lamellar PS-b-PMMA block copolymer on Au deposited silicon substrates pre-coated with 

SAM at the annealing temperature of (a) 150 ˚C and 250 ˚C, respectively. 
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We have demonstrated a novel strategy for the one-dimensional lamellar assembly of block copolymers by chemically 

patterned surfaces. We confirmed a process that uses directly EB patternable interfaces using chemical reduction of 

SAMs to simplify the current DSA schemes and avoid additional processing steps. In this work, the direct method has 

been shown to be effective in inducing microphase separation such as lamella in block copolymer thin film on striped 

pattern of SAMs, but further work is required to optimize the process. Experiments exploiting novel SAM materials and 

block copolymers are ongoing in order to accomplish directed self-assembly by this method. Generally, the silane/silicon 

interface is stronger than the thiol/gold interface. Also, patterning on oxidized silicon wafers is more compatible with 

conventional lithography technology. Additionally, the electron dose required for the patterning on SiO2 is much lower 

than required for a SAM on Au. It has been reported that the difference in EB lithography behavior between SAMs on 

Au and Si is related to the differing film thicknesses and electron scattering characteristics of the two underlying 

surface.56,57 Therefore the reduction of SAMs on SiO2 substrate by EB and following DSA are in progress and they will 

be the subject of future reports. 
 

4. CONCLUSION  
We conclude that lamellar orientation of PS-b-PMMA block copolymer could be performed using the change of SAMs 

Figure 5. SEM images of PMMA etched lamellar PS-b-PMMA block copolymer on silicon substrates pre-coated with PS-b-PMMA. 

Line widths on these topographically patterned substrate were (a) 300 nm, (b) 100 nm, and (c) 300 nm, respectively. 

 

such as the conversion of the NO2 group to an NH2 group induced by EB. The reductive treatment of SAM substrate 

plays a crucial role in the ordering. By examining the lamellae orientation by EB, we found that the vertical state persists 
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only for appropriate irradiation dose and annealing temperature. Future applications may benefit from or required the 

synthesis of sensitive and chemically specific imaging layers that change functionality directly upon lithographic 

exposure. Our method has the potential to greatly simplify block copolymer DSA processes as compared to the 

multi-step guiding layer fabrication procedures currently used. 
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