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Abstract

A vast majority of consumer cameras operate the rolling
shutter mechanism, which often produces distorted images
due to inter-row delay while capturing an image. Recent
methods for monocular rolling shutter compensation utilize
blur kernel, straightness of line segments, as well as an-
gle and length preservation. However, they do not incor-
porate scene geometry explicitly for rolling shutter correc-
tion, therefore, information about the 3D scene geometry is
often distorted by the correction process. In this paper we
propose a novel method which leverages geometric prop-
erties of the scene—in particular vanishing directions—to
estimate the camera motion during rolling shutter expo-
sure from a single distorted image. The proposed method
jointly estimates the orthogonal vanishing directions and
the rolling shutter camera motion. We performed extensive
experiments on synthetic and real datasets which demon-
strate the benefits of our approach both in terms of qualita-
tive and quantitative results (in terms of a geometric struc-
ture fitting) as well as with respect to computation time.

1. Introduction
People largely share knowledge and experiences through

visual photographs, often captured by low-budget com-
mercial devices. These devices are generally built upon
CMOS sensors, which possess a prevalent mechanism
widely known as rolling shutter (RS). In contrast to global
shutter (GS), it captures the scene in a row-wise manner
from top to bottom with a constant inter-row delay. The RS
imaging acquires apparent camera motion for different rows
and violates the properties of the perspective camera model.
This causes noticeable distortions—straight line segments
can become arc segments, which are very prominent for the
images in urban areas. This distortion needs to be corrected
for aesthetically pleasing visualization and further geomet-
ric analysis [14] of the scene.

In this work, we address the RS compensation from a
single distorted image. This problem has been addressed in

(a) A distorted image (b) Result by [27] (c) Our Result

Figure 1: (a) A real rolling shutter distorted image. (b) Rec-
tified by Rengarajan et al. [27]. (c) Proposed joint estima-
tion of orthogonal vanishing directions and rolling shutter
motion. The colors red, green and blue are employed for
the orthogonal vanishing directions, while yellow is used
to mark the outliers (lines that are not associated with the
vanishing directions). Sign-post and roads are more geo-
metrically consistent by the proposed method.

recent methods [30, 27], however, no scene geometry was
incorporated utilizing only a single image while compen-
sating the RS effects. We observe that most of the images
taken in man-made environments (such as urban areas) fea-
ture at least two orthogonal vanishing directions. Conse-
quently, we believe that the Manhattan world assumption is
satisfied especially when the rolling shutter effect is most
prominent in images. In this work, we propose an RS cor-
rection method utilizing these orthogonal vanishing direc-
tions, therefore the corrected image without RS distortions
is not only visually more appealing, but also geometrically
more meaningful. Our proposed method demonstrates bet-
ter performance qualitatively and computationally. We also
evaluate proposed method quantitatively by fitting a geo-
metric structure (e.g., rotational homography, epipolar ge-
ometry [14]). In Figure 1, we display our result on a real
RS distorted image. Notice that this example is not of a typ-
ical urban image and proposed method still produces more
geometrically consistent results than the baseline.
1.1. Related Work

Recent works on RS compensation can be grouped into
three categories—(i) external sensors based methods, (ii)



multi-frame methods and (iii) single-frame methods.
(i) External sensors (e.g., gyroscopes) have been uti-

lized [15, 17, 26] to acquire camera motion directly in
videos. However, the low acquisition rate does not allow
performing RS correction for a single image.

(ii) Multi-frame methods study the geometry of an RS
camera [3, 8, 10, 28], utilizing multiple RS images or video
sequences. A number of interest points are tracked over the
frames and then those tracked points are utilized to estimate
the camera motion. The camera poses for the other rows are
then interpolated in order to correct the RS effect. Grund-
mann et al. [13] utilize a mixture of homographics, esti-
mated from the tracked key points, to compensate rolling
shutter effect. None of these methods can directly be ap-
plied to Single-frame RS correction.

(iii) Single-frame RS correction from a single image,
without the help of external sensors, goes back to [2],
but [27, 30] are most related to our approach. Su et al. [30]
propose to utilize motion blur to extract information about
the camera motion. They employ a global model of the
camera motion trajectory, whose parameters are estimated
from the blur kernel. Rengarajan et al. [27] detect line seg-
ments (LSs) and then group them into the horizontal and
vertical arc segments. Straightness of the detected arcs, line
length constancy and line angle constancy are incorporated
to estimate the motion. However, the works [27, 30] suffer
from a number of drawbacks:

• Primarily, no scene geometry is incorporated in [27, 30]
for RS compensation, but obtaining correct geometric re-
lations is the primary objective in the first place.

• The method presented in [30] is only applicable for
blurred images. Although, in some cases motion blur
and RS distortions occur simultaneously, these are very
different phenomenon and can appear exclusively.

• Bending of straight lines is not guaranteed for every RS
camera motion, e.g. if the camera motion only leads to
(anisotropic) scaling of image content. In such cases the
method of [27] cannot be used to rectify RS distortions.

• The work of [27] assumes that all arc segments (includ-
ing natural curves) are induced by straight lines and take
place in camera motion estimation. Thus, the estimates
may be distorted if this assumption is violated.

In this work, we utilize the underlying scene geometry,
which we assume is mostly generated by a Manhattan-type
world. Orthogonal vanishing directions and the camera mo-
tion of an RS image are jointly estimated via an appropriate
cost function. While we do not explicitly utilize the straight-
ness property of line segments (as it is done in [27]), our
estimated motion parameters are nevertheless sufficiently
accurate to obtain straight lines in the generated GS im-
age. Moreover, our method is free from the aforementioned
drawbacks. Our contributions are summarized as follows:

sensor 

line

all rows

start exposure 

all rows

end exposure 

time

(a) Global shutter exposure

sensor 

line

row - t 

start exposure 
row - t + 1  

start exposure 

timerow - t  

end exposure 

row - t + 1  

end exposure 

(b) Rolling shutter exposure

Figure 2: (a) A global shutter opens to allow light to strike
the entire sensor surface all at once. (b) In contrast, a rolling
shutter exposes the image line-by-line.

• We utilize those parts of the 3D scene geometry captured
in an RS image conforming to the Manhattan-world as-
sumption (MWA), and we formulate a robust objective to
simultaneously estimate the underlying vanishing direc-
tions and camera motion parameters.

• Extensive experiments show that the proposed approach
is computationally efficient and qualitatively more ac-
curate than earlier works. The joint optimization for
all parameters is done in a fraction of a second, which
is about two orders of magnitude faster than the base-
lines [27, 30].

This paper is organized as follows. In Sections 2 & 3, we
provide a brief introduction to the RS camera and estimation
of the vanishing directions, which is extended in Section
4 for the joint estimation. The efficiency of the proposed
method is presented in Section 5. We conclude and indicate
future extensions in Section 6.

2. Rolling Shutter Cameras
Global shutter and rolling shutter cameras differ in how

light incoming at the imaging sensor is gathered. In Figure
2, we display the image capture process with different sen-
sors. In the case of GS camera all the rows of the image
sensor are exposed simultaneously for a constant duration
of time. A point P ∈ R3 in the scene, observed at the pixel
(p, q) in the GS camera, satisfies [14]

sp = KP, (1)

where p = [p, q, 1]ᵀ is the homogeneous coordinate of
the pixel (p, q), s is the scene depth, and K is the intrinsic
camera matrix.

In the case of RS camera, sensors in each of the rows are
exposed for a regular interval of time (same exposure and
integration time), while the camera potentially undergoes
an (small) amount of motion. The translation of the camera,
during capturing different rows of an image, is assumed to
be negligible compared to the depth of the scene. Thus, the



projection of the point P onto RS camera reads as

sprs = KR(rt)P, (2)

where R(rt) is the rotation matrix corresponding to the ro-
tation rt at time t = τprs, where τ is the time delay between
two successive rows. The geometric relation between the
GS pixels and RS pixels (eliminating P from 1 and 2) is
therefore given by

p ∝ KR(rt)
ᵀ
K
−1
prs, (3)

where rotation R(rt)in above depends on the prsth row of
the RS image. Note that the above relation holds up to a
scale. For readability, in the rest of the paper, we consider
prs is on the image plane, i.e., pre-multiplied by K−1, thus,

p = KR(rt)
ᵀ
prs. (4)

2.1. Motion Modelling

Independent estimation of camera poses for each of the
rows of an RS camera is extremely ill-posed. Therefore,
similar to [27, 30], we utilize a global parametric motion
model, where the rotation parameters are considered to be
polynomials in time t. However, as the RS camera takes
uniform time τ to capture a row, rotations in turn become
polynomials in row number p. More explicitly, for ζ =
(p− 1)/M ,





rx = α+ a1ζ + . . .+ anζ
n

ry = β + b1ζ + . . .+ bnζ
n

rz = γ + c1ζ + . . .+ cnζ
n ,

(5)

where M is the number of rows in the image, rA =
[rx, ry, rz]

ᵀ are the Rodrigues parameterization [25] of
the rotation, and we use the Cayley transform [11] to obtain
the corresponding rotations matrix

R(rtA) =

1
Z




1 + r2x − r2y − r2z 2rxry − 2rz 2ry + 2rxrz

2rz + 2rxry 1− r2x + r2y − r2z 2ryrz − 2rx

2rxrz − 2ry 2rx + 2ryrz 1− r2x − r2y + r2z




(6)
where Z = 1 + r2x + r2y + r2z . This transformation is chosen
due to its numerical simplicity [3]. Note that rA is the unit
axis of rotation scaled by tan( θ2 ) where θ is the angle of
rotation. Thus, 180◦ rotations, hardly relevant to the rolling
shutter case, are automatically excluded. Moreover, under
the choice of ζ, there will only be a global rotation [α, β, γ]ᵀ

at the first row. In summary, estimation of the RS motion is
equivalent to the estimation of 3(n+ 1) motion parameters
A = ([α, a1, . . . , an; β, b1, . . . , bn; γ, c1, . . . , cn]).
Note that quartic splines may provide a better fit for a more
complex motion [18, 26]. However, the polynomial model
(5) is expressive enough to capture natural camera motions.
The choice of polynomial motion model is justified further
in [27, 30].

l1
l2

ϑj

rx

rz

ry

n̂1

n̂2

Gaussian Sphere

Vanishing Direction Interpretation Planes

Image Plane 3D Lines

RS LSs

GS LSs

Figure 3: The 3D parallel lines in the world space are pro-
jected into the concurrent LSs (green) on a GS camera and
arc segments (red) for RS camera.

3. Vanishing Directions

The geometry of man-made structures in urban areas has
been exploited in a number of works [29, 33]. This geome-
try possesses predominant linear structures and orthogonal
vanishing directions [6, 24]. In this section, we formulate
different cost functions for the vanishing directions.

Parallel lines in a 3D scene become concurrent lines,
once they are projected onto an image plane. The point
of intersection is known as a vanishing point. Most work
on vanishing point estimation is carried out on the Gaussian
sphere [1, 6, 19, 21, 24, 36], which is a unit sphere in 3D
centred at the camera centre. An interpretation plane, com-
posed of a single line segment (LS) and the centre of projec-
tion [20], crosses over the Gaussian sphere in which a great
circle is formed. A vanishing direction (VD) is the intersec-
tion of the interpretation planes, i.e., a VD is perpendicular
to the normals of the interpretation planes, passes through
the intersection of the great circles and points towards a van-
ishing point in the image plane (Figure 3).

Antunes et al. [4] exploited the Facility Location prob-
lem, and Bazin et al. [6] proposed a branch and bound
method, to maximize the number of LSs globally which is
consistent with the orthogonal VDs. Tardif [31] exploited J-
linkage (a variant of RANSAC) [32] for clustering the LSs.
There are also methods for simultaneous tracking and esti-
mation of the VDs in a video [20, 21]. A CNN based ap-
proach [36] is exploited to learn the prior knowledge of the
cardinal directions. It is then used to guide the sampling
for a randomized estimation method. However, the exist-
ing methods do not address the orthogonal VDs estimation
for an RS camera that we will formulate in the following
section.

In a Manhattan world [7], the VDs are orthogonal and
can be represented as a rotated canonical bases [4, 6, 24],
êx = [1, 0, 0]ᵀ, êy = [0, 1, 0]ᵀ, and êz = [0, 0, 1]ᵀ.
Let ϑ = [θ, φ, ψ]ᵀ be the Rodrigues parameterization
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(b) Geometric error

Figure 4: Different choices of errors utilized for joint esti-
mation of vanishing directions and camera motions.

of the rotation corresponding to the orthogonal VDs V =
[ν̂x, ν̂y, ν̂z]. Then V = R(ϑ)E where R(ϑ) is the rota-
tion matrix (6) corresponding to ϑ and E = [̂ex, êy, êz].

There are the following natural cost functions to estimate
the (orthogonal) VDs from line segments: the algebraic and
the geometric error. The algebraic error enables easy rea-
soning about intrinsic ambiguities in Section 4.2, but the
geometric error is closer to the usual noise assumption of
image observations.

Algebraic error One way to estimate orthogonal VDs is
to minimize the algebraic error, which is the absolute sum
of the projections of the normals along VDs. i.e.,

arg min
ϑ

N∑

i=1

min
ê∈E

ρ
(

n̂ᵀ
iR(ϑ)̂e

)
, (7)

where ê ∈ E , N is the number of LSs and n̂i is the unit
vector along the normal of the interpretation plane of the ith

LS li. ρ(.) is a robust M-estimator (see Section 4.3) which
is utilized to estimate VDs under outliers. The normal of
the interpretation plane at the camera centre is obtained by
taking the cross product of homogeneous pixel co-ordinates
of the end points of li. i.e.,

ni = K
−1
ui ×K−1vi. (8)

The unit vector along the normal n̂i = ni

‖ni‖2 . A vanishing
direction ν̂j must pass through the great circle induced by
the interpretation plane of a line segment corresponding to
ν̂j . Thus, another cost (spherical error), can be defined by
the sum of the angles between ν̂j and the associated inter-
pretation plane n̂i [Figure 4],

arg min
ϑ

N∑

i=1

(
π

2
− arccos

(
min
ê∈E

ρ
(

n̂ᵀ
iR(ϑ)̂e

)))
. (9)

The algebraic and spherical error are indeed quite similar
and return identical results.

Geometric error Since the usual noise model assumes
noisy positions of extracted points on the image plane, the
most meaningful cost function uses the geometric error in
the image plane: given latent variables for ideal 2D lines
passing exactly through the corresponding vanishing point,
the (squared) point-line distances of the detected line end
points and the ideal line are accumulated. The ideal line
is given in closed form by also passing through the mid-
point [31], leading to the following objective,

arg min
ϑ

N∑

i=1

min
ê∈E

ρ
(
D([ūi]×KR(ϑ)̂e, ui)

)
, (10)

where ūi = 0.5ui+0.5vi is the midpoint of li, [·]× denotes
the skew-symmetric cross-product matrix, and the distance
of a point u from a line l = [l1, l2, l3]ᵀ is computed as

D(l,u) = lᵀu/
√
l21 + l22. (11)

The perpendicular distances of the end points ui and vi

from the straight line, joining the midpoint ūi and the
vanishing point Kν̂j , are identical [Figure 4]. Thus,
choosing any one of the distances is sufficient, and
D([ūi]×KR(ϑ)̂e, vi) was not included in (10) to sym-
metrize the cost.

4. Rolling Shutter Correction
Section 3 addresses global shutter cameras, but for

rolling shutter images each row is captured with a separate
camera pose (4), thus, line segments become arc segments
in general. Hence, significant RS distortions will lead to
failure in detecting vanishing directions.

4.1. Joint estimation

Through the RS rectification, we aim to have a distortion
free GS image from an input of a single distorted RS image.
The main difference to the objectives given in Section 3 is,
that the image points defining the interpretation plane n̂i
have to be motion compensated. Thus, jointly estimating
RS motion parameters A and orthogonal VDs ϑ using an
algebraic error amounts to minimizing

arg min
ϑ,A

N∑

i=1

min
ê∈E

ρ
(

n̂ᵀ
iR(ϑ)̂e

)
, (12)

where R(ϑ) is the rotation matrix of ϑ = [θ, φ, ψ]ᵀ. The
unit vector n̂i is computed as

n̂i =
(R(ruA)ᵀursi )× (R(rvA)ᵀvrsi )

‖(R(ruA)ᵀursi )× (R(rvA)ᵀvrsi )‖

where ruA and rvA are rotation parameters at the rows of ui
and vi (5); R(ruA) and R(rvA) are the rotation matrices (6)



corresponding to ruA and rvA respectively. The spherical and
geometric errors are given analogously, and we state the ge-
ometric error,

arg min
ϑ,A

N∑

i=1

min
ê∈E

ρ
(
D([ūi]×KR(ϑ)̂e, ui)

)
, (13)

where ūi = 0.5KR(ruA)
ᵀ
ursi + 0.5KR(rvA)

ᵀ
vrsi is the

midpoint and ui = KR(ruA)
ᵀ
ursi is one of the end points

of li in GS coordinates.

4.2. Gauge freedom

Under the motion model (5), we observe that the above
joint estimation can not be solved directly due to the pres-
ence of rotational gauge freedom. For any rotation matrix
Q and some rotation parameters A, the following identities
can be established

n̂ᵀ
iR(ϑ)̂e = n̂ᵀ

iQ
ᵀQR(ϑ)̂e = (Qn̂i)ᵀQR(ϑ)̂e (14)

and, Qn̂i = Q
(R(ruA)ᵀursi )× (R(rvA)ᵀvrsi )

‖(R(ruA)ᵀursi )× (R(rvA)ᵀvrsi )‖

=
(QᵀR(ruA)ᵀursi )× (QᵀR(rvA)ᵀvrsi )

‖(QᵀR(ruA)ᵀursi )× (QᵀR(rvA)ᵀvrsi )‖

=
(R(ruA′)

ᵀursi )× (R(rvA′)
ᵀvrsi )

‖(R(ruA′)
ᵀursi )× (R(rvA′)

ᵀvrsi )‖ (15)

where we utilize the properties of the cross product, and
that rotations preserve the Euclidean norm. A′ is the modi-
fied motion parameters with the initial rotation Q. From the
above identities, it is clear that the algebraic error and the
spherical error have an intrinsic gauge freedom, and hence
the optimal camera motion and VDs are only defined up to
a global rotation freedom. For the algebraic error this is
also easy to see if one has zero error (and the VD therefore
perfectly aligned with the interpretation plane), but demon-
strating gauge freedom for the geometric error in general is
rather involved. The main reason is that the proof is non-
constructive: due to non-linearities the relation between a
rotation applied on all n̂i and the one applied on R(ϑ) is
implicit. We cast the gauge invariance for Geometric error
as a conjecture and provide further discussion in the supple-
mentary material.

The above gauge rotational invariance introduces a
gauge freedom of degree 3. We require fixing this indepen-
dence [23, 34] to remove the ambiguity. We now describe
two options in the following.

Natural choice An obvious choice to fix the Gauge inde-
pendence could be α = β = γ = 0. [27] suggested similar
choices in their formulation. This choice will remove the
3−fold ambiguity in the solution space. Furthermore, un-
der this choice, the rotation r0A becomes 0 at ζ = 0, i.e.,
R(r0A) = I which implies no motion of the RS camera

while capturing the first row. Hence, under this choice of
gauge fixing, the motion parameters (5) become





rx = a1ζ + . . .+ anζ
n

ry = b1ζ + . . .+ bnζ
n

rz = c1ζ + . . .+ cnζ
n.

(16)

We consider polynomials of order n = 2, thus, the number
of parameters is 9 (where |A| = 6 and |ϑ| = 3). Note
that ideally we can fix the global rotation [α, β, γ]ᵀ to any
row. We have tried with fixing it to the zero rotation at the
mid-row of an RS image and obtained very similar results.

Aesthetic choice Another choice is to fix one of the
VDs to be vertical in the rectified image for a visually
pleasant output. The other (orthogonal) VDs are uncon-
strained. Therefore, we allow only in-plane rotation (roll).
i.e., fix α = 0, β = 0 but allow γ to have any value. An
additional constraint has to be incorporated to enforce
one of the VD orthogonal. We set the constraint as the
following lemma.

Lemma 1 Rotating the canonical axis withψ = θφ is anal-
ogous to fixing the vanishing direction ν̂y vertical.

Proof If R(ϑ) is the rotation matrix (6) corresponding to
ϑ = [θ, φ, ψ]ᵀ, then R(ϑ)̂ey = ν̂y . i.e., ν̂y is just the sec-
ond column of the rotation matrix (6). Thus, ν̂y is vertical
if x-component 2θφ− 2ψ becomes zero. i.e., ψ = θφ.

Conversely, if ψ = θφ, the x-component of ν̂y is zero
and hence the VD ν̂y is vertical.

According to Lemma 1, under the aesthetic choice of gauge,
we need to estimate only 2 parameters {θ, φ} for the or-
thogonal VDs which are the canonical rotations along X-
axis and Y -axis and additionally 3n+1 = 7 motion param-
etersA (yielding again 9 parameters in total) for polynomi-
als of order n = 2. In all of our experiments, we employ
the aesthetic choice of fixing the gauge (unless stated other-
wise).

4.3. Implementation

Our method is implemented in MATLAB. We employ
the Levenberg-Marquardt algorithm to optimise (13). The
built-in non-linear optimization routine fmincon is uti-
lized for this task with user supplied Jacobian which is car-
ried out by applying the chain rule. The details of the op-
timization steps along with the derivations of the Jacobian
are described in supplementary material.

Initialization We initialize VDs along the canonical car-
dinal direction and the motion parameters are initialized as
zeros. We have tried with an elegant initialization of the
VDs by adopting a minimal solver [37] for a GS camera
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Figure 5: Joint estimation of the RS camera motion and the
orthogonal VDs: (a) a synthetically generated polynomial
motion (5) and the extracted LSs on the synthetic image,
(b) joint estimation of RS camera motion and the orthogonal
VDs with natural choice of gauge fixing - colors are used to
distinguish the VDs, and (c) joint estimation with aesthetic
choice of gauge fixing.

under the Manhattan world. However, our simple choice of
initialization works well in practice and utilized in all the
experiment.

Robust estimator ρ In this work, we utilize the Huber
M-estimator [16] defined as follows:

ρ(x) =

{
0.5x2 if |x| < δ

δ(|x| − 0.5δ) otherwise.
(17)

The inlier threshold δ for the above M-estimator defines the
maximum deviation attributable to the effect of noise of the
LSs. A LS is considered as an outlier if it does not agree
with any of the VDs within the error threshold δ. Experi-
mentally, we experienced the best choice as δ = 2 pixels.

LS detector We adopt the LS detector lsd [12] in all of
our experiments. In an RS camera, some natural lines in
a 3D scene become arc segments; lsd approximates those
low curvature arcs by multiple short line segments. We tune
a specific set of parameters in the lsd detector for which it
can detect near perfect LSs (arcs with very low curvatures).
In particular, we set the following parameters:

• the gradient angle tolerance in the region growing algo-
rithm = 45◦,

• the density of the aligned points of a rectangle is = 0.5,
• and the minimum of the lengths of the considered line

segments is chosen as 25 pixels.

Image Rectification The corrected image can be obtained
by a forward mapping procedure [10] of the RS pixels into
the global frame (4) under the estimated motion parameters.
The unknown pixels are interpolated linearly. Pixels located
outside of the projected frame are placed as intensity 0.

4.4. Limitations

Our proposed method cannot be applied to every im-
age exhibiting rolling shutter artefacts. As with most other
methods it comes with several limitations:

• The image content should comply to the MWA to some
extent, i.e., two VDs are necessary. However, the major-
ity of the images containing line segments actually sat-
isfy MWA [35]. We further advocate this fact – over-
all 78.2% (43 out of 55) images in the existing RS
datasets [10, 13, 17, 27]1 satisfy MWA, and 93.5% (43
out of 46) of which line segments were present. Our
method, being much faster and accurate than [27], can
certainly be used to rectify those. Again, the images for
which line segments are absent, [27] also fails.

• The depth of the scene is assumed to be sufficiently large
for the translational motion to be insignificant.

• We consider only static images at this point where the
lens distortions were assumed to be negligible.

• Camera motion is assumed to be smooth during the image
exposure period. This is a non-restrictive assumption for
hand-held cameras, but may pose problems with cameras
mounted on vehicles without vibrations dampening.

However, rolling shutter compensation from a single im-
age is an ill-posed problem in general, therefore, all existing
methods need to rely on some prior assumptions. Most lim-
itations above are shared with other works such as [27, 30].

5. Results
We conduct experiments on some synthetic and real im-

ages to verify the effectiveness and efficiency of the pro-
posed RS correction method. In particular, we justify our
claim that the proposed method is able to restore the geom-
etry of the image more accurately. Certainly, direct pixel-
wise measurements (PSNR, etc.) are not good choices to
evaluate the consistency of the geometry. In addition, there
is a global rotational gauge bias in the output. Here we con-
sider rather 3D geometric models [14] to evaluate the base-
lines quantitatively.

5.1. Synthetic Data

Effectiveness of the proposed method In this section,
we perform an experiment on a synthetic data. We
choose an image (P1040850) from the York Urban Im-
age datasets [9] for this experiment. We synthesize an RS

1Images in the paper and in the supplementary material



(a) X-axis only (b) Hmre = 9.78p (c) Hmre = 3.35p

(d) Y -axis only (e) Hmre = 4.90p (f) Hmre = 1.03p

(g) Z-axis only (h) Hmre = 1.04p (i) Hmre = 0.70p

Synthesized Image [27] [Ours]

Figure 6: Comparison of the proposed method with [27]:
(a), (d) and (g) are the synthesized RS images where the mo-
tions are generated only along X-axis, Y -axis and Z-axis
respectively. Images (b), (e) and (h) are the corresponding
results by [27]. Images (c), (f) and (i) are the results by the
proposed method.

image by randomly generating coefficients A of the poly-
nomial motion (5) with mean 0 and std 0.02 where α and
β were fixed as 0. In Figure 5(a), we display the synthe-
sized RS image. lsd detector is applied on the synthetic
RS image and the detected LSs are also displayed. Notice
that most of the straight LSs has now become arc segments
in the synthesized RS image. lsd approximates those low
curvature arcs by several shorter line segments.

First, the proposed joint estimation (13) is employed un-
der the natural choice of gauge fixing. In Figure 5(b), we
display the estimated camera motion, the estimated VDs,
and the restored image with LSs-VDs associations respec-
tively2. In Figure 5(c), we show the results of the joint es-
timation under the aesthetic choice of gauge fixing. In the
later case, non-zero value of γ enables the corrected im-
age to have an inplane rotation. The mean angular error of
the estimated motion (i.e. the average absolute differences
of the rotations ∠(R(rtA), R(rtA′)) for all the rows) were
0.25◦ and 0.18◦ for the natural choice and for the aesthetic
choice of the gauge parameters respectively. Note that γ
was fixed as zero during the computation of the error.

2Similar color scheme as in Figure 1 is utilized throughout.

(a) |RF | = 196.58,
σR = 7.60 [10]

(b) |RF | = 186.44,
σR = 7.31 [27]

(c) |RF | = 212.39,
σR = 8.40 [Ours]

(d) |RF | = 237.27,
σR = 3.49 [13]

(e) |RF | = 229.44,
σR = 6.63 [27]

(f) |RF | = 239.83,
σR = 4.94 [Ours]

Figure 7: Comparison on the image sequences: (a)-(c) Re-
sults on clip03.mov sequence from [10] captured by an
iPhone. (d)-(f) Results on nxs_wobble_6_dual.mov
sequence from [13] captured by Nexus S. A selected image-
pair from each of the sequences is displayed in separate
rows for better qualitative comparison. The inliers-outliers
are displayed only on the second image (bottom row) of the
image pairs along with the mean and std of the number of
inliers. The estimated VDs are also displayed.

Comparison with the baselines In this section, we com-
pare the proposed method with one of the most relevant
baselines [27] on synthesized images where the motions
were generated randomly along the individual axes. The
evaluation metric considered here is the mean reprojection
error Hmre of the original image and the restored image,
upto a global rotational homography[14] (or conjugate ro-
tation) due to gauge freedom. The estimation of the ro-
tation and the computation of Hmre are performed on a
discrete set of point-correspondences. Let {(ûi, û′i) : i ∈
I} is the set of normalized (i.e. premultiplied by K−1)
point-correspondences between the original and restored
image.The rotation R is estimated [5] as follows

[U, S, V ] = svd
(∑

i∈I
ûiû′i

ᵀ
)
, R = V Uᵀ (18)

The Hmre is then computed as the mean of the geomet-
ric error (see Section 4.2.2 of [14]) of the point correspon-



dences w.r.t. the rotational homography H = KRK−1 in
terms of pixel coordinates. The point correspondences are
obtained by detecting a number of SIFT key points [22]
on the pair of images and then matched across the image
pair using VLFeat3 toolbox. Note that the outliers are dis-
carded and 250 best scoring point-correspondences are cho-
sen. TheHmre (in pixels) are displayed in Figure 6. We ob-
serve that the restored image by our proposed method has
smaller reprojection errorsHmre than [27]4.

5.2. Real Data

Comparison with the baselines on video We apply our
proposed method frame-by-frame on image sequences from
the datasets [10]5 and [13]6. The sequences in the former
datasets are more distorted than the latter one. Here, the
evaluation is done on image pairs chosen from the recti-
fied frames of a sequence. Hence, the images in the pair
are related by epipolar geometry, and we estimate the fun-
damental matrix between them for evaluation. The second
dataset does not come with calibration information, and we
estimated the focal length as 0.9 times the maximal image
dimension and the principal point as the image center in
order to apply our approach. The RANSAC procedure was
applied 100 times on each image pair. The inlier thresh-
old is chosen as 0.5 pixels in all the cases. The mean and
the standard deviation of the number of found inliers RF
are reported in Figure 7. Note that [27] and our proposed
method utilize only a single frame for the RS correction;
in contrast, [10, 13] exploit all the images in the sequence
for the rectification. We observe that our method performs
better than the single-image baseline [27] and is equivalent
with multi-image aproaches [10, 13].

Comparison with the hardware solution The proposed
method is also evaluated with the hardware-based solu-
tion [17]7. Note that [17] estimates the camera rotation from
the gyroscope readings. The results are displayed in Figure
8. The method [17] failed to synchronise the gyroscope mo-
tion precisely and restored the chosen image-pairs inaccu-
rately. Although, [27] performs quite well on the selected
image-pairs, the proposed method exhibits even better.

5.3. Runtime comparison

The run-times were computed on an i7 CPU 2.8GHz
(using a single core) with 8Gb ofRAM . On an average, for
a 360× 520 image, it takes around 0.3 second to correct an

3http://www.vlfeat.org/
4The results are supplied by the authors upon request.
5https://www.cvl.isy.liu.se/research/datasets/

rs-dataset/
6http://www.cc.gatech.edu/cpl/projects/

rollingshutter/
7http://users.ece.utexas.edu/~bevans/projects/

dsc/software/rollingShutter/

(a) |RF | = 148.90,
σR = 2.47 [17]

(b) |RF | = 196.44,
σR = 5.23 [27]

(c) |RF | = 208.64,
σR = 5.67 [Ours]

Figure 8: Comparison of the proposed method with [17] and
[27] applied on a video sequence. We display the results
on a image-pair of the sequence in separate rows, where
inliers-outliers are displayed only on the second image.

image, including LS detection (0.05 second) and rectifica-
tion (0.1 second), which is (50− 200)× speed-ups over the
most recent method [27] (requires≈ 45 seconds). Note that
both the methods were implemented in MATLAB. There-
fore, real-time RS correction for videos with our method is
naturally possible by an optimized implementation.

6. Conclusion
We proposed an RS camera motion compensation

method using vanishing directions of the line segments, ex-
tracted from a single view. The geometry in the Manhat-
tan world is exploited for the concurrent estimation of the
vanishing directions and the motion parameters. The pro-
posed method is also the first of its kind to estimate or-
thogonal vanishing directions on an RS image. Extensive
experiments demonstrate the computational efficiency and
the effectiveness of the proposed approach. Furthermore,
our approach is much faster than the existing methods and
likely to be accelerated to operate in real time. Further, we
argued that the majority of the images of urban areas actu-
ally satisfy the MWA, thus, can be corrected by more effi-
cient proposed method.

During the RS compensation of a video, individual
frames were corrected separately. However, tracking the
vanishing directions over the frames while compensating
the RS effect can improve the performance and hence there
lies a potential future extension.
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