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Abstract: Downsized spark ignition engines have the benefit of high thermal efficiency; however, severe 12 

engine knock is a challenge. Ethanol, a renewable gasoline alternative, has a much higher octane rating and 13 

heat of vaporization than conventional gasoline, therefore, ethanol fuels are one of the options to prevent 14 

knock in downsized engines. However, the performance of ethanol blends in modern downsized engines, 15 

and the contributions of the research octane number (RON), octane sensitivity (defined as RON-MON) and 16 

charge cooling to suppressing engine knock are not fully understood. In this study, eight fuels were designed 17 

and tested, including four splash blended ethanol fuels (10 vol.%, 20 vol.%, 30 vol.% and 85 vol.% ethanol, 18 

referred to as E10, E20, E30 and E85), one match blended fuel (E0-MB) with no ethanol content but the 19 

same octane rating as E30, and three fuels (F1-F3) with different combinations of RON and octane 20 

sensitivity. The experiments were conducted in a single-cylinder direct-injection spark ignition (DISI) 21 

research engine. Load and spark timing sweep tests at 1800 rpm were carried out for E10-E85 to assess the 22 

combustion performance of these ethanol blends. In order to investigate the impact of charge cooling on 23 

combustion characteristics, the results of the load sweep for E0-MB were compared to those of E30. Load 24 

sweep tests were also carried out for F1-F3 to understand the impacts of RON and octane sensitivity on 25 

suppressing engine knock. The results showed that at the knock-limited engine loads, splash blended 26 

ethanol fuels with a higher ethanol percentage enabled higher engine thermal efficiency through allowing 27 

more advanced combustion phasing and less fuel enrichment for limiting the exhaust gas temperature under 28 

the upper limit of 850 °C, which was due to the synergic effects of higher RON and octane sensitivity, as 29 

well as better charge cooling. In comparison with octane sensitivity, RON was a more significant factor in 30 
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improving engine thermal efficiency. Charge cooling reduced engine knock tendency through lowering the 31 

unburned gas temperature. 32 

 33 

Keywords: Ethanol; Direct Injection; Knocking; Charge Cooling; Octane Sensitivity 34 

 35 

1. INTRODUCTION 36 

The transportation sector is facing pressures of increased light duty mobility demand and more stringent 37 

regulations on greenhouse gas emissions [1]. Even though hybrid and electric vehicles are gaining 38 

significant popularity, conventional vehicles powered by internal combustion engines will still be the main 39 

power source for light duty transportation. Therefore, all CO2 reduction techniques, including improving 40 

the efficiency of internal combustion engines, are highly relevant in the coming years. 41 

A downsized gasoline engine is one of the proven technologies that improves engine thermal efficiency 42 

and thus reduces automotive fleet CO2 emissions, by as much as 25% [2]. Downsized engines equipped 43 

with turbo- or super-chargers operate at higher engine loads to deliver the same power outputs as larger 44 

engines, thus, downsized engines lead to lower pumping losses and higher efficiency at part load operating 45 

conditions.  46 

Baêta et al. [2] performed experiments on a 1.4 L downsized turbocharged engine, of which the combustion 47 

system, exhaust system and turbocharger were optimized. The 1.4 L downsized turbocharged engine had 48 

the same peak torque and power output as a 2.4 L NA-engine, but it produced a higher brake thermal 49 

efficiency. The comparative vehicle tests which were conducted using the FTP 75-cycle with pure ethanol 50 

fuel led to an 18% overall fuel consumption improvement. Judez and Sjöberg [3] investigated the 51 

downsizing possibilities of the range extender (RE) of a vehicle by making use of predictive information 52 

of the user’s throttle inputs and by using a blended discharging strategy. They found that for the realistic 53 

studied example, the RE can be downsized by 30% without any performance degradation. In downsized 54 

engines, there is a trade-off between the CO2 reduction and vehicle drive-ability. Bassett et al. [4] solved 55 
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the drive-ability issue by adding a 48 volt eSupercharger to a downsized 1.2 L 3-cylinder MAHLE engine.  56 

In comparison to the original downsized MAHLE engine, the new downsized engine had a faster transient 57 

response and better drive-ability characteristics, clearly demonstrating eSupercharging as a key technology 58 

for enabling further engine downsizing. 59 

However, despite the proven advantages of downsized engines, engine knock, caused by the auto-ignition 60 

of the end gas, is one of the main challenges that stop downsized engines from achieving their full potential 61 

[5]. High octane rating fuels are one of the key solutions for suppressing engine knock [5, 6]. Ethanol, a 62 

widely used renewable gasoline alternative, has a much higher octane rating than conventional gasoline 63 

fuel. Splash blending ethanol into gasoline improves the octane rating of the resulting fuel mixture [7-10]. 64 

For example, Stein et al. [9] found that adding 10 vol.% and 20 vol.% ethanol into a RON 82 base gasoline 65 

led to 7 and 13 unit improvements of RON, respectively. The octane boost effect produced by ethanol 66 

addition is more significant for base gasoline with a lower octane rating. Additionally, ethanol has a much 67 

higher heat of vaporization (HOV) than gasoline, which offers an additional benefit of improved charge 68 

cooling when it is used in direct injection (DI) engines. Based on a study of the compression ratio (CR) 69 

distribution of engines models sold in the North American market in 2013 [11], it was found that DI engines 70 

have approximately 1 unit higher CR than PFI engines. The increase of CR in DI engines is mainly due to 71 

the cooling effect. 72 

There are many researchers who have studied splash blended ethanol fuels in spark ignition engines and 73 

achieved promising results. For example, Jung et al. [12] studied E10, E20, and E30 fuels in a Ford 3.5 L 74 

EcoBoost DI turbocharged engine with compression ratios (CR) of 10.0:1 and 11.9:1. It was found that a 75 

10 vol.% increase of ethanol in the blends enabled a 2 unit increase of CR without changing the knock 76 

limited combustion phase. The higher ethanol content required less fuel enrichment at high engine speeds 77 

and loads. In comparison with E10 at CR 10:1, E30 at CR 11.9:1 achieved a 7.5% CO2 emission reduction 78 

when the engine was operated on the US06 Highway cycle, whilst volumetric fuel economy was 79 

approximately the same. Schwaderlapp et al. [13] investigated gasoline, match blended E20, and splash 80 
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blended E20 in a boosted DISI engine under full load conditions.  The match blended E20 with the same 81 

RON as gasoline did not allow an increase in CR, whereas the splash blended E20 enabled a 2.2 unit 82 

increase of CR. At full engine load, due to the higher CR and the reduced fuel enrichment, the engine 83 

thermal efficiency achieved when using splash blended E20 was improved by up to 39% compared with 84 

that achieved when gasoline was used. The potential for CO2 reduction by using ethanol blends was 85 

investigated using the New European Driving Cycle (NEDC) cycle over various vehicle classes ranging 86 

from mid-sized passenger cars to sport utility vehicles [13]. When the optimised CR was applied to the 87 

engine, CO2 emission reductions were in the range of 3.9-4.9% for E20 in comparison with gasoline, 88 

depending on the vehicle type. 89 

Apart from its high octane rating and high charge cooling effect, ethanol has a high octane sensitivity, which 90 

may play an important role in suppressing engine knock. The octane sensitivity is defined as the difference 91 

between the research octane number (RON) and motor octane number (MON), both of which are measured 92 

in cooperative fuel research (CFR) engines designed 90 years ago [14-16]. However, modern spark ignition 93 

engines, especially turbo-charged downsized engines, tend to operate at relatively lower temperatures than 94 

CFR engines, if the comparison is made with the same intake manifold pressure. This is because of the use 95 

of advanced technologies such as charge intercoolers, cooled exhaust gas recirculation (EGR) and DI [17]. 96 

The RON test may partially capture ethanol’s charge cooling effect, which is absent in the MON test [18]. 97 

To compensate for the disconnection between the CFR engine and modern engines, an octane index (OI) 98 

was proposed as: OI=RON+K*(RON-MON) [19]. K is a scaling factor depending solely on the in-cylinder 99 

thermal and pressure history experienced by the end-gas prior to the onset of auto-ignition. The literature 100 

shows that, for some engine types at some operating conditions, a fuel with a high octane sensitivity is 101 

beneficial to reduce engine knock tendency [19-23]. For example, Remmert et al. [23] tested seven RON 102 

and MON de-correlated fuels in a prototype “Ultraboost” engine under high boost conditions, and they 103 

found that the K value tended to be negative at boosted conditions; therefore, a high octane sensitivity fuel 104 

was beneficial. Kalghatgi [24] studied 37 spark ignition engines ranging from naturally aspirated to turbo-105 
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charged, and 1.2 to 2.4 L. It was found that under high load conditions, some engines experienced less 106 

knocking when high octane sensitivity fuels were used.  107 

Currently, ethanol is largely used in low percentage blend forms such as E5 or E10. Higher octane splash 108 

blended ethanol fuels beyond E10 are expected to give better performance in downsized engines, however, 109 

their performance in modern downsized DISI engines, and the contributions of RON, octane sensitivity and 110 

charge cooling to combustion are not fully understood. In this study, eight fuels were designed and tested, 111 

including four splash blended ethanol (10 vol.%, 20 vol.%, 30 vol.% and 85 vol.% ethanol, noted as E10, 112 

E20, E30 and E85), one match blended fuel (E0-MB) with zero ethanol content but the same octane rating 113 

with those of E30, and three fuels (F1-F3) with different combinations of RON and octane sensitivity. The 114 

experiments were conducted in a single-cylinder DISI research engine. Load and spark timing sweep tests 115 

with an engine speed of 1800 rpm, and full load tests were carried out for E10-E85 to assess the combustion 116 

performance of ethanol blends. In order to investigate the effect of charge cooling, the load sweep was 117 

conducted for E0-MB, and the results were compared to those of E30. Load sweep tests were also carried 118 

out for F1-F3, to understand the impacts of RON and octane sensitivity on engine combustion. 119 

 120 

2. EXPERIMENTAL SYSTEMS AND METHODS 121 

2.1. ENGINE AND INSTRUMENTATION 122 

Experiments were conducted in an AVL single-cylinder 4-stroke DISI research engine with 82 mm bore 123 

and 86 mm stroke, the setup of which is presented in Figure 1. Its combustion system features a 4-valve 124 

pent roof cylinder head equipped with variable valve timing (VVT) systems for both intake and exhaust 125 

valves. The cylinder head is equipped with a central-mounted outward opening piezo direct injector. The 126 

spark plug is located at the centre of the combustion chamber slightly tilting towards the exhaust side. 127 

The engine is coupled to an electric dynamometer, which is able to control the engine at a constant speed 128 

(±1 rpm) regardless of the engine power output. The engine is controlled via an IAV FI2RE management 129 

system. An AVL Indicom system is used for real time combustion indication and analysis. A Siemens CATs 130 
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system is used for signal acquisition and recording, and it communicates with the IAV FI2RE and the AVL 131 

Indicom systems. The Siemens CATs system is also used for controlling air, fuel, coolant and oil 132 

conditioning units, and the emission measurement equipment. 133 

A Kistler pressure transducer is used for the in-cylinder pressure measurement, and it is installed in a sleeve 134 

between the intake and exhaust valves. The in-cylinder pressure is collected via a charge amplifier (ETAS 135 

ES630.1) with a resolution of 0.1 crank angles (°CA) between -30°CA and 70°CA after top dead centre 136 

(ATDC), and a resolution of 1°CA at other crank angles. Some key temperature and pressure measurement 137 

locations labelled as ‘T’ and ‘P’ in Figure 1.  138 

The engine intake system is connected to an external air handling device, capable of delivering up to 3 bar 139 

of boosted air. Air is first filtered and dried, before it is delivered to a conditioning unit. The capacity of 140 

this air conditioning unit is approximately 200 L, in which air pressure and temperature are precisely 141 

controlled using a closed-loop control system. Temperatures of fuel, coolant and oil are controlled by 142 

individual AVL conditioning systems.  Fuel consumption is measured by an AVL fuel mass flow meter.  143 

 144 

2.2. FUEL PROPERTIES 145 

Table 1 lists the properties of the fuels in this study. There are three groups of fuels in the fuel matrix. 146 

Group 1 includes E10-E85, which is for the study of engine performance of splash blended ethanol blends. 147 

E10 is a standard EN228 compliant gasoline fuel with a 10 vol.% ethanol content. E20, E30 and E85 were 148 

splash blended fuels produced by adding more ethanol into E10.  Group 2 includes E0-MB and E30. E0-149 

MB had no ethanol content, but it had the same RON and MON as E30. By comparing the engine 150 

performance of E0-MB and E30, it is possible to assess the charge cooling effect. Group 3 includes F1-F3. 151 

F1 and F2 have similar octane sensitivities but 5.6 units difference in RON, and F2 and F3 have similar 152 

RON but 5.5 units difference in octane sensitivity. Therefore, by comparing F1 and F2, and F2 and F3, it 153 

is possible to investigate the effect of RON and octane sensitivity on the engine combustion, respectively. 154 

  155 
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2.3. EXPERIMENTAL PROCEDURE 156 

Table 2 lists the test matrix. For E10-E85, engine load and spark timing sweep, and full load performance 157 

tests were conducted for assessing the engine performance of splash blended ethanol fuels. In order to 158 

investigate the effect of charge cooling, RON and octane sensitivity, engine load sweep tests were 159 

conducted for E0-MB and F1-F3. 160 

The load sweep was carried out by sweeping the intake manifold pressure from 0.65 to 2 bar at a constant 161 

engine speed of 1800 rpm. The spark timing sweep was conducted by sweeping the spark timing from 162 

KLSA-2 to KLSA+6 at a constant engine speed of 1800 rpm and a constant 1.6 bar intake manifold pressure. 163 

KLSA stands for knock limited spark advance. The engine full load was defined by IMEPs of 15 bar at 164 

1000 rpm, 20 bar at 1800 rpm, 22 bar at 2500 rpm, 21 bar at 3500 rpm, and 20 bar at 3500 rpm. 165 

For each fuel at a certain engine operating condition, if the engine was not knock-limited, spark timing was 166 

adjusted by aiming the combustion centre (MFB50) at 7.5±0.5 °aTDC, which was an approximation of the 167 

maximum brake torque (MBT) spark timing. The term ‘MFB50’ stands for the crank angle position where 168 

50% mass fraction of the fuel has been burned. For the remainder of this paper, ‘MFB50’ and ‘combustion 169 

centre’ are used interchangeably. 170 

When engine knock occurred, the spark timing was retarded to limit the knock intensity under the maximum 171 

tolerated intensity in order to avoid potential engine damage. In this case, spark timing is referred to as the 172 

KLSA. The same intake and exhaust valve timing, and the same injection timing maps were used for all 173 

fuels; more detailed information can be found in Appendix Table A1 and Table A2.  174 

Table 3 lists some key engine boundary conditions. The knock intensity was defined as the maximum 175 

amplitude of in-cylinder pressure oscillation, which was obtained by filtering and rectifying the raw in-176 

cylinder pressure data using a brand-pass filter (3-30 kHz). Since the knock intensity changes significantly 177 

cycle-to-cycle, especially when engine knock occurs, in this study the mean peak knock intensity (MPKI) 178 

over 50 cycles was used as a practical indicator for knocking assessment. KLSA was determined using the 179 

MPKI listed in Table 3.  180 
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Appendix Table A3 provides some brief summary of the measurement uncertainties of key instrument. 181 

 182 

3. RESULTS AND DISCUSSION 183 

The results and discussion has been split into two sections. In the first section, the effect of splashed blended 184 

ethanol fuels on the engine performance is presented. The benefits of using splash blended ethanol fuels in 185 

GDI engines are related to the high charge cooling effect, high RON and high octane sensitivity of ethanol, 186 

therefore, in the second section, the effect of charge cooling, and the effect of RON and octane sensitivity, 187 

are presented in order to understand their individual contribution to the engine combustion. 188 

 189 

3.1. SPLASH BLENDED ETHANOL FUELS 190 

Figure 2 shows the results of the engine load sweep for splash blended ethanol fuels (E10-E85) at the engine 191 

speed of 1800 rpm. Seven main combustion indicators, including the engine indicated thermal efficiency, 192 

ignition timing, combustion centre, MFB5-50, coefficient of variation (COV) of IMEP, peak in-cylinder 193 

pressure, and exhaust gas temperature, were selected to illustrate the combustion characteristics of various 194 

ethanol blends. Indicated specific fuel consumption results are also presented in Figure 2. 195 

The spark timing was adjusted by aiming the combustion centre at 7.5±0.5 °aTDC if the engine was not 196 

knock-limited. At low load (< 8 bar IMEP), the spark timings for all fuels were similar, whilst differences 197 

became clearer when loads higher than 12 bar IMEP were used, with higher percentage ethanol blends 198 

allowing more advanced spark timings. The onset knock-limited IMEP is approximately 8 bar for E10 and 199 

E20, 12 bar for E30, and 16 bar for E85. At 6 bar IMEP, all fuels regardless of the ethanol content had 200 

limited differences in all combustion indicators, largely because the engine was not limited by knocking, 201 

and thus the combustion phasing was optimized for each fuel. The engine thermal efficiency became 202 

differentiated as the engine was operated at knock-limited load: higher percentage ethanol blends achieved 203 

better engine indicated thermal efficiency (defined by the ratio of indicated work produced in a complete 204 

cycle and fuel energy per cycle) compared to E10. For example, in comparison with E10, E85 achieved an 205 



9 

 

approximate improvement of up to 12% in the engine indicated thermal efficiency at the IMEP ranging 206 

from 15 to 20 bar.  207 

The early combustion duration, defined as the duration between 5-50% mass fraction burned (MFB5-50), 208 

is used to quantify the burn duration. It can be seen that higher percentage ethanol blends had shorter MFB5-209 

50, especially at knock-limited load. MFB5-50 is presented because MFB50 was used in this study to locate 210 

the combustion centre. The MFB50 is a more reliable point to extract from the in-cylinder pressure data 211 

than MFB90 or MFB95, which were in a generally flat area of the MFB curve and as such are more 212 

susceptible to noise and cycle to cycle variation [25]. As the engine was operated at knock-limited load, 213 

faster combustion (shorter combustion duration) led to more combustion energy being transferred into 214 

effective work on the piston. The reason for the shorter combustion durations for higher percentage ethanol 215 

blends is because of 1) more advanced spark timing, and 2) faster laminar flame speed of ethanol compared 216 

to that of gasoline. The relevance of this increase in laminar flame speed to combustion in an internal 217 

combustion engine is also related to other factors, such as the mixture turbulence and the influence of the 218 

gas temperature [25].  219 

The COV of IMEP shows the cyclic variability in indicated work per cycle. The calculation of COV of 220 

IMEP is: COV (IMEP) = σ (IMEP) /µ (IMEP), where σ (IMEP) is the standard deviation of IMEP, and µ 221 

(IMEP) is the averaged IMEP in the measured cycles. Higher ethanol blends contributed to improved 222 

combustion stability, indicated by the lower COV of IMEP, especially at high load. An advanced 223 

combustion phase and shorter combustion duration both result in higher peak in-cylinder pressure. As more 224 

chemical energy released by fuel combustion was converted to effective work on the piston, the exhaust 225 

gas temperature decreased with ethanol content, especially at high load, contributing to improved engine 226 

thermal efficiency.  227 

错误!未找到引用源。Compared with E10, E85 led to approximately a 40% higher mass-based indicated 228 

specific fuel consumption (ISFC) at knock-free load due to its low calorific value, and the difference was 229 

reduced to 26% at the highest load, resulting from improved indicated thermal efficiency. Similarly, E20 230 
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and E30 had higher ISFC than E10 at knock-free load. As the engine load increased, the difference started 231 

to reduce or even become completely offset. Because of the higher density of ethanol than gasoline, the 232 

differences between E10 and other higher ethanol blends in volume-based ISFC could be less than these 233 

observed when considering mass-based ISFC. 234 

Figure 3 shows the IMEP of splash blended ethanol fuels at various engine intake manifold pressures. It 235 

was observed that higher percentage ethanol blends achieved higher engine loads. Because the engine load 236 

sweep was conducted by sweeping the intake manifold pressure, it is possible to obtain IMEP data at various 237 

intake manifold pressures by interpolating the relevant data. Therefore, the IMEP results presented in Figure 238 

3 are directly linked to the results of the combustion characteristics presented in Figure 2. It was found that 239 

higher ethanol blends achieved higher engine loads. E85 achieved 0.3 bar (3%) and 2.5 bar (14%) higher 240 

IMEP compared to E10 at 1 bar and 2 bar intake manifold pressures, respectively. This is due to more 241 

advanced spark timings, shorter combustion durations, and less exhaust energy losses of the E85 242 

combustion compared to E10. At intake manifold pressures higher than 1.6 bar, the increase of the engine 243 

power output for E10-E30 was almost linear with ethanol content, however, as ethanol content was 244 

increased further to 85 vol.% (E85), the rate of increase in engine power output was reduced. This can be 245 

explained by the octane increase rate with various ethanol additions. The RON of E10, E20, E30 and E85 246 

are 96.5, 99, 101.4 and 107.2, respectively. Therefore, the octane increase rate for E10-E30 is approximately 247 

2.5 units of octane for every 10 vol.% ethanol, however, this rate was reduced to 1.1 units of octane per 10 248 

vol.% ethanol when the ethanol content was increased from 30 vol.% to 85 vol.%. The non-linear increase 249 

of octane rating with ethanol content is a result of the synergistic effect of ethanol  with alkanes in 250 

suppressing low temperature heat release. It may also be due to the RON measurement method in which 251 

the charge cooling of ethanol affects the rating [18]. 252 

Figure 4 presents the results of the spark timing sweep for splash blended ethanol fuels at 1800 rpm and 253 

1.6 bar intake manifold pressure. At this condition, the IMEP was approximately 16 bar; the actual precise 254 

value depended on the spark timing.  At this intake manifold pressure, the engine was knock limited for all 255 
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fuels. The KLSA was 1.4 ºCA for E10, -2 ºCA for E20, -5.7 ºCA for E30, and -11.0 ºCA for E85. For each 256 

fuel, the spark timing was swept in the range of KLSA-2 to KLSA+6. In the x axis of Figure 4, spark retard 257 

(spark-KLSA) represents the number of crank angle degrees that the spark timing is retarded from the 258 

KLSA of each fuel. A positive spark retard means that the spark timing is delayed from KLSA, and a 259 

negative spark retard means that spark timing is advanced from the KLSA. 260 

The indicated thermal efficiency and IMEP shown in Figure 4 are normalized from those at the KLSA of 261 

each fuel. The normalization was done for each fuel by dividing the indicated thermal efficiency or IMEP 262 

at one spark timing by that at the KLSA. The normalization of these two parameters enabled a direct 263 

comparison of their responses/sensitivities to spark timing. It is clear that the sensitivities of indicated 264 

efficiency and IMEP to spark retard were fuel dependent. E10 was more sensitive to spark retard than other 265 

higher percentage ethanol blends. For a 2% reduction of IMEP, E10, E20, E30 and E85 allowed 1.5, 2.1, 3 266 

and 5°CA spark retards, respectively. The combustion centre retard showed in Figure 4 was linear to spark 267 

retard for all fuels. The rate of combustion centre retard was fuel dependent, which were 1.8, 1.6, 1.4 and 268 

1.2°CA per degree of spark retard for E10, E20, E30 and E85, respectively. The higher rate of combustion 269 

centre retard matched with the higher reduction rate of engine indicated thermal efficiency. 270 

The mean peak knock intensity shown in Figure 4 indicated that for E10-E30, spark retards reduced the 271 

knock intensity, and spark timing advances from KLSA significantly increased the knock intensity, 272 

especially for E10 and E20. For E85, a low knock intensity was maintained and it was less sensitive to 273 

spark retard, showing that the CR of the engine fuelled with E85 can be further increased from 11:5:1 to 274 

improvie engine thermal efficiency.  275 

Figure 5 shows the full load results for splash blended ethanol fuels. The full load power outputs for all 276 

fuels were kept the same, as indicated by the IMEP data. The indicated thermal efficiency orders for all 277 

fuels were: E85>E30>E20>E10. Compared to E10, E20 led to 2.8-7% higher indicated thermal efficiency 278 

at full load, depending on the engine speed, whist the improvement for E85 was in the range of 8.3-27%. 279 

 280 
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High percentage ethanol blends led to higher engine thermal efficiency due to the more advanced phase of 281 

the combustion centre, less fuel enrichment requirement and lower exhaust gas temperature. The exhaust 282 

temperature increased with engine speed due to less heat transfer. Advancing the spark timing reduces the 283 

exhaust gas temperature because the end of combustion is advanced, and more heat energy is converted 284 

into effective work on the engine piston. This explains why between 1000 and 2500 rpm engine speed, high 285 

percentage ethanol blends had lower exhaust gas temperatures. However, advancing the spark timing was 286 

restricted by engine knock. When the exhaust gas temperature exceeded the upper limit of 850°C, fuel 287 

enrichment was used. For E85, no fuel enrichment was required at any tested engine speed, whilst E10 288 

needed fuel enrichment from 2500 rpm engine speed. 289 

 290 

3.2. EFFECTS OF RON, OCTANE SENSITIVITY AND CHARGE COOLING 291 

Figure 6 shows the results of the effects of RON and octane sensitivity on engine combustion. It is 292 

noteworthy that F1-F3 all contained 10 vol.% of ethanol, and their heats of vaporization were similar (see 293 

Table 1), therefore, the charge cooling effects of F1-F3 were similar. F2 had almost the same octane 294 

sensitivity as F1, but 5.6 units higher RON, therefore, by comparing the results from F1 and F2, it is possible 295 

to understand the effect of the 5.6 units difference of RON on engine combustion. From Figure 6, it is clear 296 

that at knock-limited engine load, F2 resulted in higher engine thermal efficiency, a more advanced 297 

combustion phasing, shorter combustion duration, higher in-cylinder pressure, and lower exhaust 298 

temperature. The maximum knock-free IMEP for F2 was 9.5 bar, which was approximately 3 bar higher 299 

than that of F1. Due to engine knock and pre-ignition, F1 was only tested up to 1.7 bar intake manifold 300 

pressure, whilst F2 was tested up to 2 bar intake manifold pressure. The engine knock intensity was 301 

monitored in real-time using the AVL Indicom Combustion Analyser. The knock intensity is defined as the 302 

maximum amplitude of in-cylinder pressure oscillation, which was obtained by filtering and rectifying the 303 

raw in-cylinder pressure data using a brand-pass filter (3-30 kHz). The definition of a pre-ignition is when  304 

auto-ignition of the fuel/air mixture happens before the spark timing, resulting in significant engine knock 305 
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and very high in-cylinder pressures. The pre-ignition can be observed from the pressure trace displayed in 306 

the AVL Indicom Combustion Analyser. 307 

 308 

The maximum IMEP for F2 was 3.5 bar higher than that for F1, due to the higher intake manifold pressure 309 

and more advanced combustion centre. F2 also had a lower COV of IMEP at high engine load, resulting 310 

from the less retarded combustion phasing. 311 

F3 had almost the same RON as F2, but 5.5 units higher octane sensitivity, therefore, by comparing results 312 

from F2 and F3, it is possible to understand the effect of 5.5 units of octane sensitivity on engine 313 

combustion. It can be seen from Figure 6 that high octane sensitivity led to improved combustion, however, 314 

its impact was much less significant than RON. F3 did not allow a higher knock-free IMEP than F2, whist 315 

F2 led to a 3 bar higher knock-free IMEP. The maximum IMEP difference between F2 and F3 was 1.5 bar; 316 

considerably less than the 3.5 bar difference between F1 and F2. Similar evidence can also be found in the 317 

COV of IMEP, peak in-cylinder pressure and exhaust gas temperature. In addition, from Table 1 it can be 318 

seen that the increase in octane sensitivity by splash blending ethanol into E10 is less than the increase in 319 

RON. Therefore, it can be expected that, RON would contribute more to the anti-knock quality than the 320 

octane sensitivity for E10-E85. 321 

In order to study the effect of charge cooling on engine combustion, E0-MB with no ethanol content but 322 

the same RON and MON as those of E30 was designed and tested. In DISI engines, apart from the octane 323 

rating of fuels, the charge cooling effect is an important contributor to suppressing engine knock. The 324 

charge cooling effect is related to the heat of vaporization; the fuel spray/droplet vaporizes after a direct 325 

injection event by absorbing heat from the compressed air within the cylinder, which reduces the in-cylinder 326 

charge temperature in proportion to the heat of vaporization of the fuel. As a result, compared to port fuel 327 

injection (PFI) engines where fuel spray is vaporized partially by absorbing heat from hot intake valves, DI 328 

engines are usually more knock resistant. Leone et al. [7] suggested that on average, DI engines had 1 unit 329 

higher CR than those of PFI engines. 330 



14 

 

The heat of vaporization of E30 and E0-MB are 551 and 365 kJ/kg, respectively. Due to the existence of 331 

30 vol.% ethanol in E30, the lower calorific value of E30 (38.42 MJ/kg) was 8.7% lower than that of E0-332 

MB (42.05 MJ/kg), therefore, a higher quantity of E30 was needed for the same amount of energy input 333 

than E0-MB. The collective effects of higher heat of vaporization and reduced lower calorific value resulted 334 

in E30 requiring approximately 65% more heat for vaporization at the same engine load than E0-MB. 335 

Figure 7 shows the effect of charge cooling by comparing results from E0-MB and E30. From the indicated 336 

thermal efficiency results, it is clear that E30 was preferred at high load (>15 bar IMEP) where the engine 337 

was knock-limited. The more advanced spark timing and combustion centre, shorter combustion duration, 338 

and higher in-cylinder temperature provides strong evidence that charge cooling contributed to suppressing 339 

engine knock, even though the ethanol content was as low as 30 vol.%. In addition, E30 showed higher 340 

combustion stability, as indicated by a lower COV of IMEP. The higher engine thermal efficiency of E30 341 

was also reflected in the lower exhaust gas temperature compared to that of E0-MB. The maximum IMEP 342 

of E30 was approximately 1.1 bar higher than that of E0-MB, resulting from the charging cooling effect. 343 

Apart from the cooling effect, the faster burning rate of ethanol is also the reason for the better combustion 344 

phasing of E30 in comparison with E0 [25]. 345 

Figure 8 shows the in-cylinder pressure and unburned zone temperature of E0-MB and E30 at 1800 rpm 346 

engine speed and 2 bar intake manifold pressure. For E30, the in-cylinder pressure rise due to combustion 347 

was more advanced than that for E0-MB, resulting from the more advanced spark timing. The peak pressure 348 

of E30 was approximately 10 bar higher than that of E0-MB. The unburned zone temperature was calculated 349 

by the AVL Concerto software. It showed that due to charge cooling, the unburned gas temperature at top 350 

dead centre (TDC) was approximately 50 K lower for E30 than that for E0-MB. The cooler unburned gas 351 

led to a longer ignition delay, therefore, E30 allowed for a 1.8°CA more advanced spark timing at this 352 

engine operating condition. 353 

 354 

4. CONCLUSIONS  355 
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In this study, eight fuels were designed and tested, including four with splash blended ethanol (E10-E85), 356 

one match blended fuel (E0-MB) with zero ethanol content but the same RON and MON as those of E30, 357 

and three fuels (F1-F3) with different combinations of RON and octane sensitivity. The experiments were 358 

conducted in a single-cylinder DISI research engine. The following are conclusions drawn from the results 359 

and discussion. 360 

1. Splash blended ethanol has better anti-knock properties than base gasoline, enabling a larger knock-361 

free engine load range and more advanced combustion phasing when the engine is knock-limited. Other 362 

combustion parameters such as combustion duration, peak pressure and exhaust temperature agreed with 363 

the finding that higher ethanol blends led to better engine indicated thermal efficiency, especially at high 364 

and full load operating conditions. Compared to E10, E20 led to 2.8-7% higher indicated thermal efficiency 365 

at the full load, depending on the engine speed, whist the improvements for E85 were in the range of 8.3-366 

27%. 367 

 368 

2. Compared to E10, at knock-limited engine load, the combustion of higher percentage ethanol blends 369 

were less sensitive to spark timing retard, resulting in less negative impacts on IMEP and indicated thermal 370 

efficiency. At 1.6 bar intake pressure, advances in spark timing from KLSA caused a more severe knock 371 

intensity rise for E10 than for other higher percentage ethanol blends.  372 

3. For E30, at knock limited operating conditions, the positive effect of charging cooling was reflected 373 

in the more advanced combustion phasing, higher engine thermal efficiency, and lower unburned gas 374 

temperature at TDC. The high heat of vaporization and low stoichiometric air/fuel ratio of ethanol blends 375 

both contributed to a better charge cooling effect. In addition, the faster burning rate of ethanol also 376 

contributed to this.  377 

4. High RON and high octane sensitivity both contributed to improve the fuel’s anti-knock quality, 378 

with the impact of RON being more significant than that of octane sensitivity. For ethanol blends, most of 379 

the anti-knock quality improvement was from the RON improvement.  380 
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Definitions, Acronyms and Abbreviations 387 
 388 

AFR  Air Fuel Ratio 389 

ATDC After Top Dead Centre 390 

BTDC Before Top Dead Centre 391 

°CA  Crank Angle 392 

CAD  Crank Angle Degree 393 

CFR   Cooperative Fuel Research 394 

CR  Compression Ratio 395 

COV  Coefficient of Variation 396 

DI  Direct Injection 397 

DISI  Direct Injection Spark Ignition 398 

EGR  Exhaust Gas Recirculation 399 

HOV Heat of Vaporization 400 

KLSA Knock Limited Spark Advance 401 

LHV  Lower Heating Value 402 

IMEP Indicated Mean Effective Pressure 403 

ISFC  Indicated Specific Fuel Consumption 404 

MFB  Mass Fraction Burned 405 

MPKI  Mean Peak Knock Intensity 406 

MON  Motor Octane Number 407 

NEDC New European Driving Cycle 408 

OI  Octane Index 409 

PFI  Port Fuel Injection 410 

RPM  Revolutions Per Minute 411 

RON  Research Octane Number 412 

SI  Spark Ignition 413 

TDC  Top Dead Centre 414 

VOL.% Volumetric Percentage 415 

VVT  Variable Valve Timing  416 
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 431 

Figure 1: Engine setup 432 
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 435 

Figure 2: Results of engine load sweep for splash blended ethanol fuels 436 

 437 

 438 

Figure 3: Engine load for splash blended ethanol fuels at various intake manifold pressures 439 
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 441 

Figure 4: Results of spark timing sweep for splash blended ethanol fuels (Note: for E85, the knock 442 

intensity was below the maximum limit in all the tested spark timing, therefore, the optimised spark 443 

timing for E85 was MBT, instead of KLSA for other fuels) 444 
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  446 

Figure 5: Full load results for splash blended ethanol fuels 447 

 448 
Figure 6: Results for RON and octane sensitivity effect 449 

 450 
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 452 
Figure 7: Results for charge cooling effect 453 

 454 

 455 

Figure 8: In-cylinder pressure and unburned zone temperature (calculated by AVL Concerto) of E0-456 

MB and E30 at 1800 rpm engine speed and 2 bar intake manifold pressure 457 
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Table 1: Fuel properties* 465 

  E10 E20 E30 E85 E0-MB F1 F2 F3 

Ethanol vol.% 10 20 30 85 0 10 10 10 

RON - 96.5 99.0 101.4 107.2 100.3 92.5 98.1 98.2 

MON - 85.2 87.2 88.4 89.0 88.5 87.7 92.2 87.8 

Octane sensitivity - 11.3 11.8 13.0 18.2 11.8 4.8 5.9 10.4 

HOV kJ/kg_fuel 427.7 490.3 551.3 864.3 365.5 402.9 394.5 423.5 

HOV** kJ/kg_mixture 28.7 34.2 40.2 81.5 24.2 26.86 25.9 28.8 

Oxygen Content wt .% 3.7 7.5 11.2 30.6 2.2 3.92 4.0 4.5 

Lower Calorific 

Value 

MJ/kg 41.6 40.1 38.4 29.6 42.1 42.6 43.0 41.6 

MJ/L 30.8 30.0 28.9 23.3 31.5 30.6 30.1 30.3 

Stoichiometric AFR - 13.9 13.3 12.7 9.6 14.1 14.0 14.2 13.7 

Density kg/m3 741.7 747.2 752.9 785.8 748.4 718.0 698.6 730.0 

Dry Vapour 

Pressure Equivalent 
kPa 77.2 75.4 73.1 36.0 64.7 54.5 59.8 59.3 

Initial Boiling Point °C 30.3 30.1 30.2 49.0 28.8 35.9 35.3 35.8 

Final Boiling Point °C 192.2 190.8 189.2 79.2 182.6 194.2 194.8 193.4 

*RON and MON were measured by CFR engines; HOV was estimated by using the detailed hydrocarbon analysis results from 466 
GCMS, and a HOV liberary; Oxygen content was calculated from the GCMS results. Lower calorific value was calculated by 467 
using the detailed hydrocarbon analysis results from GCMS, and a lower calorific value library. 468 
**At stoichiometric AFR 469 
 470 

Table 2: Test matrix 471 

 Fuels 
Engine 

Speed 

Intake manifold 

pressure 
Spark timing* 

  rpm bar - 

Load sweep all fuels 1800 0.65-2 MBT/KLSA 

Spark timing sweep E10-E85 1800 1.6 KLSA-2 to KLSA+6 

Full load Performance E10-E85 1000-4500 varied KLSA 

* KLSA is defined by the knock limit listed in Table 3. 472 

 473 

Table 3: Key engine boundary conditions 474 

Parameter unit Boundary 

Intake air temperature °C 34±2 

Peak in-cylinder pressure bar ≤ 130 (continuously) 

Exhaust temperature °C ≤ 840 

Mean peak knock intensity (MPKI): bar 

For 1000-1800 rpm engine speed, MPKI ≤ 0.3 bar; 

For 2500 rpm engine speed, MPKI ≤ 0.5 bar; 

For 3500 rpm engine speed, MPKI ≤ 0.7 bar; 

For 4500 rpm engine speed, MPKI ≤ 0.9 bar; 

In-cylinder pressure rise rate bar/CAD ≤6 

Relative air fuel ratio  1 or > 0.75 if fuel enrichment is needed 

Exhaust back pressure bar 
1 bar at throttled conditions, and the same as the 

intake manifold pressure at boosted conditions 

  475 
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Appendix  476 

 477 

Table A1: Valve timing and injection strategy for load sweep test at the engine speed of 1800 rpm 478 

Speed IMEP 

Intake valve 

open/close 

timing @ 1mm 

valve lift 

Exhaust valve 

open/close 

timing @ 1mm 

valve lift 

Injection timing 
Injection 

split ratio 

rpm bar °aTDC °aTDC °aTDC - 

1800 4 -12.2/179.2 -204.4/7.0 -280 - 

1800 6.5 -12.2/179.2 -204.4/7.0 -280; -240 1:1 

1800 8 -12.2/179.2 -204.4/7.0 -280; -240 1:1 

1800 9.5 -12.2/179.2 -204.4/7.0 -280; -240 1:1 

1800 12 -2.2/189.2 -214.3/-3.0 -280; -240; -200 1:1:1 

1800 14 -2.2/189.2 -214.3/-3.0 -280; -240; -200 1:1:1 

1800 16 12.8/204.1 -214.3/-3.0 -280; -240; -200 1:1:1 

1800 18 17.8/209.1 -214.3/-3.0 -280; -240; -200 1:1:1 

1800 20 17.8/209.1 -214.3/-3.0 -325; -285; -245; -205 1:1:1:1 

  479 

Table A2: Valve timing and injection strategy for full load test 480 

Speed IMEP 

Intake valve 

open/close timing 

@ 1mm valve lift 

Exhaust valve 

open/close timing  

@ 1mm valve lift 

Injection timing 
Injection 

split ratio 

rpm bar °aTDC °aTDC °aTDC - 

1000 15 12.8/204.1 -219.3/-8.0 -280; -240; -200 1:1:1 

1800 20 17.8/209.1 -214.3/-3.0 -280; -240; -200 1:1:1 

2500 22 22.8/214.1 -214.3/-3.0 -325; -285; -245; -205 1:1:1:1 

3500 21 12.8/204.1 -214.3/-3.0 -325; -285; -245; -205; -165 1:1:1:1:1 

4500 20 2.8/194.2 -214.3/-3.0 -325; -285; -245; -205; -165 1:1:1:1:1 

 481 

Table A3: Uncertainty assessment of key instrument 482 

*Thermal shock error to ΔPmax 483 
 *Dependent on calibration tool   484 

Instrument Manufacture Model number Measuring Range Uncertainty 

In-cylinder pressure transducer AVL GU22C 0 – 250 bar ±1%* 

Dynamometer HBM T40B -1000 – 1000 Nm ±0.01% 

Fuel flow meter AVL 735 Maximum 120 kg/h ±0.12% 

Air flow meter Elster-Instromet Rabo G65 0 – 100 m3/h ±0.1%** 

Thermocouple Rössel Messtechnik AL-KB-3,0-150-2 -200 – 1300°C ±0.1°C 
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