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Abstract
Objective  To assess how well the LACE index and its 
constituent elements predict 30-day hospital readmission, 
and to determine whether other combinations of clinical 
or sociodemographic variables may enhance prognostic 
capability.
Design  Retrospective cohort study with split sample 
design for model validation.
Setting  One large hospital Trust in the West Midlands.
Participants  All alive-discharge adult inpatient 
episodes between 1 January 2013 and 31 December 
2014.
Data sources  Anonymised data for each inpatient 
episode were obtained from the hospital information 
system. These included age at index admission, gender, 
ethnicity, admission/discharge date, length of stay, 
treatment specialty, admission type and source, discharge 
destination, comorbidities, number of accident and 
emergency (A&E) visits in the 6 months before the index 
admission and whether a patient was readmitted within 30 
days of index discharge.
Outcome measures  Clinical and patient characteristics of 
readmission versus non-readmission episodes, proportion 
of readmission episodes at each LACE score, regression 
modelling of variables associated with readmission to 
assess the effectiveness of LACE and other variable 
combinations to predict 30-day readmission.
Results  The training cohort included data on 91 922 
patient episodes. Increasing LACE score and each of 
its individual components were independent predictors 
of readmission (area under the receiver operating 
characteristic curve (AUC) 0.773; 95% CI 0.768 to 0.779 
for LACE; AUC 0.806; 95% CI 0.801 to 0.812 for the four 
LACE components). A LACE score of 11 was most effective 
at distinguishing between higher and lower risk patients. 
However, only 25% of readmission episodes occurred in 
the higher scoring group. A model combining A&E visits 
and hospital episodes per patient in the previous year 
was more effective at predicting readmission (AUC 0.815; 
95% CI 0.810 to 0.819).
Conclusions  Although LACE shows good discriminatory 
power in statistical terms, it may have little added value 
over and above clinical judgement in predicting a patient’s 
risk of hospital readmission.

Introduction
In recent years, developing effective ways to 
reduce rates of patient readmission following 
an episode of acute care has become a key 
health policy focus in many developed econ-
omies.1 In 2011/2012, the average 30-day 
readmission rate in England was 5.6%, with 
variation across acute Trusts of between 3% 
and 10%.2 It is estimated that 30-day readmis-
sions incur annual costs in excess of £2.5 billion 
for the National Health Service (NHS),3 and in 
2011 the Department of Health introduced a 
policy of non-payment to hospitals in England 
for emergency readmissions within 30 days 
of discharge following an elective admission. 
In 2012, this was extended to encompass 
both elective and emergency admissions. The 
policy applies to all clinical areas except those 
where it is considered inappropriate to with-
hold payment (eg, readmission in cancer or 
dialysis patients), and operates by establishing 
local readmission thresholds following clinical 
review of readmissions at a given Trust and 
determining the proportion that could be 
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Strengths and limitations of this study

►► This study assessed the characteristics associated 
with 30-day hospital readmission in a large hospital 
Trust in the West Midlands.

►► A split sample design allowed model development 
and statistical testing to be undertaken in one-half 
of the data set, and the results were validated in a 
representative sample of inpatient episodes from a 
directly comparable population.

►► In focusing on a general medical population, the 
study evaluated the LACE index in a context similar 
to that in which it was originally developed.

►► Readmission rates may have been underestimated 
as we were unable to identify cases where a patient 
may have been readmitted to another hospital.
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considered avoidable.4 In a financially straitened NHS, the 
prospect of incurring financial penalties for 30-day readmis-
sions has created a strong incentive for hospital Trusts to 
reduce readmission rates.

The most common clinical reasons for readmission are 
infections and complications related to medical care or 
long-term conditions,5 and it is thought that readmission 
rates can be reduced substantially if at-risk patients can 
be identified before discharge and offered supportive 
interventions as inpatients or after discharge. However, 
interventions are most likely to be effective if they are 
targeted towards patients at highest risk of future hospital 
use,6 as being able to distinguish between patients who 
will not require readmission and those who are likely to 
be readmitted has implications for the cost-effectiveness 
of readmission avoidance interventions.7–9 Identifying 
at-risk patients effectively relies on accurate case finding,10 
and a large number of predictive models have been used 
both within the NHS3 11–13 and internationally,14–16 to 
varying degrees of success.17–19 Predictive models differ in 
the type and scope of data items they include and the time 
period over which they seek to predict readmission risk.20 
When choosing an appropriate model, a trade-off often 
needs to be made between complexity — the number of 
data items required — and practicality of application in 
clinical practice.21

One widely used predictive tool is the LACE index,22 
which was originally developed in Canada and uses 
routinely collected clinical and administrative data to 
generate a risk score of between 0 and 19 for individual 
patients, where higher scores indicate an increased risk 
of readmission. Scores are based on four features of an 
inpatient hospital episode: length of stay (LoS), admis-
sion type, comorbidities and the number of accident 
and emergency (A&E) visits made by a patient in the 
6 months prior to their initial admission. Scores over a 
specific threshold can be used to ‘flag’ at-risk patients 
for whom interventions may be appropriate. Although 
widely used — largely due to its simplicity and the ease 
of LACE score calculation using data routinely collected 
by all hospital Trusts — the evidence base for LACE is 
uncertain. Some studies have found it to be an effec-
tive predictor of readmission,23 24 whereas others have 
demonstrated poor prognostic ability, particularly when 
applied to specific patient subgroups.25 26 The literature 
on case finding tools emphasises the importance of local 
validation before implementation, since each hospital 
has a patient casemix that reflects their surrounding 
population and may require a locally calibrated score 
threshold.27 A modified version of the LACE index has 
been developed27 that gives greater weight to patient 
comorbidities, which are considered a key driver of read-
missions.21 This study analysed data from a large hospital 
Trust in the West Midlands to assess how well the (modi-
fied) LACE index and each of its constituent elements 
predict 30-day readmission, and to determine whether a 
model based on other combinations of clinical or patient 
variables may enhance prognostic capability.

Methods
Sampling
The study used a retrospective cohort design with a split 
sample to allow the findings to be externally validated. 
All alive-discharge adult inpatient episodes at a large 
hospital Trust in the West Midlands over a 2-year period 
(1 January 2013 to 31 December 2014) were included 
in the analysis. Data were obtained following a search 
of the Trust information system performed by the 
Trust information technology manager. Anonymised 
sociodemographic and clinical data were obtained for 
each inpatient episode (termed the ‘index admission’). 
Sociodemographic data included patient age at index 
admission, gender and ethnic group. Clinical data 
relating to the index admission included date of admis-
sion and discharge, LoS, International Classification of 
Diseases (ICD)10 code, primary diagnosis, treatment 
specialty, Health Research Group code, admission type 
(emergency, elective, day case), admission source and 
discharge destination (eg, usual place of residence, 
other NHS institution). Data were also obtained on 
patient comorbidities, number of A&E visits in the 
6 months before the index admission, whether the 
index episode was followed by readmission within 30 
days of the index discharge date, and if so, the date of 
readmission and treatment specialty.

Data analysis
A LACE score was calculated based on LoS (0–6 points), 
admission type (0–3 points), comorbidity (0–6 points) 
and previous A&E attendance (0–4 points), giving a total 
score of between 0 and 19 for each inpatient episode 
(table 1).

These scores differ from the original LACE index22 
in two ways. First, the original LACE index assigns up to 
seven points for an LoS lasting 14 or more days, whereas 
the modified LACE index gives up to six points for this 
parameter. Second, the comorbidity element of the 
original LACE index is scored up to a maximum of five, 
whereas the modified LACE index allows comorbidity 
scores of up to six points.

Any patient episodes with missing data were removed 
from the data set (n=4503 episodes; 2.4% of the total). 
Missing data items fell into three groups: (1) patients 
were discharged from their index hospital episode after 
31 December 2014 (n=727), (2) no date of discharge 
from index hospital episode was available (n=661), 
and (3) patients died during their index admission 
(n=3115). After removal of records with missing data, 
the data set was split in half at random to create a cohort 
for model building (the ‘training cohort’) and a sepa-
rate cohort for model validation (the ‘test cohort’). As 
a split sample design was used to derive the two cohorts 
from the same original data set (ensuring patient and 
clinical profiles were directly comparable across the 
cohorts and minimising the likelihood of model over-
fitting), internal cross-validation within the training 
cohort was not performed during model development.
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Table 1  Components of the modified LACE index and values assigned for each

Attribute Value Points

Length of stay Less than 1 day 0

1 day 1

2 days 2

3 days 3

4–6 days 4

7–13 days 5

14 or more days 6

Acute admission Inpatient 3

Observation 0

Comorbidity (scores 
cumulative to a 
maximum of 6)

No history 0

Diabetes without complications, cerebrovascular disease, history of myocardial infarction, 
peripheral vascular disease, peptic ulcer disease 

1

Mild liver disease, diabetes with end organ damage, congestive heart failure, chronic 
obstructive pulmonary disease, cancer, leukaemia, lymphoma, any tumour, cancer, moderate to 
severe renal disease

2

Dementia or connective tissue disease 3

Moderate/severe liver disease or HIV infection 4

Metastatic cancer 6

Accident and 
emergency visits 
during the previous 
6 months

0 visit 0

1 visit 1

2 visits 2

3 visits 3

4 or more visits 4

Normality testing indicated that the continuous data 
were not normally distributed. As a result, all continuous 
variables were summarised using medians and IQRs, and 
univariate comparisons of these variables across the read-
mitted/non-readmitted groups used the non-parametric 
Mann-Whitney U test. Χ2 tests were used to compare 
the characteristics of readmitted versus non-readmitted 
patients for variables with categorical data. Univariate ORs 
and their 95% CIs were calculated for sociodemographic 
and clinical variables and for each component of the LACE 
index to test the association between variable subgroups 
and readmission. Finally, binary logistic regression model-
ling using the enter method was used to test the strength of 
different combinations of variables in predicting the likeli-
hood of 30-day readmission. Model strength was described 
using OR, and the area under the receiver operating char-
acteristic curve (AUC) was described using the c-statistic. 
The findings for each model were then validated using the 
patient episodes in the test cohort. All statistical analyses 
were undertaken using SPSS V.21.

Results
Sample characteristics
The full data set included 183 843 patient episodes 
(103 493 individual patients). After splitting the data 
set to create the training and test cohorts, subsequent 

analyses were performed on the training cohort prior 
to validation, which contained data on 91 922 separate 
admission episodes (representing 51 747 individual 
patients) (table 2).

The median patient age in the training cohort was 55 
(IQR: 37–72), and male patients accounted for 42.4% of 
hospital episodes (n=39 001). The median LoS of the index 
admission was 0 days (IQR: 0–2). Fifty-one per cent of the 
episodes followed emergency admission (n=46 922). The 
majority of patients had a comorbidity score of 0 (80.8%), 
and the median number of A&E visits in the 6 months prior 
to the index episode was 1 (IQR: 0–1).

Characteristics of readmitted versus non-readmitted patients
A total of 7107 inpatient episodes were followed by a 
readmission within 30 days (7.7% readmission rate, 
4541 individual patients). One thousand and two 
hundred eighteen (2.4%) patients accounted for 53.1% 
of all readmission episodes. A comparison of the char-
acteristics of episodes that resulted in readmission 
versus those that did not showed statistically significant 
differences for all variables. Readmitted patients were 
significantly more likely to be older than those who were 
not readmitted (median age 64 vs 55), men had signifi-
cantly higher readmission rates than women (9.1% vs 
6.7%), and emergency admissions were significantly 
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Table 2  Characteristics of readmission versus non-readmission episodes

Variable Grouping Total episodes (%) Readmitted (%) Not readmitted (%) Comparison*

Patient age Median, range 
(IQR)

55.0, 18–106 (37–72) 64.0, 18–105 (44–78) 55.0, 18–106 (37–71) p<0.0001

Gender Male 39 001 (42.4) 3545 (9.1) 35 456 (90.9) X2=175.1; 
p<0.0001Female 52 921 (57.6) 3562 (6.7) 49 359 (93.3)

Index length of stay 
(days)

Median, range 
(IQR)

0.0, 0–301 (0.0–2.0) 1.0, 0–223 (0.0–5.0) 0.0, 0–301 (0.0–1.0) p<0.0001

Admission type Emergency 46 922 (51.0) 6005 (12.8) 40 917 (87.2) X2=3573.4; 
p<0.0001Elective 7243 (7.9) 410 (5.7) 6833 (94.3)

Day case 37 757 (41.1) 692 (1.8) 37 065 (98.2)

Comorbidityscore† 0 74 274 (80.8) 5083 (6.8) 69 191 (93.2) X2=1126.9; 
p<0.00011 14 984 (16.3) 1820 (12.1) 13 164 (87.9)

2 2147 (2.3) 29 (1.4) 2118 (98.6)

3 514 (0.6) 172 (33.5) 342 (66.5)

4 3 (0.0) 3 (100.0) 0 (0.0)

6 0 (0.0 0 (0.0) 0 (0.0)

Accident and 
emergency visits in the 
previous 6 months

Median, range 
(IQR)

1.0, 1–121 (1.0–2.0) 2.0, 1–107 (1.0–4.0) 1.0, 1–121 (1.0–2.0) p<0.0001

*Continuous variables were compared using the Mann-Whitney U test and categorical variables were compared using the X2 test.
†Comorbidity score does not relate to the number of comorbidities; scores are assigned based on severity of comorbidities.

Table 3  Proportion of readmission episodes at each LACE 
score

LACE 
score*

Total episodes 
(%)

Readmitted 
(%)

Not readmitted 
(%)

 � 3 26 478 (28.8) 302 (1.1) 26 176 (98.9)

 � 4 13 798 (15.0) 561 (4.1) 13 237 (95.9)

 � 5 14 152 (15.4) 676 (4.8) 13 476 (95.2)

 � 6 10 656 (11.6) 753 (7.1) 9903 (92.9)

 � 7 8637 (9.4) 1045 (12.1) 7592 (87.9)

 � 8 5800 (6.3) 913 (15.7) 4887 (84.3)

 � 9 4136 (4.5) 551 (13.3) 3585 (86.7)

 � 10 3242 (3.5) 511 (15.8) 2731 (84.2)

 � 11 2379 (2.6) 815 (34.3) 1564 (65.7)

 � 12 1570 (1.7) 633 (40.3) 937 (59.7)

 � 13 751 (0.8) 231 (30.8) 520 (69.2)

 � 14 217 (0.2) 81 (37.3) 136 (62.7)

 � 15 104 (0.1) 35 (33.7) 69 (66.3)

 � 16 1 (0.0) 0 (0.0) 1 (100.0)

 � 17 1 (0.0) 0 (0.0) 1 (100.0)

*Percentages for readmitted and not readmitted are calculated 
according to variable grouping, for example, % of episodes 
scoring 3 on the LACE index which resulted in readmission versus 
those that did not.

more likely to result in readmission than elective or day 
case admissions (12.8% vs 5.7% and 1.8%, respectively). 
The median LoS in readmitted patients was 1 day (IQR: 
0–5), the median A&E visits in the previous 6 months 
was 2 (IQR: 1–4), and higher comorbidity scores were 
significantly associated with readmission, with 33.5% of 
patients with a comorbidity score of 3 being readmitted 
within 30 days.

Readmission episodes and LACE score
The median LACE score in the training cohort was 5 
(range 3–17, IQR: 3–7) (table  3). The Mann-Whitney 
U test showed that the median score for readmission 
episodes was significantly higher than the median score 
for episodes that did not result in readmission (8.0 with 
IQR 6–11 vs 5.0 with IQR 3–7; p<0.0001). Readmission 
rates more than doubled between a LACE score of 10 and 
11, suggesting that 11 may be the optimum threshold for 
distinguishing between patients at a lower or higher risk 
of readmission. However, the proportion of total readmis-
sions represented by LACE scores 11 and above was only 
25.3% of the total (1795/7107); thus, nearly three-quar-
ters of readmissions occurred in patients scoring lower 
than the cut-off point.

Univariate logistic regression
Univariate binary logistic regression assessed the asso-
ciation between individual variables and the likelihood 
of readmission (table  4). All variables were statisti-
cally significant to the p<0.0001 level. For each unit 
increase in patient age, the likelihood of readmission 
rose by 1.7%. Women were significantly less likely to 

be readmitted than men, despite constituting a larger 
proportion of index admissions (OR 0.72; 95% CI 
0.69 to 0.76). Increasing LACE score was significantly 
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Table 4  Univariate logistic regression of variables potentially associated with readmission

Variable Grouping p Value OR (95% CI)

Patient age Continuous <0.0001 1.03 (1.02 to 1.04)

Patient gender Male Reference Reference

Female <0.0001 0.72 (0.69 to 0.76)

Length of stay Continuous <0.0001 1.04 (1.03 to 1.04)

Admission type Day case Reference Reference

Elective <0.0001 3.21 (2.84 to 3.64)

Emergency <0.0001 7.87 (7.26 to 8.52)

Comorbidity score Continuous <0.0001 1.28 (1.25 to 1.31)

Accident and emergency visits in the previous 6 months Continuous <0.0001 1.39 (1.38 to 1.41)

LACE score Continuous <0.0001 1.42 (1.41 to 1.43)

Episodes per patient in the previous year Continuous <0.0001 1.06 (1.05 to 1.06)

Table 5  Binary logistic regression models assessing the probability of readmission

Variable p Value OR (95% CI) AUC (95% CI); R2

Model 1: LACE score only

 � LACE score <0.0001 1.42 (1.41 to 1.43) AUC=0.773 (0.768 to 0.779); 
R2=0.180

Model 2: all variables from univariate analysis

 � Age <0.0001 1.01 (1.01 to 1.02) AUC=0.820 (0.815 to 0.825); 
R2=0.240 � Gender (female) <0.0001 0.90 (0.85 to 0.95)

 � Length of stay <0.0001 0.98 (0.98 to 0.99)

 � Admission type (emergency) <0.0001 4.18 (3.77 to 4.64)

 � Comorbidity score <0.0001 0.96 (0.94 to 0.98)

 � A&E visits in the previous 6 months <0.0001 1.12 (1.11 to 1.13)

 � LACE score <0.0001 1.23 (1.21 to 1.25)

 � Episodes per patient <0.0001 1.07 (1.06 to 1.07)

Model 3: four components of the LACE index

 � Length of stay <0.0001 1.02 (1.01 to 1.03) AUC=0.806 (0.801 to 0.812); 
R2=0.193 � Admission type (emergency) <0.0001 4.79 (4.40 to 5.22)

 � Comorbidity score <0.0001 1.30 (1.26 to 1.33)

 � A&E visits in the previous 6 months <0.0001 1.28 (1.27 to 1.29)

Model 4: reduced complexity model

 � A&E visits in the previous 6 months <0.0001 1.36 (1.35 to 1.38) AUC=0.815 (0.810 to 0.819); 
R2=0.130 � Episodes per patient in the previous year <0.0001 1.03 (1.02 to 1.04)

A&E, accident and emergency; AUC, area under the receiver operating characteristic curve.

associated with 30-day readmission, with each point 
increase in score associated with a 42% increase in 
the likelihood of readmission. The variable with the 
strongest association with readmission was emergency 
admission — index episodes that were a result of emer-
gency admission were nearly eight times more likely to 
be followed by readmission than those in the reference 
group of day case surgery (OR 7.87; 95% CI 7.26 to 
8.52).

Multivariate logistic regression
Four multivariate logistic regression models were 
constructed to assess different potential predictors of 
30-day readmission (table  5). The first included LACE 
index score only. LACE score was highly significant as 
a predictor of readmission (p<0.0001), with an AUC of 
0.773 (95% CI 0.768 to 0.779) and R2 of 0.180. This is 
higher than the c-statistic for LACE score as a predictor 
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of readmission found by van Walraven et al, who devel-
oped the LACE index. However, the other three models 
all had a higher c-statistic: model 2, which included all 
eight variables from the univariate analysis had a c-statistic 
of 0.820 (95% CI 0.815 to 0.825) and R2 of 0.240. In this 
model, while all included variables were significant at the 
p<0.0001 level, the direction of effect for some variables 
differed from the univariate testing. Both increasing LoS 
and higher comorbidity score were associated with a lower 
likelihood of readmission in this model when the effects 
of other variables were controlled for. This is likely to be 
due to an association between patient age and/or gender 
with comorbidities and LoS. Model 3 included the four 
components of the LACE index and was a better predictor 
of readmission than LACE score alone, with a c-statistic of 
0.806 (0.801–0.812). The fourth model, which included 
only A&E visits and number of episodes per patient as 
variables, was a better model for predicting readmission 
than models 1 and 3 and had only a marginally lower c-sta-
tistic than model 2, which was the most complex in terms 
of the number of variables included (AUC=0.815; 95% CI 
0.810 to 0.819).

Model validation
The models developed using the training cohort were 
tested for validity in the test cohort. The test cohort did 
not differ from the training cohort in any of the socio-
demographic of clinical variables assessed. It included 
91 921 episodes of care, of which 7008 (7.6%) were 
followed by a readmission within 30 days. The c-statistic 
of the logistic regression models developed from the 
training cohort were 0.767 (0.761–0.772) for model 1, 
0.814 (0.809–0.189) for model 2, 0.800 (0.794–0.805) for 
model 3 and 0.812 (0.807–0.817) for model 4.

Discussion
The primary aim of this study was to assess how well the 
modified LACE index was able to predict 30-day readmis-
sion in a cohort of patients admitted to a large secondary 
care Trust over a 2-year period. Increasing LACE score 
and the four individual components comprising the 
LACE index were all independent predictors of readmis-
sion. The proportion of admissions episodes resulting 
in readmission increased substantially at a LACE score 
cut-off of 11, which would suggest that this is an appro-
priate threshold to use when deciding whether to 
provide enhanced inpatient and/or postdischarge care 
to prevent unplanned readmission. However, although 
a large proportion of admissions episodes that scored 
11+ on the LACE index were followed by a readmission 
within 30 days, this corresponded to comparatively few 
absolute numbers of patients. Only 25% of all readmis-
sions occurred in the higher scoring group, while the 
remaining 75% occurred following episodes of care 
that scored <11 on the index. This differs from other 
studies that have assessed the effectiveness of different 
risk thresholds for LACE, which typically saw a higher 

proportion of all readmissions occurring in the patient 
group that scored above the chosen threshold.23 28 While 
implementing a lower LACE score threshold would 
improve the likelihood of identifying at-risk patients, 
a large number of these patients would not go on to 
be readmitted. In a health service facing substantial 
resource constraints, the LACE tool is unlikely to have 
the sensitivity and specificity that would make it a useful 
addition to clinical practice.

A number of studies have assessed the performance of 
the LACE index in predicting unplanned readmissions, 
but these have typically been conducted in small patient 
populations,29 30 or in specific patient groups such as 
cardiovascular disease,25 29 31 chronic obstructive pulmo-
nary disease30 or older people.26 The patient cohort 
included in this study was large, and the analysis had good 
statistical power to detect differences between groups. 
In focusing on a general medical population, our study 
evaluated the LACE index in a context similar to that 
in which it was originally developed in terms of patient 
characteristics and incidence of comorbidity.22 27 The split 
sample design allowed model development and statistical 
testing to be carried out in one-half of the data set, and 
the results were validated in a representative sample of 
inpatient episodes from a directly comparable popula-
tion. Readmission rates may have been underestimated 
in the hospital data used for this study, as we were unable 
to identify instances where a discharged patient may 
have subsequently been readmitted to another hospital. 
Patient deaths were not recorded in the data (unless a 
patient died during index admission), so we were unable 
to consider the impact of patient mortality on our find-
ings.

Multiple factors typically contribute to readmis-
sion rates, and there are limits on the extent to which 
unplanned readmissions can be avoided.32 33 High read-
mission rates are often thought to indicate suboptimal 
patient management, but they are most likely to be 
driven by difficulties in managing patient transitions to 
other health and social care settings, a lack of commu-
nity resources for patient follow-up, or influenced by 
the patient’s home environment.34 A retrospective anal-
ysis of 82 million routinely collected hospital records in 
England between 2004 and 2010 found that only 30% 
of unplanned readmissions were deemed avoidable.35 
Therefore, lowering readmission rates for patients with 
chronic or relapsing conditions, or patients readmitted 
with a different diagnosis from their index admission, 
poses a significant challenge. Conversely, avoiding read-
missions in patients presenting with a recurrence or 
continuation of the issue that led to their initial hospital-
isation, or for those who are readmitted with an avoidable 
complication related to their index admission, should 
be a priority for hospital Trusts, which is a key reason 
that case finding tools are increasingly being tested in 
the hospital setting. Although a number of increasingly 
complex tools have been developed in recent years, such 
as PARR-30,36 LACE+37 and HOSPITAL,38 the intuitive 
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appeal of LACE lies in its simplicity and use of routinely 
collected hospital data.

This study suggests that despite a number of socio-
demographic and clinical variables being strongly 
associated with hospital readmission in statistical terms, 
the added value of the LACE tool over and above clin-
ical judgement remains equivocal. However, the fact that 
small gains in model accuracy and discriminatory power 
can be made by testing different combinations of poten-
tial predictor variables derived from routinely collected 
hospital administrative data may indicate that the accu-
racy of case finding could be improved through the 
addition of locally relevant clinical or sociodemographic 
factors.39 40 In this study, the predictive model with the 
least discriminatory power was based on LACE score 
alone. Model 2, which included eight predictor variables, 
was only marginally better at predicting readmission 
than model 4, which included only two variables: A&E 
visits and the number of admissions per patient in the 
previous 12 months. This would suggest — in a cohort of 
general medical admissions — that a simpler model could 
outperform the more complex LACE tool in accurately 
identifying patients at risk of readmission. Our analysis 
showed that 2.4% of patients in the cohort accounted for 
53.1% of all readmission episodes. Being able to identify 
the small group of patients who use a disproportionate 
amount of healthcare resources is the first step towards 
developing solutions to prevent repeat hospitalisations 
in this population.41 Future research should focus on the 
development of locally tailored screening tools to identify 
these patients.

Conclusion
Although LACE shows good discriminatory power in 
statistical terms, it may have little added value over and 
above clinical judgement in predicting a patient’s risk of 
hospital readmission. Nevertheless, if used as a screening 
tool alongside clinical judgement, a locally tailored risk 
score based on specific clinical or sociodemographic vari-
ables relevant to the inpatient population admitted to a 
particular hospital Trust may increase case finding accu-
racy. This could allow clinicians to effectively discriminate 
between patients who are likely to have an unplanned 
admission within 30 days of discharge and those who will 
not.
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