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Abstract 

Additive manufacturing (AM) technologies enable greater geometrical design freedom compared with 

subtractive processes. This flexibility has been used to manufacture patient-matched implants. Whilst 

the advantages of AM are clear, the optimisation at each process stage is often understated. Here we 

demonstrate that surface finishing of selective laser melted (SLM) implants significantly alters 

topography, which has implications for cellular and biofilm adhesion.  

Hot isostatic pressing of as-fabricated Ti-6Al-4V implants was shown to reduce porosity (1.04 to 0.02%) 

and surface roughness (34±8 to 22±3µm). Despite these surface changes, pre-osteoblasts exhibited a 

similar viability and proliferation after 7 days of culture. Contrastingly, sandblasting and polishing 

significantly reduced cellular activity and increased cytotoxicity. Bacterial specimens (Staphylococcus 

aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa) adhered more homogenously to 

sandblasted implants compared with other treatments. This suggests that sandblasting may place the 

implant at risk of infection and reduce the strength of interaction with the surrounding soft tissues.   

The ability to tune the adhesion of cells to additively manufactured Ti-6Al-4V implants using post-

processing methods was demonstrated. Since the degree of tissue integration required of implants is 

application specific, these methods may be useful to tailor osseointegration. However, surface 

competition between mammalian and bacterial cells remains a challenge.    

Keywords: Additive manufacture, Selective Laser Melting, Surface Finishing, Cell adhesion, biofilm  
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1.0 Introduction 

Since the invention of stereolithography in the 1980s, additive manufacturing (AM) technologies have 

developed rapidly and numerous techniques are now available that use a range of different substrate 

materials [1, 2]. A major advantage of AM over subtractive methods is the improved degree of 

geometrical freedom made possible through manufacture of the part layer-by-layer. The ability to 

manufacture customised parts, gradient structures, and internal features using AM is an attractive 

concept to many industries, including medical, automotive, and aerospace.  

There is a clinical need for patient bespoke implants, particular in anatomical regions that vary 

significantly between patients, which has led to a surge in the development of subtractive and AM 

technologies for customised implant manufacture [3-5]. In recent years the ability of AM to add further 

value to such prostheses has begun to be realised. For example, tailoring of the implant surface to 

facilitate osseointegration [6, 7], lattice structure optimisation to minimise stress shielding [8, 9], and 

manipulation of implant geometry to enable incorporation of therapeutically loaded materials [10].  

While the advantages of AM are clearly presented, the complexities and optimisation required for both 

the fabrication and post-manufacturing processes associated with production of parts are often 

understated. The general process chain for AM typically involves: 1) 3-dimensional computer aided 

design (CAD) modelling, 2) standard triangulation language (STL) file generation, 3) file verification and 

repair, 4) build file creation, 5) part construction, and 6) part cleaning and finishing [11]. To fabricate 

metallic implants (stainless steels, cobalt chromium molybdenum alloys, and titanium alloys) laser 

based AM systems are typically used. These include, selective laser sintering [12, 13], selective laser 

melting (SLM) [10, 14-16], and electron beam melting [8, 17].  In each of these techniques a different 

mechanism is used to fuse the metallic powder particles together. For SLM the thermal energy of the 

laser beam is used to melt the particles, which then consolidate to form the part geometry. This process 

is conducted layer-by-layer in an inert atmosphere to prevent oxidation of the metals. Since the part is 
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surrounded by unconsolidated powdered stock material during building it is necessary to manufacture 

support structures, which prevent collapse during the build.  

Post-fabrication, the support structures must be removed, usually by machining or wire cutting. It may 

also be necessary to conduct post-fabrication processing to address inherent issues associated with 

the AM process, and/or tailor the performance of the part to the intended application. Common issues 

associated with metallic SLM parts include: cracking, porosity, residual stresses, columnar grain 

structure, rough surface topography, and anisotropy in mechanical properties [18]. As such, processes 

such as hot isostatic pressing (HIPing) are routinely used in industrial AM applications to reduce bulk 

porosity by simultaneously applying high temperature and pressure [19]. A number of studies have 

considered the effects of HIPing on the mechanical performance of metallic SLM parts, including Ti-6Al-

4V and Ni-superalloys [18-20]. Qiu et al. demonstrated a transformation from martensitic structures into α 

and β phases after HIPing of Ti-6Al-4V parts manufactured by SLM. This microstructural change 

resulted in a notable improvement in ductility but a reduction in tensile strength [18] and the fatigue 

performance of AM parts has been shown to be poor compared with rolled equivalents [21]. Therefore 

surface-processing techniques, such as sand blasting or polishing may be required after HIPing to 

remove partially melted precursor particles and reduce surface roughness. In addition to affecting the 

mechanical performance of implants, changes in surface topography may also influence mammalian 

and bacterial cell adhesion and proliferation, as well as biofilm formation [22-24].  

In this paper Ti-6Al-4V parts were manufactured by SLM and post-processed by HIPing, sandblasting, 

and polishing. The topography of all surfaces was observed by scanning electron microscopy (SEM) 

and micro-computed tomography. White light interferometry was also used to quantify the average 

surface roughness (Sa). Here, a comparison of the adhesion and proliferation of pre-osteoblast cells 

(MC3T3), and three bacterial organisms commonly associated with orthopaedic infections 

(Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa) was observed 

on as-fabricated and post-processed surfaces. Confocal microscopy and quantitative in-vitro assays 
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were used to demonstrate significant variations in cellular viability, metabolic activity and cytotoxicity. In 

summary, this work reveals some important considerations regarding the implementation of AM 

implants for hard tissue applications.  

2.0 Materials and Methods 

2.1 Selective laser melting of Ti-6Al-4V implant models 

Two designs of cylinders (Fig. 1a) were used to produce implant models. A hole was introduced into the 

cylinder to mimic a typical design feature that may be found on an implant, e.g. for the purpose of 

fixation or filling of the implant with a secondary material containing a therapeutic entity [10]. These two 

designs were consider to assess whether additional features may affect the surface properties and, in 

turn, cellular adhesion properties of parts additively manufactured using selected laser melting (SLM). 

The implant models using the same method and process parameters as our previous study [25]. Briefly, 

cylinders were fabricated from Ti-6Al-4V gas atomised powder (TLS, Technik, Germany) sized 20-50 

μm using a M2 Cusing® SLM system (Concept Laser, Germany), which employs an Nd:YAG laser. 

This system operates an island scanning strategy in which the build is divided into a number of square 

‘islands’ (see [18] or schematic in Figure 4a). The islands are scanned randomly and the scan direction 

is rotated 90° between neighbouring islands [18]. The parameters used to fabricate cylinders were 

150 W laser power, 1750 mm/s scanning speed, 20 μm slice thickness, and hatch spacing of 75 μm. 

Support structures were built between the substrate base and each individual implant to provide 

stability during the build. Manufacture was conducted in a chamber flooded with argon gas to minimise 

oxygen pick-up to < 0.1%. 

As-fabricated (AF) parts were then processed using HIPing (referred to as HIP in figures). Following 

HIPing, samples were further modified by sandblasting (SB) or polishing (P). SB and P were applied to 

remove residual partially melted powder particles and reduce surface roughness.  

5 
 



2.1.1 Post-processing of the SLMed parts 

HIPing was performed using an EPSI HIPping vessel (Temse, Belgium). Samples were HIPped as per 

ASTM F3001-14 (Standard Specification for Additive Manufacturing Ti-6Al-4V ELI (Extra Low 

Interstitial) with Power Bed Fusion) at 930°C/ 100 MPa/ 4 h, followed by cooling at a rate of 5°C/min. 

SB was performed in an Air Blast cabinet (CBI Equipment Ltd, UK) using a blasting gun with a 

compressed air regulator set to 4 bar. CARBOREX micro grit black abrasive powder with a size of 53 

μm was used for SB (Washington Mill Electro Minerals, UK). The grit blasting was performed for 30 

minutes with a speed of 100 m/s. SB is a commonly used as a standard procedure in industrial SLM 

operations to improve the surface finish, it was applied to remove the residual partially melted particle 

powder on the surface. The polishing process was performed using a centrifugal disc finishing machine 

(Finishing Techniques Ltd, FINTEK). This is a 2-stages wet polishing process, using first aluminium 

oxide balls (6-10 mm), followed by plastic grinding chips (6-10 mm) as the media to deburr and polish 

the parts, with total process duration of 7 hours. All parts were cleaned using compressed air, an 

ultrasonic bath, and isopropyl alcohol. Further cleaning was also undertaken before biological tests to 

sterilise the parts (Section 2.3).  

2.2 Characterisation of additively manufactured parts 

2.2.1 Visualisation of surface topography using scanning electron microscopy 

Secondary electron images of Ti-6Al-4V specimens were obtained using a XL30 FEG environmental 

SEM (Philips, UK) operating at 20 kV. Prior to imaging, samples were attached to an aluminium stub 

using double adhesive carbon tabs.  

2.2.2 3-dimensional visualisation and porosity analysis using micro-computed tomography 

As-fabricated and surface treated parts were scanned using a Skyscan1172 micro-computed 

tomography (micro-CT) system (Bruker, Belgium) with 80 kV maximum X-ray energy, 8 W beam power, 

1650 ms exposure per projection, aluminium and copper filter, and 7.98 μm pixel size. Reconstructed 

data were visualised in 3D using CTVox (version 3.0, Bruker) software. A porosity analysis was 
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conducted using CTAn (version 1.15.4.0, Bruker) software. Briefly, a circle was fitted to the external 

edges of the sample to create a region of interest (ROI). This ROI was interpolated across 200 slices 

positioned in the middle of the sample volume (z-axis) to create a volume of interest (VOI). A global 

thresholding was applied to create a binary image, which was then filtered to remove noise. 3D analysis 

was run over this VOI to determine total porosity as well as the size distribution of pores.  

2.2.3 3-dimensional surface reconstruction using optical microscopy 

Optical imaging of as-fabricated and surface treated parts was performed using an Alicona microscope 

(G5 Infinite Focus, Alicona UK, Kent, UK) at ×20 magnification. At the central point of the surface, an 

area of 1 mm by 1 mm was scanned. Scanning was performed between the maximum and minimum 

focussing points of the z height of each sample surface. A 3D surface was reconstructed using the 

Alicona IF-Laboratory Measurement Module (version 6.1, Alicona UK, Kent, UK). 

2.2.4 Quantification of arithmetic mean height  

A MicroXAM interferometer (KLA Tencor, UK) operating a white light source was used to profile the 

surface of Ti-6Al-4V SLM surface for all treatments. Scanning Probe Image Processor software (Image 

Metrology, Denmark) was employed for the analysis of acquired images yielding arithmetical mean 

height surface roughness values (Sa). Three measurements (0.6 x 0.8 mm) were obtained at locations 

representative of the overall surface for three different samples without designed surface holes (Figure 

1a). Measurements of three separate samples with holes were obtained from the periphery of the hole 

diameter to ascertain whether the topography in this location was different from the rest of the surface 

(n=3). In total 9 measurements (3 measurements of 3 different samples) were taken for each sample 

variant and results presented as mean ± standard error of the mean.   

Single factor analysis of variance (ANOVA) tests were conducted to assess any significance within 

groups (i.e. between samples of the same treatment and design). This was used as an assessment of 

reproducibility. A two-way ANOVA with factors as: surface condition at four levels (as-fabricated, HIP, 
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HIP+SB and HIP+P) and presence or absence of a hole (at 2 levels) with post-hoc Tukey tests was 

conducted to determine if surface treatments significantly altered Sa. Statistical tests were performed at 

α = 0.05 using SPSS Statistics (v24, IBM). 

2.2.5 Contact angle 

Contact angle measurements were obtained using an image capture followed by a droplet fitting 

method. Samples (Figure 1) were place on a flat surface and deionised water (7 µm) pipetting into the 

centre. Images were captured across the horizontal plane of the droplet 60 seconds after application. 

An image processing package (Image J) was used to undertake analysis using a Low-Bond 

Axisymmetric Drop Shape Analysis (LB-ADSA) plugin [26]. Images were converted to 8-bit greyscale 

and cropped to the droplet area. LB-ADSA was applied ensuring good fitting to the droplet and contact 

angle obtained as the inner angle between the surface and air/water interface.  

2.3 In-vitro adhesion and proliferation of MC3T3 pre-osteoblast cells 

The base medium used for in-vitro work was Alpha Minimum Essential Media (α-MEM) with sodium 

bicarbonate, ribonucleosides and deoxyribonucleosides (M426, Sigma, UK). Complete growth media 

was made by supplementing α-MEM media with a final concentration of 10% fetal bovine serum 

(F7524, Sigma, UK), 2.4% l-glutamine (G7513, Sigma, UK) and 1% penicillin-streptomycin (F4333, 

Sigma, UK). MC3T3-E1 preosteoblast cells (Subclone 4, CRL-2593, ATCC, USA) were cultured in 

complete growth media as per supplier instructions. Prior to in-vitro experiments, samples were 

autoclaved, washed with 100% ethanol, and left overnight under ultra-violet light.  

For all assays, aliquots of MC3T3-E1 cells (1x104 cells/cm2) were seeded on to the top surface of AM 

samples and tissue culture plastic as a control. Cells were allowed to adhere for 2 hours and after this 

time complete growth media was added to each well to cover the sample surface. Cultures were 

incubated in 5% CO2 atmosphere maintained at 37°C.   

2.3.1 Cell viability 
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The viability of cells after culturing for 1, 3, and 7 days were analysed by staining with calcein-AM (1 

mg/mL, Molecular Probes, UK) and propidium iodide (1 mg/mL, Invitrogen, UK). Calcein-AM is a green 

florescent dye that is cell-permeant and converts into intense fluorescent calcein by the activity of an 

intracellular esterase, an enzyme found in live cells [27]. Propidium iodide is membrane impermeable 

and is excluded from viable cells. It binds to DNA by intercalating between base pairs. Stained cultures 

were visualised using a scanning confocal microscope (Olympus FV1000, Multiple Ar laser, Germany) 

and typical images collected for two samples of each variant.  

2.3.2 Cell proliferation and cytotoxicity 

Alamar blue (Invitrogen, UK) was used as a non-invasive proliferation assay and was performed on 

days 1, 3, and 7. Alamar blue is a redox indicator that yields a colorimetric change and fluorescent 

signal in response to metabolic activities. Briefly, culture medium was removed from samples and 

stored for cytotoxicity testing. Fresh media containing 10v% Alamar blue dye was then added and the 

plates were placed in an incubator at 37°C for 4 h. After this time, 200 μL from each well was 

transferred to a 96-well plate and colorimetric change was analysed using a GloMax®-Multi 

spectrometer (Promega Corporation, UK) at 530-560 nm excitation and 590 nm emission. This assay 

was conducted in triplicate.  

A lactate dehydrogenase (LDH) assay kit (Thermo Scientific™ Pierce™, UK) was used to quantify 

cellular cytotoxicity. LDH is a cytosolic enzyme that can be released into cell culture media as a result 

of plasma membrane damage. Therefore quantification of LDH in culture media is indicative of 

cytotoxicity. The assay was conducted according to supplier protocols after 1, 3, and 7 days of culture 

on triplicate samples. Briefly, 50 μL culture media was removed from metallic samples used for Alamar 

blue assay at each time point, transferred to a 96-well plate and mixed with 50 μL Reaction Mixture. 

After incubation at 20°C for 30 minutes reactions were stopped by adding Stop Solution and 

absorbance at 490 and 680 nm was measured using a GloMax®-Multi spectrometer.  
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At each time-point and one-way ANOVAs and post-hoc Tukey tests (α = 0.05) were conducted to 

determine if the different surface treatments significantly altered metabolic activity or cytotoxicity 

including comparison to the control tissue culture plastic samples.  

2.4 Bacterial adhesion  

The ability of Staphylococcus aureus (NCTC 8532), Staphylococcus epidermidis (NCTC 11047), and 

Pseudomonas aeruginosa (NCTC 10662) to adhere to Ti-6Al- 4V surfaces was quantitatively assessed 

using crystal violet staining. This assay provided non-spatially specific quantification of bacterial 

adhesion across all surfaces of the cylindrical samples (i.e. top faces and curved circumference). 

Metallic samples (Figure 1a) were sterilised in 100% ethanol and allowed to dry before being placed in 

30 mL sterile polypropylene universal tubes (n=3 for each culture). Into each tube, 10 mL of 

Lysogeny broth (LB - Sigma Aldrich, UK) that had been inoculated 1:100 (i.e. with 100 µl) of an 

overnight culture (also in LB) was then added. Samples were incubated at 37°C with shaking at 25 rpm 

for 48 hours to allow for saturated growth in the bacterial culture. After incubation, the metallic samples 

were removed from the media and washed to remove any non-adherent cells. Samples were then 

immersed in 1 ml of 1 % (w/v) crystal violet (CV) solution for 10 minutes. Any unbound dye was 

removed by washing samples with deionised water and each sample was then transferred and 

immersed in 70% ethanol to solubilise bound CV. The samples were removed and the absorbance of 

the remaining liquid from each sample was measured. Three absorbance readings at 600 nm were 

obtained from each replicate using a FluoSTAR Optima plate reader (BMG Labtech). Independent 

student’s t-tests were conducted to determine if surface treatments significantly altered the adhesion of 

bacterial cultures. For each culture, equivalent sample designs of as-fabricated groups were compared 

with HIP samples, and HIP alone was compared with HIP + SB as well as HIP + P. Statistical tests 

were performed at α = 0.05. 

Initial adhesion of bacterial cells on SLM samples were visualised using a live/dead staining kit 

(ThermoFisher Scientific, UK). Overnight cultures of Staphylococcus aureus, Staphylococcus 
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epidermidis, and Pseudomonas aeruginosa in LB were diluted to an optical density of 0.06 (600 nm). 

Ti-6Al-4V samples were sterilised in 100% ethanol, allowed to dry, placed in 24-well plates and covered 

in diluted LB cultures. Plates were incubated at 37°C with shaking at 25 rpm for 3 hours. After this time 

SYTO® 9 and propidium iodide dyes were added to stain live and dead cells, respectively according to 

manufacturer’s instructions. Images were obtained of the flat top face of all surface treatments using a 

scanning confocal microscope (Olympus FV1000, Multiple Ar laser, Germany). This assay was 

conducted in duplicate with tissue culture plastic (TCP) as a control. 

3.0 Results 

3.1 Surface topography  

Scanning electron micrographs and 3D micro-CT reconstructions revealed the island scanning strategy 

used to manufacture parts (Figures 2 and 3). Spherical partially-melted powder particles were observed 

on the flat-top surface of AF and HIP samples (Figure 2). Pores, located in both the troughs and peaks 

of the island patterning, were visualised on AF specimens but were not seen after HIP was performed. 

HIP + SB and HIP + P samples exhibited notably different surface topographies compared to AF and 

HIP surfaces. The island scanning strategy was still distinguishable on HIP + SB surfaces; however, 

polishing was shown to remove the majority of these channels. No partially melted powder particles 

were observed after SB or P. Furthermore, the top face of equivalent samples with and without holes 

were indistinguishable. However, a greater number of partially melted particles were present on the 

circumference-face of equivalent samples with holes (Figure 2b). 

On micro-CT analysis, some samples revealed peaks across their whole width that were not part of the 

island pattern strategy. These defects were observed on AF and HIP samples (Figure 3a). A notable 

difference in surface topography was observed as a result of sandblasting and polishing of HIP 

samples. The island patterning strategy was clearly observed for all samples except HIP + P where 

troughs and peaks of the tracks had been substantially reduced. Micro-CT analysis confirmed that HIP 
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substantially reduced sample porosity to 0.02% compared with AF samples (1.04%). Notably fewer 

pores >23.9 μm (three times scanning pixel size) were detected in HIP and HIP + SB samples 

compared with AF (Figure 3b). Interestingly, polished samples exhibited the highest fraction of pores 

sized 23.9 - <39.9 μm but no pores greater in size than this range. Notably the contact angle for HIP + 

SB was significantly lower (7.90 ± 1.65°) than AF (71.5 ± 19.1°), HIP (103.5 ± 25.5°), and HIP + P 

(58.6 ± 20.0°). This sample also exhibited the highest percentage of pores < 23.9 μm. 

For each sample three measurements of Sa were obtained within different islands (Figure 4a). No 

significant difference (p>0.05) between measurements of samples prepared using the same treatment 

were observed (Figure 4b). This suggests that Sa was reproducible within treatment groups. Surface 

treatment significantly affected Sa (p<0.001) but the introduction of hole did not impact on the recorded 

Sa –value (p=0.56). HIPing was shown to significantly reduce the average Sa values for samples 

(p<0.001) with (21.8 ± 3.3 µm) and without (23.7 ± 3.7 µm) holes when compared with AF equivalents 

(33.6 ± 7.5 µm and 33.1 ± 6.2 µm, respectively) (Figure 4c). Sandblasting of HIPed samples led to a 

further significant reduction in Sa (p<0.001); 5.86 ± 1.70 µm with and 6.83 ± 1.71 µm without hole 

features. Polished surfaces exhibited the lowest Sa values of all the groups; 0.20 ± 0.07 μm and 0.16 ± 

0.04 μm with and without hole features, respectively. This was shown to be significantly different from 

HIP and HIP + SB equivalents (p<0.001 for both with and without surface features).  

3.2 In-vitro adhesion and proliferation of MC3T3 pre-osteoblast cells 

MC3T3-E1 cells were observed to adhere to all Ti-6Al-4V surfaces after 1 day of culture. After 7 days 

on AF and HIP surfaces cells had migrated and proliferated across the whole sample surface area 

except for regions where partially melted particles were present (Figure 5a and b). Contrastingly, 

surfaces that were sandblasted or polished following HIP had significantly fewer adhered cells after 3 

days of culture on samples with and without holes (Figure 5 c and d). Notably, a number of dead (red) 

MC3T3-E1 cells were observed on HIP + SB and HIP + P samples after 7 days of culture. Specifically, 

live cells (green) on polished surfaces were seen to be clustered together in small areas across the 
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surface and after 7 days migrated cells outside of these areas were largely dead. In general throughout 

this study, the morphology of live cells on HIP + SB samples were observed to be more rounded in 

comparison to cells seeded on tissue culture plastic as well as other Ti-6Al-4V treatment surfaces.  

Notably after 7 days of culture, HIP + SB and HIP + P samples, both with and without holes, exhibited 

significantly lower (p<0.01) cellular metabolic activity compared with HIP alone (Figure 6). After only 24 

hours MC3T3 cells adhered to sandblasted and polished samples were shown to elicit a significantly 

(p<0.01) higher metabolic activity compared with HIP. No significant (p>0.05) differences in Alamar 

Blue reduction between AF and HIP samples were noted throughout the experiment (Figure 6a and b). 

After 3 days of culture, cells seeded on tissue culture plastic demonstrated significantly higher 

metabolic activity compared with all metallic samples (p<0.001). Alongside this metabolic assay, 

cytotoxicity testing was conducted using a LDH kit (Figure 6c and d). The results of these two assays 

complement each other since significantly (p<0.05) higher levels of toxicity after 7 days were detected 

for HIP + SB and HIP + P samples compared with both hot isostatic pressing alone and controls for 

surfaces with (Figure 6c) and without holes (Figure 6d).   

3.3 Bacterial adhesion 

Crystal violet staining was used to assess the amount of biofilm formed on each Ti-6Al-4V surface after 

48 hrs of culture (Figure 7a). This assay provided non-spatially specific information and few consistent 

trends were observed between the three tested cultures. Significantly (p<0.05) more bacteria was 

shown to adhere to AF and HIP + SB samples compared with HIPing alone in a number of cases 

(Figure 7a). Staining of samples allowed for adherent cells to be spatially located on the top flat surface 

of cylindrical samples (Figure 7b and c). In the case of samples that exhibited the island scanning 

topography (AF and HIP) all strains primarily aligned along the peaks either side of laser tracks. Some 

cells were seen to adhere in surface troughs of these samples, in particular for Pseudomonas 

aeruginosa (Figure 7c). The arrangement of bacterial cells on SB surface was notably more random 

compared with AF and HIP. Bacterial cells were demonstrated to adhere to polished surfaces in areas 
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that had not been sufficiently been smoothed down. Interestingly, in the case of Pseudomonas 

aeruginosa, notably more viable cells were found outside of these rough areas.  

4.0 Discussion 
For a manufacturing process to be adopted widely by industry, the repeatability and consistency of the 

produced parts are critical. The high temperature gradients and complex thermal history involved in 

laser-based AM methods, such as SLM, mean that optimisation is needed to guarantee material 

properties for a given process [28]. Heat treatments, such as hot isostatic pressing, may be employed to 

densify the part and alter microstructure for a specific application. A number of other authors have 

shown HIPing may result in specific microstructures that significantly influence mechanical properties 

[20, 29].  Here it is demonstrated that in comparison to as-fabricated surfaces, hot isostatic pressing 

substantially reduced porosity (1.04 to 0.02% - Figure 3) and Sa (34±8 µm to 22±3 µm Figure 4) of Ti-

6Al-4V implants manufactured using SLM. When comparing micrographs of AF and HIPed samples, 

however, the surfaces appear macroscopically similar; both clearly exhibit channels of approximately 

100-200 µm produced as a result of the island laser tracking pattern used and partially melted 

precursor particles were observed across the entire surface area of the top face (Figure 2). These 

similarities may explain why no significant change in the viability and spreading of MC3T3 cells was 

observed between AF and HIPed surfaces (Figure 5a and b). Generally, comparable levels of cellular 

metabolic activity (Figure 6a and b) and cytotoxicity (Figure 6c and d) were demonstrated for these 

samples. The morphology of MC3T3s on AF and HIP surfaces were comparable to osteoblasts spread 

on conventionally manufactured Ti-6Al-4V surfaces [30-32].  

Surface defects, such as the partially melted Ti-6Al-4V particles seen on the surface of AF and HIP 

samples (Figure 2), have been demonstrated by other authors to impact properties that would be 

critical to orthopaedic implants, including fatigue [33, 34]. Confocal micrographs revealed that MC3T3 

cells were not able to migrate across partially melted particles, as evidenced by the unpopulated 

spherical areas observed on AF and HIP surfaces (Figure 5). The large angle between the partially 
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melted spherical particles and the bulk surface may explain why cells were unable to spread in these 

areas. For adoption of AM implants in orthopaedic applications that typically experience cyclic loading 

and would benefit from osseointegration it will be important to: 1) optimise AM fabrication properties to 

enable continuous powder melting throughout the build [35], and 2) post-process to remove any partially 

melted particles to both minimise wear debris and maximise the surface area available for tissue 

integration. AM implant designs that facilitate osseointegration are being explored and typically involve 

the introduction of interconnected porosity to the bulk structure that is appropriately sized for tissue 

growth and vascularisation [8, 36, 37]. Traditionally-manufactured porous implant surfaces are already in 

clinical use to facilitate osseointegration so the general principle has been shown to be of merit. 

Examples include Trabecular Metal (Zimmer) and Porocoat (DePuy Synthes). AM has the advantage 

that surface porosity can be incorporated as part of the initial fabrication rather than as a separate 

manufacturing step, thus streamlining the process. In addition to increasing implant surface area, lattice 

structures may be utilised to tailor mechanical properties, which has been used as a strategy to 

minimise stress shielding [38]. Our previous work has explored the possibility to add functionality to 

implants by incorporating a secondary phase to deliver a therapeutic payload [10]. In a similar manner to 

osseointegration strategies, this functionalisation approach requires that additional features be added to 

the surface. Here, it was found that such a design feature did not influence surface topography (Figures 

2-4) and in turn, samples with and without surface holes exhibited similar trends in mammalian and 

bacterial cell adhesion (Figures 5 and 7). Infiltration of MC3T3 cells into the designed surface hole was 

visualised using confocal microscopy suggesting that such a feature may eventually facilitate tissue 

ingrowth and mechanical fixation. Notably, such features would act as localised stress risers and 

therefore introduction of pore channels to facilitate osseointegration or therapeutic release would need 

to be balanced against mechanical performance. Furthermore, other authors have demonstrated that 

staphylococcal biofilms may preferentially accumulate in porous coatings on state-of-the-art Ti-6Al-4V 

surfaces with a significant increase noted above 15% porosity and/or pores up to 150 µm [39].  
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Following hot isostatic pressing, sandblasting or polishing was shown to successfully remove partially 

melted precursor particles (Figure 2). These processes were both shown to significantly reduce Sa 

values compared with equivalent HIPed parts (Figure 4c), resulting in values comparable to those 

reported for polished conventionally manufactured Ti-6Al-4V surfaces [40]. While interferometry analysis 

suggested that all treatments resulted in surfaces that exhibited reproducible Sa values (Figure 4b), 

microscopy images revealed that sandblasted and polished surfaces were qualitatively not spatially 

consistent across the entire top surface (Figure 2). This was particularly apparent for polished samples; 

many sections of the tracks produced, as a result of the island scanning strategy, were still present. It is 

suggested that these localised areas, which are expected to have exhibited a higher degree of 

roughness, explain why viable MC3T3 pre-osteoblasts were observed to cluster on these surfaces after 

7 days of culture (Figure 5d). Since similar levels of viability, metabolic activity and cytotoxicity were 

seen on days 1 and 3 between all SLM samples (Figures 5 and 6) it is suggested that the localised 

rough areas of polished samples supported initial attachment of MC3T3 cells but the mirror-like finish 

across the rest of the surface area was not conducive to migration and proliferation. This inconsistent 

surface finishing resulted in a significantly lower Alamar blue reduction and higher LDH cytotoxicity after 

7 days of culture (HIP + P compared with HIP). Since only the top surface of SLM parts exhibit the 

peaks and trough of this fabrication approach, cellular adhesion to other faces is expected to have been 

minimal. The peaks and troughs of the island scanning strategy were less apparent in sandblasted 

samples compared with AF and HIP samples, which may explain why similar mammalian cell behaviour 

was observed on HIP + SB samples compared with HIP + P surfaces.  However, viable cells were not 

observed to cluster on the surfaces of sandblasted parts as seen on polished parts and instead were 

more randomly distributed (Figure 5). In addition to quantifying Sa, Wennerberg and Albrektsson  

recommended the use of average spacing between irregularities crossing the mean plane (Scx) and 

developed surface area ratio (Sdr), i.e. a ratio between 3D measurement and a 2D reference plane [41]. 

While Wennerberg’s study was focused on topographical evaluation of screw-type oral implants [41], the 
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results of this study demonstrate that simultaneous quantification of these three parameters may be 

particularly useful in evaluating AM implants. Mathematical descriptions of these parameters may be 

found in the work of Stout et al. [42]. 

It is possible that the parts analysed in this study exhibited different surface chemistries and this may 

have contributed to changes in cellular behaviour. For example, Vaithilingam et al. detected 

heterogeneity and differences in vanadium concentration on the surfaces of as-fabricated and 

mechanically polished SLM Ti-6Al-4V parts using X-ray photoelectron spectroscopy [43]. However, 

Vaithilingham et al.  concluded that these chemical differences did not influence the viability of seeded 

fibroblasts assessed by LDH and Live/Dead assays but no cellular functionality testing was performed.  

While fewer MC3T3 cells adhered to sandblasted and polished surfaces compared with AF and HIP 

samples (Figure 5) this trend was not observed for the three investigated bacterial organisms (Figure 

7). In the case of some samples (Staphylococcus aureus and epidermidis – hole; Staphylococcus 

aureus and Pseudomonas aeruginosa – no hole) significantly more biofilm formed on HIP + SB 

implants compared with HIPing alone, however no consistent trends were observed for the crystal violet 

assay (Figure 7a). This may have been due to the experimental set up, in which bacterial cells could 

adhere to all available surfaces (i.e. top and curved sides – Figure 1a). In comparison initial seeding 

and subsequent live/dead staining was only conducted on the top flat surfaces, which were shown to 

exhibit significantly different Sa values (Figure 4) and more clear differences in bacterial adhesion 

between surfaces (Figure 7b and c). This highlights the importance of considering any topographical 

variations in part surfaces which are built in different orientations to the build plate (i.e. top versus side).    

Cerca et al. demonstrated that clinical isolates of Staphylococcus epidermidis adhered to a greater 

extent on hydrophobic surfaces compared with hydrophilic [44]. Interestingly in this study, confocal z-

stacks revealed that initial adhesion of all three bacterial species was more homogeneous and dense 

for sandblasted samples, which exhibited the lowest contact angle compared with all other surfaces 
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(Figures 3 and 7c). Therefore, this may suggest that contaminated blast media was embedded onto the 

SB surfaces, which may have increased the propensity for these surfaces to be colonised. As an aside 

observation, during contact angle measurements it was noted that the water droplet quickly (< 1 

minute) flattened on SB surfaces, which may suggest that it penetrated the AM part. Other authors 

have reported higher but still hydrophilic, contact angles (55 - 65º) for sandblasted titanium surfaces [45], 

which may support the assertion that the contact angle reported here (7.90 ± 1.65º) for SB surfaces 

after 1 minute was skewed due to water penetration. Regardless, these results suggest that 

sandblasting may put implant surface at greater risk of bacterial adhesion if the blast media is not 

sufficiently removed.  

The adhesion of Staphylococcus aureus and Staphylococcus epidermidis appeared to preferentially 

occur on the peaks of laser scanning tracks, Pseudomonas aeruginosa was more widely spread across 

all surface treatments (Figure 7b and c). P. aeruginosa is generally considered to be an efficient biofilm 

forming organism which is able to colonise a wide range of inorganic and organic surfaces [46]. The 

more even adhesion of this species reflects this capacity of the organism. In the case of the polished 

implants both staphylococci generally locally adhered to rougher surface defects and few cells were 

observed on the ‘mirror-like’ areas. Ploux et al. highlighted the complexity of these material/bacteria 

interactions and demonstrated similar degrees of variation in the effect of surface topography on 

bacterial responses [47]. The great majority of cells of all three species were viable upon staining with 

only small numbers of dead cells visible, therefore whilst adhesion patterns differ between surface 

treatments and species this is not likely to be a reflection of different antimicrobial properties of the 

material.  

This exploratory study demonstrates that different post-processing techniques may present the 

opportunity to tailor cellular adhesion, perhaps with the view of encouraging or discouraging tissue 

integration for specific clinical applications. For example, osseointegration of the non-articulating 

surfaces of joint arthroplasty components would be beneficial, whereas it would be detrimental in 
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components that are designed to be removed, such as paediatric intramedullary nails. However, the 

similar behaviour of bacterial cells on these surfaces demonstrates a potential trade-off in this 

approach; often referred to as the race for the surface [48]. To understand these correlations more fully 

future studies should be designed to enable multi-regression analysis to be employed [39]. Developing 

biomaterials able to favour cell adhesion without promoting bacterial adhesion is still a challenge. 

Furthermore, co-culturing mammalian and bacterial cells to obtain a more accurate representation of in-

vivo  surface competition mains difficult since proliferation of the bacteria may result in unfavourable 

conditions to sustain osteoblast viability [49]. While the literature concerning the effectiveness of surface 

topography to modulate bacterial adhesion is variable, some chemical modification approaches have 

shown promise, including antimicrobial peptide coatings [50-52].  

5.0 Conclusions 
Here the possibility to alter the surface topography of additively manufactured implants post-

manufacture to elicit distinct cellular behaviour was demonstrated. This approach presents the 

opportunity to tailor implant osseointegration, which may be useful in orthopaedics since the degree of 

tissue integration may be application and patient specific.  

Specifically, as-fabricated and hot isostatically pressed parts manufactured using selective laser 

melting demonstrated a high degree of pre-osteoblast adhesion and the ability to support proliferation 

as well as migration. It was highlighted that partially melted Ti-6Al-4V particles on these surfaces should 

be minimised, which is achievable through manufacturing optimisation, in order to maximise the surface 

area for tissue adhesion. Contrastingly, significantly fewer osteoblasts were viable on sandblasted and 

polished AM surfaces after 7 days. Utilising these processes to create bespoke prostheses that are 

designed to be removed, for example paediatric intramedullary nails, presents a potential new 

advantage of adopting an additive manufacturing route.  
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Increasing prevalence of orthopaedic implant infection and the global development of antimicrobial 

resistance highlights the need to develop implants which prevent bacterial adhesion. Despite the 

minimal adhesion of osteoblasts to sandblasted and polished surfaces three bacterial organisms 

commonly associated with orthopaedic infections were still shown to adhere and develop biofilms. 

While these surfaces were not designed to be antimicrobial these results demonstrate the complexity of 

engineering ‘the race to the surface’. It is concluded that this challenge will likely require a combined 

physical and chemical approach.   
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