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A B S T R A C T

The activity of transition metal sulfides for the hydrogen evolution reaction (HER) can be increased by sulfur-
enrichment of active metal-sulfide sites. In this report, we investigate the electrochemical sulfidation of atmo-
spherically aged WS2 nanoarrays with respect to enhancing HER activity. In contrast to MoS2, it is found that
sulfidation diminishes HER activity. Electrochemical and XPS experiments suggest the involvement of insoluble
tungsten oxides in the altered HER and electron transfer properties. This demonstrates the strong dependence of
the transition metal dichalcogenide (TMD) composition with the successful sulfur incorporation and subsequent
HER activity.

1. Introduction

The demand for sustainable sources of electrochemical hydrogen
production [1] has triggered the development of the abundant and low-
cost TMDs as substitutes to the best performing platinum group metal
catalysts for the hydrogen evolution reaction (HER) [2–5].

To improve their HER activity, research has focussed on the pre-
paration of S-rich TMD structures which surpass the 1:2 M:X stoichio-
metry found in bulk materials [6–8]. Such sulfur enrichment aims to
incorporate more bridging S22− and terminal S2− moieties into the
TMD structure; both consistently reported as being the active sites in-
volved in proton adsorption and desorption [9,10]. Enhanced HER
performance has been reported for S-rich structures such as amorphous
MoS2+x [11–15] and WS2.64 electrodeposited thin films [9], as well as
on wet chemical synthesis-prepared MoS2+x [16,17] or MX3/MX2

physical mixtures [18]. However, some of the proposed structures ex-
hibit diminished HER performances after atmospheric or electro-
chemically-induced sulfur depletion [14,18] or impurities presence
[19].

We report the use of a one step, room temperature electrochemical
sulfidation method initially developed for MoS2 [20], for sulfur-en-
riching WS2. In particular, atmospherically-aged WS2 nanocone arrays
which are of interest due to their enhanced electrocatalytic properties
[21]. Changes in the electrocatalytic behaviour are understood via

monitoring surface composition, morphology, and electron transfer
properties over a one month period by XPS, SEM, and voltammetric
experiments.

2. Materials and methods

2.1. Fabrication

The plasma-etch fabrication method used is based on a literature
method [22–24], recently reported in TMDs for electrocatalytic appli-
cations [20,21,25].

In short, WS2 (defect-free, 99.9995% purity, 2D Semiconductors
USA) crystals cut into rectangles of approximately 1.5 × 5 mm were
affixed to glassy carbon (GC) type 2 stubs (7 mm diameter, 2 mm thick,
Alfa Aesar, UK) with carbon tape. A 20 μL mixture of a 216 ± 4 nm
diameter polystyrene-latex nanosphere (NS) suspension (3000 Series
Nanosphere, 1 wt% in water, Thermo Scientific, UK) with absolute
ethanol in a 1:1 vol. ratio was transferred to a silicon wafer (previously
cleaned with piranha solution and oxygen plasma) to form a self-as-
sembled, hexagonal close-packed, NS monolayer. The NS monolayer
was transferred onto the liquid interface of a water-filled Petri dish
containing the TMD-modified GC stubs, and the supernatant extracted
with a syringe to promote NS deposition onto the TMD surface.

NS-modified TMDs etching was carried out in an Oxford
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Instruments Plasmalab NGP 80 ICP/RF etcher. Isotropic oxygen plasma
etching (40 s, 30 sccm O2 flow rate, 100 W RF power) was performed as
an NS shrinking step. Afterwards, exposure to an anisotropic plasma
etching mixture of SF6/C4F8 (20 sccm/30 sccm, 200 W ICP, 20 W RF
power) for variable times (15–60 s) was carried out to obtain nanocone
arrays with variable aspect ratios. Pressures of 15 mTorr and tem-
peratures of 20 °C were used in both etching steps. SEM micrographs of
the electrochemically tested samples before/after sulfidation were ac-
quired to determine the aspect ratio (nanocone height/base diameter),
interspacing, and dimensionless radial (R, domain radius/nanocone
radius) and normal (Z, nanocone height/nanocone radius) coordinates
[26] of the individual nanostructures in the array (XL 30 SFEG and
JEOL 7100 FEG-SEM, 5 kV, tilt angles from 45° to 85°).

2.2. Electrochemical characterization

Electrochemical measurements were carried out with a PC-con-
trolled PGSTAT128N potentiostat (Metrohm Autolab B·V, Netherlands)
in a thermostatted three-electrode electrochemical cell (23 ± 2 °C).
The electrodes used were: a bright Pt mesh counter (Alfa Aesar Ltd.,
UK), a double junction saturated Ag/AgCl reference (electrochemical
sulfidation experiments, Sigma-Aldrich), a saturated calomel (SCE) re-
ference electrode (HER experiments, BAS Inc., Japan) and TMD-mod-
ified GC stubs connected to a rotating disk working electrode (OrigaLys
ElectroChem SAS, France).

HER experiments were carried out in a 2 mM HClO4 (ACS ≥70%,
Sigma-Aldrich), 0.1 M NaClO4 (ACS ≥98%, Sigma-Aldrich) solution
using a range of voltage scan rates (2–1200 mV s−1). Preconditioning
of TMD electrodes prior to HER experiments was via 10 cycles from
−0.045 to −1.645 V (vs SCE) at a voltage scan rate of 50 mV s−1.
Additional capacitance (voltage range −0.2 to 0.2 V vs. NHE, scan
rates 10–500 mV s−1) and impedance measurements (voltage range 0
to −1.645 V vs. SCE, frequency range 10−1 to 105 Hz, voltage ampli-
tude 10 mV) were performed alongside all HER measurements to apply
roughness factor and iR compensation corrections. HER potentials are
referenced versus the normal hydrogen electrode (NHE) by means of
Nernstian shift correction (ENHE = 0.242 V + 0.059 pH).

Investigation of heterogeneous electron transfer (HET) rates was
performed under the same conditions as of Pumera et al. for ease of
reference [5,13], by acquiring five CVs in 10 mM K4Fe(CN)6/K3Fe(CN)
6 (BioUltra ≥99.5%, Sigma-Aldrich) electrolyte supported by a pH 7.2
phosphate buffer (50 mM potassium phosphate monobasic/potassium
phosphate dibasic trihydrate, ≥99%, Sigma-Aldrich) at scan rates from
10 to 300 mV s−1. Experimental HET rate constants (kappO) were cal-
culated by correlating the peak-to-peak separation of the Fe(CN)64−/Fe
(CN)63− redox couple with the dimensionless parameter ψ, using the
literature methods of Nicholson and Shain (ψ≈0.1 and
ΔEP < 210 mV) [27], and Klinger and Kochi (ψ < 0.1 and
ΔEP > 210 mV) [28]. A diffusion coefficient of 7.26 × 10−6 cm2 s−1

for the [Fe(CN)6]4−/3− redox pair was used in the calculation [29],
assuming α = 0.5 For the nanoarrays under study, Case 4 diffusion
behaviour (1D) was observed [30]. All electrolytes were freshly pre-
pared with ultrapure water (resistivity not< 18.2 MΩ ∙cm, Millipore
Milli-Q Direct 8), and thoroughly purged with N2 (Oxygen-free grade,
BOC Gases plc), and experiments run under a N2 atmosphere. All
glassware was cleaned with a dilute solution of KMnO4 in concentrated
H2SO4 followed by rinsing with ultrapure water.

2.3. XPS measurements

A Kratos Axis HSi X-ray photoelectron spectrophotometer (Aston
University) fitted with a charge neutraliser and operated using a Mg Kα
(1253.6 eV) achromatic radiation, was used to record spectra at a
pressure of< 1 × 10−9 Torr using a spot size of 100 μm. Pass energies
used were: 160 eV for survey spectra, and 20 eV for high resolution
scans of specific energy regions. Data processing was performed using

CASA XPS version 2.3.18PR1.0, with spectral energy corrected to the
adventitious C 1 s peak at 284.6 eV. Shirley backgrounds were applied
to high resolution peaks before being fitted with individual compo-
nents. W 4f spectra were fit using a FWHM of 0.98 eV, peak area ratios
of 4:3, doublet separations of 2.17 eV and Gaussian-Lorentz (30) line-
shape, with W 4f7/2 WS2 2H (32.7 eV), W 4f7/2 WS2 1 T (31.7 eV) and
W 4f7/2 WO2 (33.1 eV) components, whilst the overlapping W 5p3/2
feature was fitted with a FWHM of 2 eV, a Gaussian-Lorentz (30)
lineshape and a binding energy of 38.1 eV. Sulfur 2p peaks were fitted
with a FWHM of 1.03 eV, peak area ratios of 2:1 and a binding energy
for S 2p3/2 WS2 of 162.3 eV [31,32].

3. Results and discussion

For reinstating, or improving, the initial HER activity of atmo-
spherically-exposed WS2 samples, a solution-phase method previously
demonstrated for MoS2 nanoarrays [20] was used. This requires voltage
cycling of the TMD samples in a pH 3 solution containing 10 mM
Na2S2O3 and 0.1 M Na2SO4 whereby S2O3

2− spontaneously decom-
poses to form colloidal sulfur [33].

+ ⇌ +
− + −S O (aq) H (aq) S (s) HSO2 3

2
3

An anodic sweep to fully oxidize the TMD surface, was followed by a
cathodic scan to maximize sulfur incorporation onto the TMD surface
by reduction

+ ⇌ +
− −S (s) 2e S (aq)2

For MoS2, electrochemically-induced surface oxidation (at
E > +1 V vs Ag/AgCl) yields the acid-soluble MoO4

2− species [34].
Sulfur incorporation after surface oxidation suggests that MoO4

2−

species assist in the overall sulfidation mechanism. For WS2, the cyclic
voltammogram obtained during the sulfidation treatment is similar to
that of MoS2 [20].

The application of this method to WS2 was evaluated by monitoring
HER performance, oxidation state, and electron transfer properties over
a one month period following this sulfidation treatment on previously
tested, atmospherically aged WS2 samples. This provided the following
observations: (i) freshly sulfidated samples did not necessarily present
enhanced HER performances compared with pre-sulfidated samples,
and (ii) the samples' HER peak current, after correction for roughness
factor, was inferior after a 3-week environmental exposure compared to
the pre-sulfidated, atmospherically-exposed state.

Both phenomena can be understood by changes in oxidation state
revealed by XPS. For the 31 ± 1 s (R= 2, Z = 6.4) plasma-etched
WS2 sample, the peak current decays to half of its initial value following
sulfidation (Fig. 1a). This is correlated to a decrease in the total S:W
ratio (from ca. 2:1 to 1.5:1, see Fig. 2e), and the appearance of WO2 at
the crystal surface up to ca. 24% (W 4f7/2/W 4f5/2 doublet lies at
binding energies of ca. 33 and 35.2 eV, respectively; Figs. 1c, 2a) [31].
Previous reports on bulk and chemically-exfoliated WS2 crystals suggest
that incorporation of WO2 is detrimental for the HER [18,35]. In the
case of the 31 ± 1 s sample, this is supported by the changed HER
kinetics (Tafel slope increase from 100 to 185 mV dec−1, Fig. 3c) and
higher onset potentials (|ηonset | from 173 to 207 mV).

Conversely, the 61 ± 1 s plasma-etched WS2 sample presented
higher peak currents (Fig. 1b) and kinetics (Tafel slope 130 vs. initial
210 mV dec−1, Fig. 3d) following sulfidation, despite the decay in the
total S:W ratio (from ca. 2:1 to 1.88:1, see Fig. 2f) and the 14% increase
in surface WO2 content (Figs. 1d and 2c). This initially non-linear trend
is found to be linked to the S:W ratio, if calculated solely using the W4+

XPS components characteristic of WS2. Sulfur-rich S:W ratios promote
enhanced HER performance and vice versa. Maximum peak currents
coincide with the highest sulfur-to-metal ratios for both 31 ± 1 s
(S:W = 2.08:1, jp ≈ 9 mA cm−2, day 8) and 61 ± 1 s (S:W = 2.18:1,
j≈ 1.6 mA cm−2, freshly sulfidated) samples. After these peak values,
both post-sulfidated 31 ± 1 s and 61 ± 1 s etched samples exhibited
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an HER current decrease in subsequent electrochemical testing to va-
lues lower or comparable with the freshly sulfidated state, due to lower
S:W ratios. This accords with previous investigations which correlated
higher sulfur content in TMDs with improved hydrogen turnover fre-
quencies [12,14], and sulfur-depleted W-edge sites of electro-oxidised
WS2 with poor catalytic activity [35]. We hypothesize that the elec-
trochemically-induced restructuring gradually depletes the WO2 phase,
initially exposing underlying WS2 with high active site densities which
are later reconstructed during atmospheric and experimental conditions
to a more homogeneous nanostructure (Fig. 2g–h).

The cathodic feature appearing at E ca. −0.4 V vs NHE in the HER
experiments (Fig. 3a and b) is ascribed to the diffusion decay peak
profile of proton reduction catalysed by the WS2 active sites, char-
acteristic of the fully-supported, low proton concentration electrolyte
used [36,37]. Indeed, the resolution of this peak also seems correlated
with the S2−:W4+ ratio, and consequently to the active sites present.

With regard to the electron transfer kinetics, both samples exhibit
higher kappO values (≈4 × 10−5 cms−1) after undergoing the sulfida-
tion treatment (Fig. 1e–f). This agrees with literature reports which
found enhanced electrical conductivities of WOx species vs. WS2 [38],
beneficial for mediating in the redox chemistry of surface sensitive
species such as Fe(CN)64−/Fe(CN)63−. A gradual decrease in kappO

values after two weeks of testing correlates with reduced WO2 content
at the crystal surface, whereas restored kappO values after three weeks
can be attributed to the higher WS2 metallic 1T polymorph contents (ca.
10–15%).

These results suggest that this sulfidation method does not in-
corporate sulfur into the atmospherically aged WS2 samples. Instead, it
promotes the appearance of WOx moieties at the WSx surface which are
reduced in the cathodic sweep. We hypothesize that in general, the
sulfur incorporation is only effective when the electro-oxidative step of
TMDs forms acid-soluble species, as sulfur incorporation into atmo-
spherically-aged MoS2 crystals was optimal when the cathodic voltage
vertex surpassed the reduction potential of the TMD oxidised species
(MoO4

2−) [20]. In the case of WS2, the oxidised WOx species generated

during the electro-oxidative step are insoluble at pH≤ 3 [39], coin-
ciding with the optimized pH value for the sulfidation electrolyte
(pH 3). Consequently, the electroreduced sulfur cannot be incorporated
into the WOx structure, and would dissolve under acidic conditions
[40]. Hence, we predict that the electrochemical solvent-phase sulfi-
dation method is only suited for MoX2 (X = S, Se) rather than for WX2

(X = S, Se).

4. Conclusions

In contrast to MoS2, the application of the solution-phase, room-
temperature electrochemical sulfidation method to obtain S-rich
structures did not lead to S-rich WSx but to S-deficient WSx structures
with high WO2 surface content. The inferior HER performances but
improved electron transfer properties are in agreement with the detri-
mental effect reported after WO2 incorporation into WS2 for the HER
catalysis. The unsuccessful incorporation of electroreduced sulfide in
the WSx structure is suspected to arise from the nature of the sulfidation
mechanism: redeposition of acid-soluble MoO4

2− species for MoX2

improves S2− incorporation onto the surface, which is not possible in
the case of WX2 as the WOx compounds formed are acid insoluble. This
demonstrates the key role of the nature of the TMDs in the successful
electrochemical incorporation of sulfur in their structure, and reveals
that an electrochemistry-based sulfidation method universally applic-
able for any TMDs remains to be developed.

Acknowledgments

We thank the EPSRC for financial support via fellowship (REP, EP/
L015749/1) and the Centre for Doctoral Training in Fuel Cells and their
Fuels (DE-L, NVR, EP/G037116/1). The authors also thank Martin Roe
and Nigel Neate from the Nanoscale and Microscale Research Centre
(NMRC, EP/L022494/1) for the SEM micrograph acquisition (JEOL
7100F FEG-SEM.)

Fig. 1. Comparison of: a)–b) roughness-factor corrected HER peak current densities at υ = 25 mV s−1, c)–d) WO2 surface content (left axis) and S2−:W4+ XPS atomic photoemission
ratios (right axis), and e)–f) kappO values for the [Fe(CN)6]4−/[Fe(CN)6]3− redox probe, for atmospherically aged, sulfidation treated plasma-etched WS2 samples 31 ± 1 s (R= 2,
Z = 6.4, first row) and 61 ± 1 s (second row), after weekly electrochemical testing over a three-week ambient exposure period.
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