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Abstract 19 

During clean-in-place (CIP), solutions are pumped through process equipment to remove soils having 20 

adverse effects on production. In order to validate reductions in CIP inputs, foulants need to be 21 

detectable and quantifiable on smaller scales than current industrial practices. In this study, fluorescent 22 

microscopy was used for quantifying macroscopic cleanliness of a soiled stainless steel coupon after CIP. 23 

An asymptotic model was used to describe the removal of soil as a function of the coupon exposure 24 

time and cleaning solution temperature. From these models, cleaning parameters were determined and 25 

used to generate coupons predicted to be 99.0 and 99.9% clean. This cleanliness was verified using 26 

atomic force microscopy (AFM). AFM identified foulant on the order of 5 μm
2
 on a 1.0 x 10

4
 μm

2
 area. 27 

AFM showed cleanliness ranging from 99.41 to 99.94 %. Differences between predicted and actual 28 

cleanliness suggest a change in cleaning mechanism at different scales.  29 

  30 

 31 

 32 

 33 
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1. Introduction 39 

 The process of cleaning in place (CIP) is typically achieved by pumping large volumes of cleaning 40 

solution (most commonly detergents or strong bases) through process pipelines and sprayed on tank 41 

walls to remove residual deposits from contact surfaces (Heldman and Lund, 2007). There are variations 42 

on CIP steps but all of them would contain a “cleaning” step. During the cleaning step (which usually 43 

comes after a pre-rinse of the system with water) detergent solutions are pumped through the system 44 

to remove strongly adhered deposits. Several CIP variables surrounding the detergent solutions have 45 

been investigated in the past for their significance in effective cleaning during CIP (Fickak et al., 2011; 46 

Gillham et al., 1999; Jeurnink and Brinkman, 1994). Recently, the area of CIP has developed interest 47 

from industrial perspectives because reduction in water inputs to cleaning operations can reduce total 48 

plant water consumption significantly (Tiwari et al., 2016).  To this effect, researchers have specifically 49 

begun to investigate reductions in water, chemical, electrical energy and time consumption during CIP. 50 

Reductions in total inputs to a CIP operation must maintain hygiene after a CIP operation is complete. 51 

Furthermore, despite various advances in CIP research and technology, industries often use a visual 52 

check to validate CIP protocols (Forsyth et al., 2006). Therefore, advances in defining a clean contact 53 

surface on smaller scales must be developed in an effort to better quantify the effect of reducing CIP 54 

inputs (water, chemicals and energy). Without better defining “how clean is clean,” clean process 55 

technology advances are limited (Bakeev, 2010; Jones et al., 2012).  56 

 In cleaning research, the size of deposit is an important variable to define, especially when 57 

comparing deposits of different magnitudes. ‘Length’ scales to describe the size of deposits in cleaning 58 

and fouling research have been previously presented (Akhtar et al., 2010). The presented scale describes 59 

fouling layers ranging from millimeter lengths (e.g. residual thick material in tanks or lines after 60 

processing) down to nanometer lengths (e.g. molecules on a contact surface). There is a large range of 61 
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foulant materials ranging between the molecular level (very small) and thick films (very large). Included 62 

in this range is the “meso” scale sized foulant materials. The Meso scale, although not perfectly defined, 63 

represents a large majority of the body of cleaning research. Examples of meso scale foulants in food 64 

manufacturing include heat exchanger burn on and mineral build up. Recent research has correlated the 65 

meso scale adherence of foulant at the nano scale. Akhtar et al., (2010) investigated the force required 66 

to remove a foulant adhered to various substrates on the meso scale using micro-manipulation 67 

techniques, and subsequently compared that to the nano scale force of adherence using atomic force 68 

microscopy (AFM). The authors found that there are correlations between meso and nano force 69 

requirements when correcting for surface area. Similarly, the research completed in this paper uses a 70 

fluorescence microscopy technique to create predictive cleaning models on the meso scale and compare 71 

those models to predicted cleanliness at the nano scale. 72 

Two types of forces have been previously described during the process of cleaning (Liu et al., 73 

2006). Cohesive forces are those that bond the foulant to itself, where adhesive forces bond the foulant 74 

to the surface. Many cases have shown the cleaning process begins as primarily cohesive removal and 75 

ends being entirely adhesive (Midelet and Carpentier, 2004; Palabiyik et al., 2014). Conditions that 76 

determine which set of forces control the process, and how this can be altered, are largely unknown. 77 

Furthermore, these two phases of foulant removal (adhesive and cohesive cleaning) predominate 78 

differently on different sizes of foulant. For example large deposits (cm length scale) will primarily 79 

undergo cohesive removal initially where small deposits (nm length scale) require primarily adhesive 80 

forces. In the nano length scale, during cleaning, the removal of deposits can be considered entirely 81 

adhesive (Bobe et al., 2007; Okorn-schmidt et al., 2014). The research performed here focuses on the 82 

application of instrumentation developed for nano technology to investigate what is happening on a 83 

molecular level towards the completion of a cleaning process. 84 
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In cleaning research, the method for quantifying hygiene level is clearly defined and governed 85 

by the scale at which the investigation is pertinent. (Cole et al., (2010) investigated removal of large 86 

deposits by completely filling an industrial pipe section with toothpaste and applying water to remove 87 

the toothpaste. This scale is on the order of grams of deposit per area, or meters when discussing the 88 

length scale of foulant previously defined. In this case, Cole et al., (2010) used turbidity and electrical 89 

conductivity of the solution leaving the pipe as indicators of the removal of toothpaste from the pipeline 90 

during a rinse with pure water (i.e. no detergents or other cleaning agents) where the solution was 91 

directly pumped to the drain.  Determining cleaning time at this scale is governed by the detection limits 92 

of the instrumentation used and the removal of nanometer length sized deposits may have been 93 

undetectable by the instrument response (Klahre and Flemming, 2000; Van Asselt et al., 2002). The 94 

research performed in this manner, i.e.  research that primarily focuses on large visual deposits, can be 95 

considered macro-foulant research.  96 

Other research has evaluated extremely sensitive instrumentation for detecting deposit 97 

formation and removal on the nano lengths scale. Chen et al., (2010) and Favrat et al., (2012) used a 98 

quartz crystal microbalance (QCM) which allows for real time determination of nano-gram amounts of 99 

deposit on various substrates determined by changes in vibrational properties of the substrate itself. 100 

The QCM technology provides knowledge of deposition and removal of foulants at the molecular level 101 

but is also limited in range, which does not allow it to form a commercially relevant thickness of foulant 102 

on the substrate. 103 

A large body of academic literature focuses on the meso length scale.  For example, whey 104 

protein gels have been used to study the mass transfer of detergent in to a model foulant (Fickak et al., 105 

2011; Mercadé-Prieto et al., 2008; Mercadé-Prieto and Chen, 2006) at mm to micron scale . The passage 106 

of chemicals in to the foulant deposit is the first necessary step in removing deposits which remain after 107 
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a water rinse. This concept is transferrable to the deposit on the nano length scale, because nano-scale 108 

deposits of dairy based foulants need chemical modification prior to removal. This chemical 109 

modification is governed by the rate of diffusion of cleaning agent in to  deposit and therefore 110 

represents a mass transfer step prior to either dissolution of the foulant or physical removal (peeling) of 111 

the deposit (Changani et al., 1997; Fryer et al., 2006). 112 

Deposits in the hundreds of nano grams of foulant per square centimeter represent the micro 113 

length scale as well as that which can be considered primarily adhesive removal. Fan et al., (2015) 114 

studied the removal of a dairy type foulant from the surface of commercial pipelines. Residual deposit 115 

levels, after a rinse cycle was complete, were determined by extracting foulant residues from the inner 116 

pipe surface in to a solution and subsequently determining the protein content of that solution. Here, 117 

alkaline solutions were used to dissolve the remaining dairy based deposit in to solution and said 118 

solutions protein level was used as an indicator for residual deposit in the pipe section. Limitations with 119 

the degree of detection in this method are directly tied to the volume of extraction fluid and extraction 120 

process. For example, too little extraction fluid used runs the risk of not removing 100 % of the 121 

remaining foulant while too much fluid dilutes the concentration of protein in the extraction and 122 

renders it below the detection limit of the assay. 123 

It was the goal of this research to develop an analytical methodology to investigate “visual 124 

cleanliness” using fluorescent microscopy and subsequently compare cleaning rates to the level of 125 

hygiene on a nano-level using atomic force microscopy (AFM). AFM has been used previously to 126 

characterize adhesion forces (Fang et al., 2000; Handojo et al., 2009). The focus of the research 127 

presented in this paper was the use nano instrumentation to detect nano level residual foulant material 128 

on food contact surfaces, subsequently employing methods to quantify the nano-deposit using image 129 

processing. Multiple approaches to the detection and quantification of nano deposits using atomic force 130 
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microscopy were explored. This work differs from the majority of industrial cleaning research by 131 

identifying the deposit itself in situ opposed to looking at the indicators of foulant in a cleaning solution. 132 

2. Materials and methods 133 

2.1 Substrate characterization  134 

 Square 2.54 x 2.54 cm stainless steel (316L type) coupons were used as the model food contact 135 

substrate in this study. Coupons were polished to a mirror finish using automotive grade sand papers 136 

and polishing compound. Coupons were analyzed using atomic force microscopy (AFM) in tapping mode 137 

to characterize surface properties prior to use in experimentaiton. A Nanowizard II AFM (JPK 138 

Instruments AG, Berlin, Germany) was used for all AFM analyses performed. For initial roughness 139 

determination it was imperative that the coupons surface be clean. Because “clean” is focal point of the 140 

research, it is important to note – in detail – this method. To achieve “clean” coupons, coupons (after 141 

polishing) were cleaned using 2.0 % (wt./wt.) NaOH and distilled water at 80 °C under agitation for 1 142 

hour. Coupons were removed and rinsed with 1.0 % (vol./vol.) aqueous solutions of HCl. Coupons were 143 

subsequently soaked in hexane for 5 minutes and then acetone for another 5 minutes. All solvents were 144 

HPLC grade solvents purchased from Fisher Scientific LLC. After removal from acetone, samples were 145 

allowed to air dry and were then analyzed using the AFM. A 100 x 100 μm area was scanned with a 512 x 146 

512 resolution. Cross sectional analysis was completed using JPKSPM Image Software. Surface 147 

roughness (Ra), root mean square roughness (Rq) and peak to valley roughness (Rt) was determined for 148 

all coupons used in this study. Results for initial surface characteristics are: Ra = 95 nm (±17 nm), Rq = 149 

131(±26 nm) and Rt = 744 (±142 nm). After AFM analysis, the coupons showed sufficient similarity in 150 

roughness to justify their use in the present study. 151 

2.2 Foulant deposition 152 
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Whey protein concentrate (WPC) solutions were used as the model foulant to be adhered to the 153 

stainless steel substrate. 10 % (wt./wt.) solutions of WPC (CARBALEC 35, Carbery, Ballineen, Co Cork, 154 

Ireland) were created by blending WPC powder with distilled water at room temperature while being 155 

stirred with a magnetic stir bar on a stir plate for an hour or until homogenous. Significant effort was 156 

made to minimize aeration of the solution during the mixing/hydration stage to minimize foaming and 157 

denaturation of the proteins in solution. 1 ml of the WPC solution was then pipetted on to the stainless 158 

steel coupon and the coupon was then heated at 75 °C for 1 hour on a hot plate. This time and 159 

temperature profile was used because it minimized bubble formation (because it was well below 100 °C) 160 

and allowed gelation of the solution. The heating process induced gelation as well as dehydrated the 161 

foulant on to the coupon surface. The coupons were then cooled to room temperature before exposure 162 

to clean in place conditions. 163 

Consistency of the initial foulant deposit was tested by checking the increase in coupon mass 164 

after heating. Since 1 ml of 10 % (wt./wt.) solution was applied to each coupon, the increase in mass 165 

should be around 0.1 g (solids in 1 ml). Results showed mass was increased 0.114 (±0.012) g.   166 

2.3 Cleaning procedure 167 

 0.5 % (wt./wt.) solutions of NaOH were used as the clean in place (CIP) solution during this 168 

study. 1000 g of solution was added to a 2 L (D = 6.25 cm) beaker and was stirred using a 4.5 cm stir bar 169 

at 300 rotations per minute (RPM). The clean in place (CIP) variable of interest in this study was the 170 

temperature of the caustic solution. Temperature and RPM was monitored and controlled by using 171 

Adwin Scientific IKA heated stir plate (Adwin Scientific Direct, Schaumburg, Illinois, USA). Coupons were 172 

exposed to 40, 55 and 70 °C cleaning solutions for varying periods of time by suspending the coupon in 173 

the CIP solution using an attached string for exposure and removal to the solution. The coupon was 174 

lowered so that the center face of the coupon was 0.06 m below the surface of the cleaning solution 175 
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with the coupon’s back against the beaker wall. The temperature range was selected to ensure 176 

significant separation of cleaning rates between the treatments.  177 

To evaluate the flow conditions of the benchtop vessel, two approaches were utilized. Firstly, 178 

the impeller Reynolds number (����) was used to calculate turbulence level at each temperature 179 

condition. ���� (Eq. 1) is calculated as; 180 

���� =	
��	


�
        (1) 181 

Where ρ is the density of water at T, N is rotations per second of the stir bar, D is the diameter of the stir 182 

bar and μ is the viscosity of water at T. Values for density and viscosity of water were obtained from the 183 

National Institute of Standards and Technology (NIST) database. The turbulence value for a stirred vessel 184 

begins at NRe = 10,000 (Sinnott, 1999). The corresponding NRe values for 40, 55 and 70 °C are 15,400, 185 

19,800 and 24,500 respectively. All of which correspond to a turbulent flow condition which would be 186 

targeted during CIP. Although the ���� 	represents turbulence at the tip of the impeller, with all other 187 

conditions held constant (vessel size, volume of solution and rotational speed) it can be used to 188 

correlate the relative turbulence changes between conditions. 189 

 The second approach at characterizing the flow conditions in the benchtop vessel was to create 190 

a computational fluid dynamics (CFD) model of the design and extract various flow parameters from the 191 

simulation. COMSOL Multiphysics (Version 5.2a, Palo Alto, California, USA) was used to create the 192 

physical design of the system in a digital space. For the CFD model, the turbulent k-ε flow was used with 193 

the rotating machinery physics module to simulate the beaker stir bar combination. Average shear rate 194 

over the coupon surface was extracted using the rmspf.sr expression. Shear rate over the coupon 195 

surface for 40, 55 and 70 °C was determined to be 62.3, 74.5 and 85.7 s-1 respectively. The CFD model 196 

was also used to calculate the average velocity (by integration of the velocity profile distribution) from 197 
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the surface of the coupon, to 0.5 cm away from the surface. The average velocity was determined for 198 

40, 55 and 70 °C to be 16.9, 17.3 and 17.5 cms
-1

 respectively. The slight changes in average velocity are 199 

due to the changes in viscosity at the various temperatures in the mixing tank model.   200 

It is important to clarify that the purpose of the research was not specifically to characterize the 201 

effects of temperature on cleaning, rather the development of cleaning models at each temperature to 202 

extend to the AFM evaluations. Exposure times at each temperature were selected by first visually 203 

determining the time of removal foulant deposit under each condition. That time of (complete visual) 204 

removal was then divided evenly in to 6-7 time points between initial exposure and the endpoint. After 205 

removal from the cleaning solution, coupons were rinsed with ~25 ml of distilled water and heated at 75 206 

°C on a hot plate for 30 minutes to drive off excess moisture and secure residual foulant material to the 207 

coupon. After the CIP procedure, coupons were analyzed using fluorescent and atomic force 208 

microscopy. 209 

2.4 Fluorescent microscopy 210 

2.4.1 Instrumentation and image acquisition 211 

 The aim of this study was to characterize the removal of a foulant from a “visual” cleanliness 212 

method. In order to complete such an investigation, analytical methods for determining visual 213 

cleanliness had to be developed. Because dairy proteins naturally fluoresce, fluorescent microscopy was 214 

used as a surrogate to create an analytical method for visual cleanliness. Fluorescent images ware taken 215 

using a Leica digital microscope with a fluorescent light generator and digital filterset to look for 216 

fluorescent light in the 410-420 nm range (Moro et al., 2001). Images were acquired using a XIMEA 217 

MR285-MU (Ximea Corp., Golden, CO 80401, USA) at 10 times magnification using μManager software 218 

as the camera controlling software. At this magnification, approximately 90% of the 2.54 x 2.54 cm 219 

coupon was imaged, creating a macroscopic image of the coupon is its entirety. Significant effort was 220 
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made to control all aspects of image acquisitions and microscope adjustments to ensure identical image 221 

parameters for each acquisition. The 8-bit images were taken and subsequently analyzed using ImageJ 222 

(Schneider et al., 2012). 223 

2.4.2 Clean vs. dirty  224 

 Cleanliness was determined by using the intensity of pixels in the 8-bit color space (256 shades 225 

of grey). The histogram of color scores for a dirty coupon was achieved by imaging 6 coupons which had 226 

been fouled by the aforementioned foulant deposition process. The fluorescent images were acquired 227 

after a period of 30 s of exposure to fluorescent light to allow for stabilization of the photo bleaching. 228 

Dirty coupons were evaluated in an identical manner but the coupon was cleaned using the same 229 

solvent cleaning process from the substrate characterization process. Typical distribution frequency of 230 

pixels for each of these can be seen in Fig.  1. 231 

 Fig. 1 shows a clear separation between the clean and dirty coupons at an approximate color 232 

value of 41 to 51. Distributions of “clean” and “soiled” coupons were produced from 6 replicates and the 233 

grey value separating those distributions was determined (by evaluating the minimum of the sum of the 234 

two normal distributions) to be 45. Therefore, any pixel with a color score of 45 or above was 235 

considered to fluoresce bright enough that it would be considered “dirty” and any pixel with a score less 236 

than 45 was considered to be “clean.” There is a limitation in using fluorescence in that the intensity of 237 

whey proteins decays with time (photo bleaching). Classifying pixels as soiled vs. clean after fluorescent 238 

stabilization overcomes this issue. After the initial exponential decay (30 s) in fluorescent intensity (due 239 

to photo bleaching) residue proteins still have significant intensity to have them identify as being “dirty.” 240 

This evaluation method created a binary response from individual pixels in each image. 241 

Therefore, a complex image of various pixel intensities was converted in to only clean and dirty pixels. 242 

ImageJ was used to analyze the image and the percent area clean was calculated using Eq. 2. 243 
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 A% clean = (1 −
����

�	
)	�	100%     (2) 244 

Where A % is the percentage of area that is clean, n>45 is the sum total of the number of pixels in the 245 

image with a color score of 45 or above and N represents the total number of pixels in the image. A 246 

pictographic representation of the conversion of images from original image to percent clean can be 247 

seen in Fig.  2. 248 

2.4.3 Mathematical modeling 249 

 Fluorescent microscopy results were used to develop predictive models for the removal of the 250 

foulant from the stainless steel coupons. To model the removal, a sigmoidal function was selected as the 251 

fundamental equation. This was chosen for the following reasons; 252 

(i) The method of cleaning used is based on color intensity rather than the thickness of foulant 253 

in that pixel. Therefore, the process was predicted to have a larger induction cleaning period 254 

where the foulant would be swelling and dissolving in to the cleaning solution (Mercadé-255 

Prieto and Chen, 2006). During this swelling phase, this image analysis method would return 256 

a 100 % “dirty” response, even if some amount of layer ‘thickness’ had been removed. 257 

(ii) Secondly, if the swelling and dissolution of the foulant was evenly distributed over the 258 

coupon surface, then once “clean” pixels were exposed they would increase in number at 259 

some rate as a function of time. 260 

(iii) Lastly, there would have to be an asymptotic decay towards 100% “clean” pixel, as that is 261 

the only end point.  262 

Therefore, the sigmoidal growth model first proposed by Gompertz  (Gompertz, 1825) was used in this 263 

study. This model has been used and modified extensively throughout academic research primarily in 264 

microbiological studies (Belda-Galbis et al., 2014; Chatterjee et al., 2014; Hossain et al., 2016). Although 265 
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seldom used in swelling/dissolution research such as this, the model has been successful in fitting the 266 

various stages of microbial growth. The model used in this study can create sigmoidal curves which are 267 

symmetric around a central value using Eq. 3. 268 

 � = 		����		�
����(��� )         (3) 269 

Here ymax represents the maximum cleanliness value attainable by the model, t is the continuous 270 

variable of time, k represents the rate at which the sigmoid approaches its upper and lower asymptote 271 

and tm represents the time value at which 
!

! "#
	is equal to e

-1
. In this case ymax is equal to 100 % because 272 

that is the maximum level of cleanliness so it is removed from the model. Therefore there are only two 273 

parameter estimates needed to predict these sigmoidal functions from the fluorescent data; k and tm.  274 

2.4.4 Experimental design & statistical analysis 275 

 The fluorescent microscopy investigation was completed using a completely randomized design 276 

which included 3 temperatures and 6 levels of time for the 70 °C condition, 7 levels of time for the 55 °C 277 

condition and 8 levels of time for the 40 °C condition. PROC NLIN in SAS 9.4 (SAS Institute, Cary, North 278 

Carolina, USA) was used to estimate model parameters (k and tm) for the sigmoidal modeling of each 279 

temperature. The standard error of the parameter estimates were used as goodness of fit parameters. 280 

2.5 Atomic force microcopy 281 

2.5.1 Time point selection method  282 

Cleaning rates based on the fluorescent microscopy results were used to determine the cleaning 283 

time variables needed for the atomic force microscopy analysis portion of the research. Two predicted 284 

cleaning times were calculated from Equation 1 for each of the three temperatures (40, 55 and 70 °C). 285 

The two cleaning times were predicted by calculating the time at which the coupons would be predicted 286 
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to be 99.0 and 99.9 percent clean. This created 6 variables for the AFM analysis (3 temperatures at 2 287 

predicted cleanliness levels). This method was selected to investigate if the visual cleaning rate could be 288 

translated and continued in to the non-visual scale. If that case was true, then each of the AFM images 289 

for each level of predicted cleanliness would appear insignificantly different, and the difference in 290 

cleanliness within a temperature between 99.0 and 99.9% clean would be distinguishable. 291 

Samples for AFM analysis were fouled and subsequently exposed to CIP conditions for the 292 

predetermined times. Samples were then rinsed with distilled water and washed with room 293 

temperature (~23 °C) 1 % HCl to simulate an acid rinse which comes after the mid rinse step during the 294 

CIP operation. This HCl rinse is meant to remove any mineral based deposits which may originate from 295 

the fouling method, ensuring that any residual deposits detected could be considered a primarily 296 

proteinaceous based matrix. After the HCl rinse, coupons were again rinsed with ~25 ml of distilled 297 

water and dried on a 75 °C hot plate for approximately 30 minutes.  298 

2.5.2 Surface topography 299 

 Surface topography of samples was evaluated using AFM contact mode with a silicon nitride 300 

AFM tip with 0.32 N/m force constant (Part # PN-TR-TL-Au-20 A, Nanoworld AG, Neuchâtel, 301 

Switzerland). Tips were calibrated for spring constant and resonance frequency each session. 100 x 100 302 

μm areas were scanned with a 512 x 512 resolution and a tip speed of approximately 100 μm/s. Images 303 

were processed using JPKSPM Data Processing Software. Images were corrected to have fixed 304 

height/color values for direct comparison of the images and for further image analysis. 305 

2.5.3 Force mapping 306 

 Samples identified to have residual deposits from the surface topography were evaluated using 307 

a force mapping approach. The goal of force mapping was to correlate non-uniformities in surface 308 
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topographies with non-uniformities in attraction and repulsion forces between the tip and the surface. 309 

Confirmation of distinguishability between “clean” stainless steel and residual nano-deposits using force 310 

mapping could verify the existence of residual deposits even when the topography failed to identify it. 311 

For instance, if a small deposit was to reside between two peaks of the substrate, the region would 312 

appear smooth and clean from a topography evaluation. But if the force of integration responded 313 

differently to fouled regions, this method could identify the deposit in this scenario. 314 

Force mapped samples were evaluated using the tipless version of the AFM tip used in the 315 

surface topography evaluation. A 30 nm diameter stainless steel sphere (part # SSMMS-7.8 27-31um 316 

0.2g, Copheric LLC, Santa Barbara, CA, USA) was adhered to the cantilever using two part epoxy and the 317 

AFM controls. Again, 100 x 100 μm areas were mapped using 512 x 512 resolutions similar to what was 318 

used in the surface topography evaluation. 319 

3 Results & discussion 320 

3.1 Fluorescent microscopy   321 

Visual cleanliness determined by fluorescent microscopy results are presented in Fig. 3. Overlaid 322 

on the raw data are the Gompertz sigmoidal models. Parameter estimates and standard errors from 323 

each of these models are presented in Table 1. We can see that as the temperature of the cleaning 324 

solution increases that the k value increases while tm decreases. It has been well studied that increased 325 

temperatures increases the cleaning rate (Fan et al., 2015; Gillham et al., 1999). The goal of this research 326 

was to develop a method using fluorescent microscopy as a surrogate for visual cleanliness, not 327 

specifically to study the effect of temperature. Simeone et al., (2016) used fluorescence imaging and 328 

ultrasonic evaluation during the removal of chocolate sauce from stainless steel. Here, fluorescent 329 

intensity was well correlated with foulant thickness and a real time model for removal of the chocolate 330 

sauce were identified. The analytical methods in this paper are different than Simeone et al., (2016) 331 
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because thickness of the deposit could not be correlated with fluorescent intensity due to photo 332 

bleaching of whey proteins. Therefore, this research used a binary clean/dirty approach for images of 333 

fouled surfaces.  334 

Table 1: Table of the parameter estimates needed to create the fitted sigmoidal models on the fluorescent data (solid lines 335 
on Figure 2). The plus/minus refers to the standard error on the parameter estimate generated from SAS 9.4 PROC NLIN.  336 

Temp (°C) k (s
-1

) tm(s) 

40 0.064 ±0.01 92.0 ±1.1 

55 0.25 ±0.05 49.1 ±0.4 

70 0.41 ±0.03 32.7 ±0.2 

 337 

The Gompertz sigmoidal growth model tended to fit the data quite well across the whole set with an 338 

average percent standard error of 9.76 % and 1.7 % for k and tm respectively. The more interesting area 339 

of the sigmoid occurs at or near the value of tm, where the error between replicates can be quite large. 340 

For example, after a 90 s exposure time at 40 °C the coupon cleanliness ranged (in the statistical sense 341 

of ‘range’) from 25 to 49 % clean between the three replicates. This error would then decrease purely 342 

from the assumption about the model once the process heads towards 100% clean. This suggests that at 343 

the levels beyond the detectable range of the fluorescent microscope that the errors decrease. It is 344 

important to understand that in this particular sigmoid model, the larger statistical distribution of raw 345 

values (i.e. “percent clean”) is highest towards tm because this is the exponential portion of the model. 346 

Therefore, small differences in experimental error (say one extra second of exposure time from 347 

experimental error) has a large effect on the response. This is handled by the use of statistics to predict 348 

tm, and even though the deviation of raw values is large at this value of tm, the standard error is quite 349 

small. Similar methodologies for data processing are found in logarithmic transformation to data that is 350 

not identically distributed within the variables.  351 
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 The use of direct fluorescent microscopy (opposed to say ATP fluorescence) on a commercial 352 

active heating surface, which has been processing dairy based, products is largely unknown. Future 353 

investigations should focus on how a foulant formed under commercial processing conditions responds 354 

to fluorescent exposure and how to intensify and quantify this foulant.  355 

3.2 Atomic force microscopy 356 

3.2.1 Surface topography 357 

 Using the results from Table 1 in the fluorescent microscopy portion of the research, the 358 

exposure times needed to achieve 2 “levels of cleanliness” (99.0 and 99.9 %) for each temperature were 359 

calculated using Equation 2. Table 2 shows these exposure times for the 6 variables (3 temperature and 360 

2 levels of cleanliness) used for the surface topography and the force mapping completed using atomic 361 

force microscopy (AFM).  362 

Table 2: Calculated exposure times for generation of samples to be analyzed using AFM. Values were calculated using the 363 
parameter estimates in Table 2 and solving for time in Equation 2.  364 

 

 Predicted exposure time (s) 

Temperature (°C)  99.0 % clean 99.9 % clean 

40  165 200 

55  65 100 

70  45 60 

 365 

 Single image results for the surface topographies of each of these samples are presented in Fig. 366 

4. Here we can see when compared to the clean stainless steel surface, many of the samples have 367 

localized peaks which are up to 350 nm in height. These localized collections of peaks represent residual 368 

nano-foulant material on the surface which is not detectable through fluorescent microscopy because of 369 

its detection threshold being larger than AFM. Some interesting trends in residual deposit can be seen in 370 

the surface topographies. If we look across the 90.0 % clean coupons, samples are almost 371 
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indistinguishable from one another. The foulant islands in each of these maps are very similar in shape, 372 

size and quantity. It is important to reiterate that these samples were exposed to cleaning solution for 373 

very different period of times. The 40, 55 and 70 °C samples were exposed to 165, 65 and 45 s 374 

respectively (as noted in Table 3). The results suggest that at the 99.0 % cleanliness level predicted 375 

through fluorescence microscopy the removal rate parameters (k and tm) hold true.  376 

In contrast, when the topographies across the 99.9 % cleanliness level are compared, results 377 

appear different. Although each time point here was predicated to have the same cleanliness, the 378 

residual deposits on the surface increase with a decrease in temperature. Specifically, when looking at 379 

the difference in surface topography between 99.0 and 99.9% clean at the CIP temperature of 40 °C, no 380 

distinguishable difference in surface topographies can be identified, despite the predicted difference. 381 

This suggests an alternative cleaning mechanism at the nano level during cleaning and removal of tightly 382 

adhered deposits. Future work in this area should focus in investigating how the model changes as a 383 

function of the scale at which CIP is working on. 384 

Quantification of nano-deposits at this level proves significantly difficult. The variation in surface 385 

topography of the stainless steel itself proves challenging to subtract out from the topographic images. 386 

A Matlab
tm

 code (V.R2013a, Mathworks inc., Massachusetts, USA) was developed using image 387 

processing tools to convert AFM images to quantifiable values. The image extracted from JPKSPM 388 

software was first converted to a black and white image and then converted to a binary image using a 389 

threshold of 0.9. The thresholding value here needed to be set large enough that the peaks of the 390 

stainless steel surface itself are removed. The binary image was processed in to morphological 391 

structures using Matlab ‘Strel’ function to identify ‘disk’ objects in the binary image. The ‘disks’ were 392 

then identified as foulant and percent cleanliness of each sample in the 100 x 100 μm area using Eq. 1 393 
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was estimated. Fig. 5 shows all the steps in this image process to extract quantitative data from the AFM 394 

topographical results. Table 3 shows the average results (n = 2) of cleanliness values for each condition.  395 

 396 

Table 3: Results for the percent cleanliness of the AFM samples analyzed by surface topography. Plus/minus values represent 397 
standard deviation (n=2). 398 

 

 Cleanliness (%) 

Temperature (°C)  99.0 % clean 99.9 % clean 

40  99.4 ±0.36 99.7 ±0.12 

55  99.8 ±0.06 99.9 ±0.05 

70  99.4 ±0.70 99.9 ±0.06 

 399 

 This particular method of quantifying residual foulant is analogous to the optical method 400 

completed in the fluorescence microscopy portion of the study. As another form of a 2-dimensional 401 

analysis, it can only detect how much surface area has foulant on it but not how tall said foulant is. 402 

Further analysis using the AFM data height mapping should be the next step in quantification of nano-403 

foulants on surface in a 3-dimensional approach.  404 

3.2.2 Force mapping 405 

 Several force maps were taken in an effort to further identify indicators of residual foulant 406 

materials on the stainless steel surface. Interaction between the custom AFM tip and a clean sample 407 

(cleaned using the aforementioned solvent method in section 2.4.2) were analyzed first to create 408 

baseline attraction and repulsion measurements. It was found that the custom AFM tip consistently had 409 

an adhesion force (approximately 1 nN) to the clean stainless steel surface. The adhesion force was 410 

defined as the minimum deflection of the AFM tip’s cantilever when removed from contact with the 411 

surface. This phenomenon was investigated further using samples which were first identified to have 412 

residual deposits by analyzing topography. Although preliminary, results showed that there was a 413 
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similarity in “clean” areas of the partially fouled coupons and the force interaction on a deposit did not 414 

show the adhesion force. Fig. 6 shows the 3-d projection of a force map and the extraction of two plots 415 

of vertical deflection as the tip is retracted. Here we can see when the AFM tip retracts from what is 416 

seemingly a clean area of the coupon (point A), an  approximately 2 nN adhesion force is observed. 417 

When the identical map is extracted on the foulant region (point B) there is seemingly no adhesion force 418 

observed. This attribute is seemingly quite consistent across various points within the AFM force maps. 419 

Validating changes in interaction forces (adhesion forces or otherwise) will help to identify residual 420 

deposits when surface topography fails. Future investigation in the area of detection and quantification 421 

of nano-foulants should focus in this area.  422 

5. Conclusions 423 

 The current investigation used advanced analytical techniques commonly used in nano materials 424 

science and applied them to hygienic design in food process engineering. Specifically, fluorescence 425 

microscopy was used to determine the effect of temperature on a dairy type model foulant on stainless 426 

steel during exposure to cleaning solution for various times. A Gompertz asymptote model was 427 

parameterized and fit to the fluorescence data to generate predictive cleaning equations for visual 428 

cleanliness. The predictive equations were used to create samples for analysis using atomic force 429 

microscopy (AFM). The AFM was able to characterize residual nano-foulants on the order of 5 μm
2 

as 430 

well as identify the lack of fit of the nano-deposit removal when compared to the visually clean model. 431 

Interaction forces between a custom AFM tip and stainless steel with and without deposit was 432 

investigated.  Strong adhesion forces seem to predominate when the tip interacted with clean areas and 433 

where areas with residual foulant showed none. The work completed here shows significant advances in 434 

the detection and quantification of residual material on food contact surfaces. Advances in this area are 435 

necessary for advancing validation procedures for clean in place operations on a commercial scale. The 436 
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results show the “next level” of detection and quantification of residual foulant material on food contact 437 

surfaces, setting a stage for advanced analytical methods for certifying cleanliness of food contact 438 

surfaces. 439 
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Figure 1: Color distributions of clean (A) and dirty (B) coupons imaged under fluorescent microscopy. 

Error bars show standard deviation of samples (n=6). 

Figure 2: Comparison of the original images acquired on the fluorescent microscope (top row) the same 

image after conversion to the clean/dirty image (bottom row). Red pixels in the image represent pixels 

with a color score higher than 45 and are therefore considered dirty. 

Figure 3: Results from the fluorescent microscopy cleaning investigation with sigmoidal model fits (lines) 

overlaid on the raw data (squares). Each square represents the average of 3 randomized experiments 

with standard deviations presented as error bars. Dashed lines represent the 95 % confidence interval 

around each prediction model. 

Figure 4: Results from the surface topography investigation using atomic force microscopy.  

Figure 5: Figure 5: From left to right is; (1) the original AFM image from JPKSPM analysis, (2) the image 

converted to black and white, (3) the image converted in to a binary image and (4) the Matlab
tm

 

‘strel/disk’ identification in the binary image. 

Figure 6: 3-dimnesional projection of a height tract on 100 x 100 μm area (top) which was analyzed using 

AFM force mapping. The vertical deflection of the AFM cantilever during retraction at two points 

(bottom) are separately plotted.  
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Figure 1: Color distributions of clean (A) and dirty (B) coupons imaged under fluorescent 

microscopy. Error bars show standard deviation of samples (n=6).
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10s 20s 30s 40s 50s 60s 70s

Original 

image

Binary

image

CIP exposure time at 55 °C

Percent

clean 0.0 0.0 0.0 15.6 51.6 91.2 99.8

Figure 2: Comparison of the original images acquired on the fluorescent microscope (top 

row) the same image after conversion to the clean/dirty image (bottom row). Red pixels in 

the image represent pixels with a color score higher than 45 and are therefore considered 

dirty.
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Figure 3: Results from the fluorescent microscopy cleaning investigation with sigmoidal model 

fits (lines) overlaid on the raw data (squares). Each square represents the average of 3 

randomized experiments with standard deviations presented as error bars. Dashed lines 

represent the 95 % confidence interval around each prediction model.
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Figure 4: Results from the surface topography investigation using atomic force microscopy. 
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10 μm

Figure 5: From left to right is; (1) the original AFM image from JPKSPM analysis, (2) the image 

converted to black and white, (3) the image converted in to a binary image and (4) the Matlabtm

‘strel/disk’ identification in the binary image. 
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Figure 6: 3-dimnesional projection of a height tract on 100 x 100 μm

area (top) which was analyzed using AFM force mapping. The vertical 

deflection of the AFM cantilever during retraction at two points 

(bottom) are separately plotted. 
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Highlights 

• Fluorescence microscopy quantified visual surface cleanliness 

• Visual cleanliness fit a sigmoidal cleaning model for whey protein deposits 

• Atomic force microscopy was able to identify invisible deposits 

• Invisible deposits as small as 5 μm
2
 could be identified  


