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ABSTRACT  

The northwestern Euboea Island and the neighboring part of the mainland in eastern 

Central Greece, i.e. Sperchios area, contain several hot springs and active thermogenic 

travertine deposits, which are the surface manifestations of an active hydrothermal system, 

controlled by active tectonics, and supplied with heat by a 7-8 km deep magma chamber, 

with surface manifestation, the Plio-Pleistocene trachyandesitic volcanic center of 

Lichades. This hydrothermal system is fueled by a mixture of seawater and deep magmatic 

fluid with only limited meteoric water contribution. Thermal water samples show extreme 

pH, temperature and Electrical Conductivity values, with maximum values always recorded 

in two locations (Aedipsos and Ilia). The observed similarities in fluid compositions for 

most of the analyzed anions, major and trace elements, suggesting a stronger hydrothermal 

signature for the Northern Euboea area, perhaps reflecting greater proximity to the heat 

source of the hydrothermal system. The hydrothermal fluids collected and analysed were 

found to be highly enriched in a number of metallic and non-metallic elements e.g. up to 

100 μg/L As, up to 1.1 wt. % Fe, up to 340 μg/L Ba, up to 65 μg/L Cu, up to 2.1 wt. % Cl, 

up to 3700 mg/L SO4
2-

, up to 390 μg/L Se. Some of the enrichments are reflected directly 

in the travertines lithogeochemistry and the metallic mineral phases found inside the 

travertines. A number of mineral phases including sulfides (such as pyrite, arsenopyrite, 

galena, chalcopyrite, sphalerite and stibnite), native elements, (such as Pb and Ni), alloys, 

(such as Au±Cu-Ag,) fluorite and REE-bearing phases (such as Ce-, Nd- and La-bearing 

members of hydroxylbastnäsite, cackinsite, lanthanite and sahamalite) were identified 

syngenetically enclosed as clastic grains within the pores of all studied travertines; the ore 

grade concentrations of some iron-rich travertines (up to 28.9 wt. % Fe and up to 1.83 wt. 

% As), as well as the high concentration of precious and base metals at the hydrothermal 

fluid, strongly suggest active mineralizing processes throughout the studied system. 
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Travertines containing elevated Fe±As and consisting of ferrihydrite in addition to 

aragonite/calcite, were deposited on the surface, most likely after mixing of ascending 

reducing hydrothermal fluids with cool seawater. The high REE content in the Fe±As- rich 

travertines (up to ~465 mg/Kg ΣREE) is caused by adsorption of REE-bearing phases by 

iron oxyhydroxides. Mineralogical and geochemical evidence (such as the presence of 

elements in their native form, of alloys such as Au±Cu-Ag, the enrichment of metalloids 

and the abundance of REE) may indicate magmatic contribution to the hydrothermal 

system and accordingly to the studied travertines. We support the hypothesis that metals 

and metalloids were mainly derived from magmatic fluids, which successively mixed with 

heated-, and with oxygenated, cool seawaters at depth and on the surface respectively, 

resulting in the deposition of carbonate-hosted sulfide mineralization at depth, and of 

Fe±As- rich travertines at the surface. The northwestern Euboea Island and Sperchios area 

hydrothermal system represents the first documented active terrestrial mineralizing 

hydrothermal system associated with ore-bearing travertines in Greece.  

 

KEYWORDS: hydrothermal system, hot springs, thermogenic travertine, metallogenesis, 

active terrestrial ore mineralization. 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

1. INTRODUCTION 

Active geothermal fields are generally recognized as modern analogues of hydrothermal 

ore deposits (White, 1955, 1981; Weissberg et al., 1979; Henley and Ellis, 1983; Henley, 

1985). Scale deposits from geothermal energy installations have been reported to contain 

significant concentrations of precious and base metals, e.g. at Salton Sea- USA (McKibben 

et al., 1989), at Cheleken- Turkmenistan (ex-USSR, Lebedev, 1973), at Milos island- 

Greece (Karabelas et al., 1989), at Ohaaki, Kawerau and Rotokawa- New Zealand (Brown, 

1986), at Cerro Prieto- Mexico (Mercado et al., 1989) and at Oku-Aizu- Japan (Imai et al., 

1988).  

Among the most impressive geothermal phenomena, the venting of hydrothermal fluids 

and their precipitations have been reported from several tectono-magmatic settings in both 

subaerial and submarine environments (e.g. Henley and Ellis, 1983, Hannington and Scott, 

1988, Barnes, 1997; Dando et al., 1999, Pirajno 2009; Barnes, 2015).  

In Greece, several high-, medium- and low-enthalpy geothermal fields related to the 

Tertiary-Quaternary magmatism and active faulting in the south Aegean active volcanic arc 

and the back-arc region (e.g. Jolivet et al., 2013), discharge deep hydrothermal fluids in the 

form of hot springs and hydrothermal vents at the surface (Gkioni-Stavropoulou, 1983; 

Orfanos, 1985; Sfetsos, 1988; Lambrakis and Kallergis, 2005) and shallow submarine 

settings (Valsami-Jones et al., 2005; Price et al., 2013; Kilias et al. 2013). Some of them 

are highly enriched in a number of metallic and non-metallic elements (Valsami-Jones et 

al., 2005; Kilias et al. 2013; Athanasoulis et al., 2009, 2016). 

Northern Euboea (or Evia) and the neighbouring part of the mainland in eastern Central 

Greece (Sperchios area) are recognised as having one of the highest geothermal gradients 

in Greece, after the south Aegean active volcanic arc (Fytikas and Kolios, 1979). This area 

is located in the periphery of the Plio-Pleistocene volcanic center of Lichades, at the 
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western extremity of the North Anatolian Fault (Vött, 2007; Fig. 1). Some of the hot 

springs in this area have been known since ancient times (i.e. Aedipsos, Thermopylae). 

Several ancient Greek philosophers and historian (e.g. Aristotle, Thucydides and Strabo) 

recognized a close relationship between hot springs and earthquake activity in the area. 

Also, during the Atalanti`s earthquake in 1894, the hot spring at Gialtra became turbid 

(Pertessis, 1961) and new springs appeared in the area of Aedipsos (Margomenou-

Leonidopoulou, 1976). 

  The hot springs in this area were studied by many researchers (e.g. Minissale et al, 

1989; Karagiannis et al., 1990; Gartzos and Stamatis, 1996; Mitropoulos and Kita, 1997; 

Gkioni-Stavropoulou, 1998; Lambrakis and Kalergis, 2005; Shimizu et al, 2005; Chatzis et 

al., 2008, Duriez et al., 2008; Kanellopoulos, 2006, 2011; D`Alessandro et al., 2014; 

Dotsika, 2015; Vakalopoulos, et al., 2016; Kanellopoulos et al. 2016). These studies were 

mainly focused on the understanding of the hydrological patterns of fluid circulation, and 

in most cases to detect the most promising and/or less risky areas for geothermal 

exploration.  

A salient feature of the geothermal activity in northern Euboea and neighbouring part of 

the mainland in eastern Central Greece (Sperchios area), is the dominance of thermogenic 

travertine deposition from the hot springs (Kanellopoulos, 2011, 2012, 2013; 

Kanellopoulos et al. 2015a).  Kanellopoulos (2012) reported Fe-rich varieties among the 

studied travertines. 

Mineralized thermogenic travertines are rarely reported worldwide and are related to 

distinct ore deposit types (such as low- and intermediate sulfidation epithermal, Carlin-

type, carbonate-replacement) and/or active geothermal systems (Bernasconi et al., 1980; 

Lattanzi, 1999; Daliran, 2003, 2008; Boni et al., 2007; Daliran et al., 2013; Nordstrom and 

Sharifi, 2014; Sillitoe, 2015; Rossi et al., 2015). 
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The aim of this paper is to investigate (a) the geochemistry of hydrothermal fluids from 

the northwestern part of Euboea Island and the neighbouring part of the mainland 

(Sperchios area), (b) the mineralogical and geochemical composition of the newly formed 

thermogenic travertines of the area, and (c) to compare them with active terrestrial 

hydrothermal systems elsewhere, related to ore-bearing travertine deposition. Emphasis is 

given on their metallic and non-metallic content in an attempt to demonstrate active 

mineralizing processes related to a single large hydrothermal system in the area. 

 

2. GEOLOGICAL SETTING 

The study area (Fig. 1) belongs to the Pelagonian and Sub-Pelagonian geotectonic units 

of the Hellenides (Aubouin, 1959; Mountrakis, 1986; Jolivet et al. 2013). The eastern 

central part of mainland (Sperchios area) consists of Post-Alpine, Late Miocene-

Pleistocene fluvio-lacustrine marls, clays, conglomerates and sands, unconformably 

overlying the Sub-Pelagonian Geotectonic Unit. The latter, is made up from bottom to top 

of a basement of carbonate rocks (limestones and dolomites) of Middle Triassic-Middle 

Jurassic age, and an ophiolitic thrust sheet that is a relic of the Tethyan oceanic crust (Celet, 

1962; Orfanos and Sfetsos, 1975; Kranis, 1999; 2007). The Thermopylae and Kamena 

Vourla hot springs mainly discharge from the carbonate rocks of Middle Triassic-Middle 

Jurassic age. 

The northern Euboea, where the hot springs at Aedipsos (or Aidipsos or Edipsos), Ilia 

and Gialtra occur, consists of both Pelagonian and Sub-Pelagonian Geotectonic Units (Fig. 

1). In the studied area, a lower series, with a Permian–Triassic volcaniclastic complex 

overlie a pre-middle to middle Carboniferous metamorphic basement and is overlain by 

middle Triassic shallow marine clastic and carbonate rocks intercalated with volcanic rocks 

best developed at the southeast part of Aedipsos (Katsikatsos et al., 1984). This sequence is 
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overlain by Jurassic limestones and Late Jurassic–Early Cretaceous ophiolites (Katsikatsos 

et al., 1984; Scherreiks, 2000). The Paleozoic and Mesozoic sequences are folded or 

imbricated as the result of two main tectonic events (Alpine and Eo-Alpine). In the greater 

area of Northern Euboea lignite layers have been identified inside Neogene-Lower 

Pleistocene lake sediments (Vakalopoulos et al., 2000). The hot springs mainly 

discharge from the metamorphic basement rocks. In the case of Aedipsos the hot springs 

are venting through thermogenic travertines, which are deposited on top of the basement 

metamorphic rocks. In the case of Gialtra the hot springs are discharge from Neogene-

Quaternary deposits, which are deposited on top of the basement carbonate rocks. 

The study area is located at the intersection between a series of ENE-WSW faults of the 

Euboea-Sperchios rift and the NE-SW faults system of the Oreoi Strait, at the western 

extremity of the North Anatolian Fault (McKenzie, 1970; 1972; Shaw and Jackson, 2010). 

The study area is one of the most neo-tectonically active areas in Greece dominated by 

extensional tectonics similarly to the rest of the Aegean Sea. Oreoi Strait is a narrow 

symmetrical NE-SW graben. The Northern Euboea Gulf is part of the 130-km long 

Euboea-Sperchios rift, which trends ESE-WNW and currently extends at a rate of 1-2 

mm/yr (Clarke et al., 1998). Its western part (Sperchios) is controlled by north-throwing E-

W to ESE-WNW range-bounding normal faults, which extend into its eastern part 

(Northern Euboean Gulf), where a polarity change is observed, with SE-NW, E-W and 

ENE-WSW, mainly offshore faults which mark the northern boundary of the Gulf and 

uplifts North Euboea (Sakellariou et al., 2007). The study area is highly faulted due to 

extensional tectonics and it is characterized by E-W to ENE-WSW, NNE-SSW to NE-SW 

and SE-NW fault systems (Angelopoulos et al., 1991; Tzitziras and Ilias, 1996; Vavassis, 

2001; Kranis, 1999, 2007; Palyvos et al., 2006). 
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The central part of the investigated area is occupied by the Plio-Pleistocene volcanic 

center of Lichades islands (Georgalas, 1938; Georgiades, 1958; Pe-Piper and Piper, 2002), 

made of 0.5 Ma old (K-Ar, Fytikas et al., 1976) trachyandesite lava flows. Trachyandesite 

lavas at the nearby Kamena Vourla were dated at 1.7 Ma (K-Ar, Bellon et al., 1979). 

Magma emplacement took place along the major tectonic structures in the area (Kranis, 

1999). 

 Innocenti et al. (2010), based on Sr–Nd–Pb isotopic data, related this volcanic activity 

with the large volcanic belt that developed north of the Pelagonian–Attic–Cycladic–

Menderes massifs, encompassing a 35 Ma timespan which is widespread over a large area 

from NW Greece–Macedonia to the Aegean–western Anatolia. According to the above 

authors, the Euboea-Kamena Vourla volcanic products are orogenic in character and 

partially contemporaneous with the south Aegean active volcanic arc, but with different 

geochemical features, related to distinct magma sources (e.g. lithospheric mantle wedge 

and a depleted asthenospheric mantle wedge north and south of the Pelagonian–Attic–

Cycladic–Menderes massifs respectively).  

Karastathis et al. (2011) showed that there is a magma chamber at depths below 8 km   

under the North Euboean Gulf area, using low seismic P-wave velocity values and high 

Poisson ratios, also coincident with a Curie surface estimated at 7-8 km depth. 

 

3. LOCATIONS OF MAJOR HOT SPRING AREAS AND THERMOGENIC 

TRAVERTINES AREAS 

Five major areas with hot spring activity occur around the volcanic center of Lichades 

islands (Figs 1 and 2; Table 1), which were studied in the period 2004-2008. Three of them 

are located in the northwestern part of Euboea Island (Aedipsos, Ilia, Gialtra; Fig. 2) and 

two are in the neighboring part of the mainland in eastern Central Greece (Sperchios area: 
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Kamena Vourla, Thermopylae; Fig. 2). A common feature of these hot springs is the 

deposition of several morphological types and lithotypes of thermogenic travertine as the 

hot waters cool, degas and rapidly precipitate calcium carbonate (Kanellopoulos, 2012; 

2013).  

Although the formation of these thermogenic travertines is dominantly controlled by 

abiotic factors, also biotic factors are proposed to be contributing (Kanellopoulos, 2014b; 

Kanellopoulos et al., 2015a).  

The major hot springs in the area and their geochemical characteristics, in summary, are 

as follows:  

i) Aedipsos (or Edipsos or Aidipsos) includes hot springs with temperatures ranging from 

50.8 to about 82 
o
C, pH from 5.6 to 7.5 and degassing mainly H2S and CO2 (D`Alessandro 

et al., 2014). In several cases, artesian boreholes present vigorous bubbling, indicating high 

gas pressure at depth. Large deposits of newly formed and fossil thermogenic travertine are 

characterized by a great variety of morphological forms, lithotypes and colors varying from 

white-yellow to red, with orange prevailing.  

ii) At the Ilia area, there is only one hot spring/ artesian borehole, located near the 

seashore, with a temperature ranging from 61 to 63
 o

C, pH from 6.1 to 6.4 and degassing 

mainly CO2 (D`Alessandro et al., 2014). The travertine at Ilia covers a small area (few 

square meters) and has a reddish-brown color.  

iii) At the Gialtra area a twin hot spring with temperature in the range from 43 to 43.5 
o
C, 

pH from 6.4 to 6.5, degassing mainly N2 (D`Alessandro et al., 2014) and low discharge is 

located near the seashore. In the area, no significant travertine formation has identified. 

iv) At Kamena Vourla several hot springs occur, with temperatures, ranging from 29.6 to 

35.5 
o
C, pH from 5.9 to 6.2 and degassing mainly N2 (D`Alessandro et al., 2014). In the 

area, no significant travertine formation has identified. 
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v) The Thermopylae hot springs have similar temperatures and pH values to those at 

Kamena Vourla, ranging from 32.8 to 33.5
 o

C and from 6 to 6.2 respectively, but degassing 

mainly CO2 (D`Alessandro et al., 2014). In Thermopylae, extensive deposits of newly 

formed and fossil thermogenic travertine occur. Their color varies from white to grey. 

 

4. MATERIALS AND METHODS 

 

Hot water samples 

A total of 28 hydrothermal fluid samples from hot springs and boreholes used in most 

cases for thermal spa/bathing therapies were collected and analyzed (Table 1). The water 

samples were collected in four sampling campaigns in 2004, 2005, 2007 and 2008. 

Selected hot springs were sampled from different time periods (dry and wet hydrological 

periods), in order to assess possible variation of their chemical content with time.  

Unstable physicochemical parameters such as temperature, pH, Electrical Conductivity 

(E.C.) and Total Dissolved Solids (T.D.S.) were measured in-situ (Table 1), using portable 

scientific equipment of the Laboratory of Economic Geology and Geochemistry, National 

and Kapodistrian University of Athens. The pH-meter was calibrated with standard buffer 

solutions of pH 4.0 and 7.0 before measuring the first sample each day. The pH 

measurement error, including accuracy and reproducibility, is better than ±0.05 pH units. 

Temperature was measured with the probe connected to the pH-meter and the error is 

estimated to be less than ±0.3 °C. 

From each sampling site, samples were collected in a 1 L and 100 mL polyethylene 

bottles for laboratory analyses. The smaller aliquot intended for the determination of metals 

were filtered on site through 0.45 μm membrane filters and acidified down to pH < 2 with 

analytical grade HNO3 (Suprapur 65%). The samples were stored in a portable cooler 
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containing ice packs, transported to the laboratory and refrigerated at 4 °C until analysis. 

The 1 L polyethylene bottles used for major ion determinations were filtered upon arrival at 

the laboratory but not acidified. Nitrate ions were measured by the cadmium reduction 

method [see 4500-NO3 E, Clesceri et al., 1989], SO4
2-

 by the turbidimetric method [see 

4500-SO4 E, Clesceri et al., 1989] and Cl
−
 by the mercuric nitrate method [see 4500-Cl C, 

Clesceri et al., 1989] using a Hach DR/2000 or DR/4000 spectrophotometer. Alkalinity (as 

HCO3
−
) was measured using the titration method [see 2320-Β, Clesceri et al., 1989]. The 

concentrations of K
+
 and Na

+
 were determined by flame emission photometry (Jenway, 

PFP 7, see 3500-K B and 3500-Na B, Clesceri et al., 1989). Calcium ions and Mg
2+

 were 

determined by flame atomic absorption spectroscopy (see 3500-Ca and 3500-Mg, Clesceri 

et al., 1989) using a Perkin Elmer 603 instrument and trace metal elements by graphite 

furnace atomic absorption spectroscopy (Perkin Elmer 1100B). 

Elements Cd, Co, Cr, Mn, Pb, Ni, Fe, Zn were determined by Atomic Absorption 

Spectrometry (AAS, Perkin Elmer 1100B), with Graphite Furnace (HGA-400). When 

concentrations were high, (> 0.1 mg/L), Flame Atomic Absorption Spectrometry (F-AAS) 

was used instead for these elements (Table 2). Multi-element standard solutions prepared 

by serial dilution of single certified standards were used for calibration of analytical 

instruments. These parts of the chemical analyses were performed at the Laboratories of the 

Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, 

according to the Standard Methods for the Examination of Water and Wastewater (Clesceri 

et al., 1989). Furthermore, selected samples were analyzed by Inductively Coupled 

Plasma–Atomic Emission Spectroscopy (ICP-AES) and by Inductively Coupled Plasma-

Mass Spectrometry (ICP-MS) for a large group of elements at the Natural History Museum 

of London or at the ACME Analytical Laboratories Ltd., Canada (Table 3). Analytical data 

quality was assured by use of certified reference material samples in randomized positions 
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within the analytical batch and by blank and duplicate analysis of a proportion of the 

samples. 

 

Travertine samples 

The mineralogical composition of the main mineral phases in travertines was identified 

mainly by X-Ray Diffraction, at the Department of Geology and Geoenvironment, National 

and Kapodistrian University of Athens. XRD analysis was carried out using a Siemens 

Model 5005 X-ray diffractometer, Cu Ka radiation at 40 kV, 40 nA, 0.020
o
 step size and 

1.0 s step time. The XRD patterns were evaluated using the EVA 10.0 program of the 

Siemens DIFFRACplus and the D5005 software package. Some minor mineral phases were 

identified by Scanning Electron Microscopy and Energy Dispersive Spectroscopy (EDS). 

SEM-EDS analyses was carried out using a Jeol JSM 5600 SEM instrument, equipped with 

an Oxford ISIS 300 micro analytical device, at the Department of Geology and 

Geoenvironment, National and Kapodistrian University of Athens. Selected samples were 

analysed at the Natural History Museum of London with a JEOL 5900LV, equipped with 

an Energy Dispersive X-ray (EDX) and a Wavelength Dispersive X-ray (WDX).  

The travertine samples were analyzed for whole rock chemical composition after drying 

and pulverizing in an agate mortar and mill to <0.075 mm. The samples were digested with 

HNO3 and analyzed by Inductively Coupled Plasma–Atomic Emission Spectroscopy 

method (ICP-AES, Vista-PRO Simultaneous) for Ca, Na, P, S, Si and by Inductively 

Coupled Plasma-Mass Spectrometry method (ICP-MS, Varian) for 36 trace elements (inc. 

REE) at Natural History Museum of London (Table 6). Analytical data quality was assured 

by introduction of internal standards, use of certified and house reference material samples 

in randomized positions within the analytical batch and by blank and duplicate analysis of a 
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proportion of the samples (Ramsey et al., 1987). Analytical bias and precision were 

subsequently calculated and found to be within acceptable limits. 

 

5. RESULTS 

 

5.1 Hot springs 

Geochemistry of hydrothermal fluids 

Temperatures of the hydrothermal fluids vary from 43 to 82°C in the hot springs of 

North Euboea Island and from 30 to 40.6°C in those of Sperchios area (Table 1). The 

highest temperatures were recorded in Aedipsos area (82 
o
C). The temperature of each 

individual hot spring remained relatively constant over the period of sampling.  

Some samples have pH values near 7 (neutral; Table 1), however in most cases the 

studied hydrothermal fluids were characterized by slightly acidic pH. The lowest pH values 

(<5.5) were measured in hot springs from Sperchios area and the highest values in the 

Aedipsos samples (max. 7.5). 

Total Dissolved Solids (T.D.S.) and Electrical Conductivity (E.C.) in Euboea samples 

varies from 18 to 54 g/L and from 37 to 56 mS/cm respectively, with maximum values at 

Aedipsos samples (Table 1) and lower values (7-11 g/L, 18-15 mS/cm resp.) at samples 

from Sperchios area. 

Cl
− 

is the dominant anion in all analyzed solutions (up to 2.2 wt. % Cl). It varies from 

1.2 to 2.2 wt. % Cl in Euboea samples and from 1800 to 7250 mg/L in those from 

Sperchios area. The Euboea samples show concentrations closest to seawater (3.5 wt. % 

Cl). The studied samples show enrichment in B (up to 10.7 mg/L), Sr (up to 30 mg/L) and 

Li (up to 1.5 mg/L) in comparison with seawater (4.6 mg/L B, 8 mg/L Sr; and 0.17 mg/L 

Li; Goldberg, 1963). 
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Concentrations of Na
+
, K

+
, Ca

2+
, SO4

2-
, Cl

-
 show co-variation (Fig. 3), suggesting 

common source. Maxima (12000 mg/L, 360 mg/L, 1210 mg/L, 3700mg/L, 21100 mg/L 

respectively) occur in Euboea samples (Fig. 3). The average concentration of Ca in Euboea 

samples is 1095 mg/L and in Sperchios area is 550 mg/L.  

In order to evaluate the hydrochemistry of the studied hydrothermal fluids the chemical 

analyses were plotted in Piper diagrams, where all samples display the same hydrochemical 

type i.e. Na-Cl (Fig. 4). Based on the Cl-SO4-HCO3 diagram (Fig. 5A) all samples were 

characterized as near neutral chloride waters, as chloride is the prevalent ion. The very 

limited distribution of the studied samples on the characterization diagrams reflect chemical 

relation among them. Finally, all samples plot in the field of mature waters on the Na/1000-

√Mg-K/100 diagram (Fig. 5B). The Sperchios samples plot near the boundary between 

mature-immature waters and are under partial chemical water-rock equilibrium, while the 

Euboea samples plot much closer to a full equilibrium. 

Most trace elements, present their maxima in the Euboea samples and more specifically 

in the Aedipsos hot springs (e.g. up to: 10 μg/L Ag; 340 μg/L Ba; 67.5 mg/L Br; 20 μg/L 

Cr; 65 μg/L Cu; 76 μg/L V; Tables 2 and 3). Some trace elements like Fe (up to 11000 

μg/L), Cs (up to 460 μg/L), Ge (12 μg/L), show their maxima in the Ilia samples (Table 2). 

Only few trace elements, for example Co and Ni, show their maxima in the Sperchios area 

samples, where the highest concentrations were detected in Kamena Vourla (Table 2). The 

high correlation coefficient of 0.84 between Co and Ni suggests a common source (Table 

2). The Kamena Vourla samples display the highest U content among all the studied 

material (up to 12.5 μg/L; Table 3). This is in accordance to uranium enrichment in the cold 

groundwater of the same area, considered to be the result of U leaching from underground 

bedrock (Kanellopoulos, 2006). In all Euboea samples, except one sample from Gialtra 

(GIA-11) and one from Aedipsos (AD-105), the U content was below the detection limit. 
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Zn and Pb show low concentrations (up to 15 μg/L Zn and 6 μg/L Pb) with small 

variations and they are present in all samples (Table 2 and 3). The concentration of Pb and 

Zn in Euboea ranges from 1 to 6 mg/L and 3-15μg/L and in Sperchios area from 2 to 4 

mg/L and 4-13μg/L, respectively.  

Sampling at different seasons indicated no significant change of the composition of the 

hydrothermal fluid (Tables 2). However, there is a small trend to lower concentrations 

during the rainy period and this may indicate a dilution of the dissolved elements after 

mixing between hydrothermal fluids and meteoric water. 

 

5.2. Thermogenic Travertines 

 

Mineralogy 

The main mineral phases of the travertines are calcite coexisting with aragonite. At 

Aedipsos the predominant phase is either aragonite or calcite. At Thermopylae only calcite 

was identified as the predominant mineral phase within the travertines. The chemical 

composition of calcium carbonate mineral phases varies from area to area in terms of trace 

elements (Kanellopoulos, 2012). The Ilia travertine is mainly composed of aragonite/calcite 

and a poorly crystalline hydrous ferric oxyhydroxide phase, which was identified as 

ferrihydrite by XRD analysis (Fig. 6), in accordance to Kanellopoulos (2012). The Ilia 

travertine shows usually a lamination lithotype creating botryoidal shapes (Kanellopoulos, 

2012). In hand specimens two parts can be distinguished: (a) a reddish brown part with a 

lustrous metallic sheen (Fe-rich) and (b) a light brown part (Ca-rich i.e. aragonite/calcite; 

Fig. 7A, B). Selected samples from each part were analysed by XRD, in order to verify 

their main mineral phases and they were thoroughly studied using Scanning Electron 

Microscope (SEM). A magnified view of the iron-rich parts shows finer scale laminae of 
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hydrous ferric oxyhydroxide phase alternating with aragonite-rich laminae at intervals of a 

few tens of micrometers (up to 100μm, Fig. 7C). The aragonite-rich parts contain 32-35 wt. 

% Ca, 1-6 wt. % Fe, 0.5-1 wt. % Si and 0-1 wt. % As, while the Fe-rich parts display a 

significant reduction in Ca content (2-3 wt. %) and an increase of Fe, Si and As contents 

(38-39 wt. %, 5-7 wt.% and 2-4 wt. % respectively; see also Fig. 7C, D). 

Most of the samples contain also minor amounts of metallic and non-metallic mineral 

phases. The most common non-metallic phases were gypsum, halite, barite, fluorite and 

REE bearing phases (Ce-, Nd- and La-bearing members of hydroxylbastnäsite, cackinsite, 

lanthanite and sahamalite). In the Aedipsos samples, halite crystals were developed at the 

rims of the pores of travertine, as a result of the high Cl and Na concentrations of the 

hydrothermal fluid. Metallic mineral phases include pyrite, As-rich pyrite, arsenopyrite, 

stibnite, galena, Fe-rich sphalerite, chalcopyrite, native elements and alloys like Au±Cu-

Ag, native elements e.g. Cu, Pb and oxides (Tables 4 and 5; Fig 8). The above minerals 

occur in the form of very small grains (few μm) located inside the pores of the travertines 

(Fig. 8).  

 

Whole rock geochemical analysis 

Whole rock geochemical analyses in travertine samples from all areas are presented in 

Table 6. The travertines from Aedipsos contain the highest concentration of a number of 

major and trace elements such as Na (up to 3.3 wt. %), S (up to 6.78 wt. %), Si (up to 950 

mg/kg), Ba (up to 140 mg/kg), Cu (up to 14.7 mg/kg), Hf (up to 0.056 mg/kg), K (up to 

1086 mg/kg), Pb (up to 10.6 mg/kg), Sb (up to 4.6 mg/kg), Sn (up to 0.8 mg/kg), Th (up to 

0.14 mg/kg), Ti (up to 11.5 mg/kg) and Zr (up to 2 mg/kg). The maximum concentrations 

of As (up to 1.83 wt. %) and Fe (up to 28.9 wt. %) both at ore-grade, and to a lesser extent 

Zn (up to 24.3 mg/kg), Sc (up to 8.8 mg/kg) and Y (up to 259 mg/kg) were observed in the 
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Ilia travertines. Finally, Li (up to 6.7 mg/kg) and Mg (up to 6850 mg/kg) are enriched in 

the Thermopylae travertines. The lithophile elements, like Be (up to 57.8 mg/kg), Cs (1.5 

mg/kg), and U (up to 33.5 mg/kg) are enriched in the Ilia and Aedipsos travertines (Table 

6). 

Normalization of the whole rock chemical data to the average composition of the Upper 

Continental Crust (UCC, Rudnick and Gao, 2003; Fig. 9A), emphasized enrichment in 

several elements of the studied travertines: S, Sr and sometimes Sb, were enriched up to 10 

times, arsenic especially in samples from Ilia, up to 10000 times compared to the UCC 

abundances. The Ilia samples also contain 10 times more Fe, Be, B and Y than the UCC 

abundances. 

The REE concentrations in the studied travertines are presented in Tables 6. The 

highest concentrations of REE occur in samples from Ilia (e.g. up to 11.9 mg/L Ce, 7.6 

mg/L Nd, 3.8 mg/L Gd, 5.1 mg/L Dy, 2.9 mg/L Er, 1.9 mg/L Yb). Figure 9B shows the 

normalized REE concentrations of the studied travertines to UCC. Travertines from the Ilia 

area demonstrate a clear enrichment of REE compared to all other samples (i.e. Aedipsos 

and Thermopylae). All samples show a higher enrichment to heavy REE compared to light 

REE. Also, all studied travertines present a slight negative anomaly in Europium (Eu). The 

travertines from Aedipsos and Thermopylae, also show sometimes weak negative anomaly 

in Cerium (Ce) and Dysprosium (Dy). 

 

6. DISCUSSION 

 

Fluid characteristics of the northwestern Euboea Island and Sperchios area hydrothermal 

system. 
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The hot springs in the northwestern part of Euboea island (Aedipsos, Ilia, Gialtra) and 

in the neighboring part of the mainland in eastern Central Greece (Sperchios area: Kamena 

Vourla and Thermopylae) are the surface manifestation of medium-, or possible high-

enthalpy geothermal activity fed by a deep-seated magmatic chamber, which is related with 

the Plio-Pleistocene volcanic center of Lichades in combination with the active tectonics of 

the area (Chatzis et al., 2008; Karastathis et al., 2011; D’Alessandro et al., 2014; 

Vakalopoulos et al., 2016; Kanellopoulos et al., 2016). A temperature of up to about 160 
o
C 

for the geothermal reservoir at Aedipsos area, was estimated on the basis of various 

geochemical and isotopic geothermometers by D`Alessandro et al. (2014), Dotsika (2015), 

Vakalopoulos et al. (2016) and Kanellopoulos et al. (2016).   

Previous geochemical and stable isotopic studies (Mitropoulos and Kita, 1997; Duriez 

et al., 2008; Chatzis et al., 2008; D`Alessandro et at., 2014; Dotsika, 2015; Kanellopoulos 

et al., 2016) at the hot springs of Sperchios and Aedipsos, suggest high seawater 

contributions i.e. Thermopylae 22-28%, Kamena Vourla 20-43% and Aedipsos 90-94%. 

Based on chemical and isotopic data (i.e. D and δ
18

O), D`Alessandro et al. (2014) and 

Dotsika (2015) suggested that the hot springs of Thermopylae–Kamena Vourla and 

Aedipsos are fed by a deep “parent” hydrothermal fluid mixed with local groundwater and 

seawater respectively. The deep hydrothermal fluid (for all areas) is a mixture of local 

groundwater (~26.3 %), seawater (~56 %) and magmatic water (~17.7 %). For the 

Aedipsos area the magmatic contribution is between 5 and 10 %, while in the case of 

Thermopylae and Kamena Vourla it is between 1.5 and 3.8 % (Dotsika, 2015). This is in 

agreement with He isotopic analyses conducted in the area by Shimizu et al. (2005) and 

D`Alessandro et al. (2014). Based on isotopic composition of gas samples from Aedipsos 

and Thermopylae hot springs, Shimizu et al. (2005) reported 
3
He/

4
He ratios of 0.46-1.01 

and 0.19 respectively and suggested that the contribution of mantle helium in Aedipsos and 
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Thermopylae is approximately 12.5% and 3 % respectively. A mixing of seawater and arc-

type magmatic water was also indicated based on isotopic studies in hydrothermal fluids 

from hot springs from the south Aegean active volcanic arc e.g. Nisyros (Chiodini et al., 

1993; Dotsika and Michelot, 1993; Brombach et al., 2003; Marini and Fiebig, 2005; Tassi 

et al., 2013a), Milos, Santorini, Sousaki (Dotsika et al., 2009; Tassi, et al., 2013b) and 

Methana areas (Dotsika et al., 2010).  

This study verifies previous results and classifies the hot spring samples as mature- near 

neutral chloride waters (Fig. 5A, B). These samples plot in the same well-defined area of a 

Piper diagram (Fig. 4), as water samples from other hot springs in Greece, for example 

those from the south Aegean active volcanic arc (Fytikas and Andritsos, 2004). Cl
-
 is the 

dominant anion in all hot water samples, with the highest concentrations observed in 

samples from Aedipsos (up to 2.3 wt. %; seawater has 3.6 wt. % Cl
-
). High concentrations 

of conservative constituents suggest high seawater participation rates (Arnόrsson, 2000). In 

all studied hot springs, high concentrations of conservative constituents such as B, Sr and 

Li were identified.  

Our study on the geochemistry of the hydrothermal fluids revealed that the highest 

values of parameters such as pH, temperature and E.C. are always recorded in the Aedipsos 

and Ilia areas. Similar trends were observed in most of the analyzed anions, major and trace 

elements, in both the hydrothermal fluids and the travertines. The data suggest a possible 

spatial proximity of the Aedipsos and Ilia areas to the heat source of the hydrothermal 

system.  

The chemical composition of the hydrothermal fluids has been affected by the local 

bedrock in several cases. The hydrothermal fluid samples from Sperchios area and 

especially from Kamena Vourla, show higher concentration in Co, Ni and U compared to 

those from Euboea. The concentrations of Co and Ni co-vary, suggesting common source 
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(Table 2). Already, Kanellopoulos (2006, 2011) and Kanellopoulos et al. (2014a) identified 

similar geochemical anomalies at the cold groundwater, soils and plants and attributed this 

enrichment to the presence of vast occurrences of ultramafic rocks of the ophiolitic 

sequence and U-bearing bedrocks respectively. Also, the vast deposition of thermogenic 

travertines and the high Ca concentrations at Aedipsos hydrothermal fluid samples and 

along with drilling data (Gkioni, 1998; Chatzis et al., 2008) suggests enrichments derived 

from the dissolution of underlying marble/ limestone sequences in the area. 

However, the limited distribution of the studied samples on the characterization 

diagrams and also the co-variation and the limited range of their concentrations in several 

ions and metals, such as Na
+
, K

+
, Ca

2+
, SO4

2-
, Cl

-
, Zn and Pb reflect their chemical 

affinities, suggesting a common source and the fact that they belong to one single system. 

Based on that, and the geological setting of the area, it is possible that there is a 

continuation of the hydrothermal manifestations of the system in the seafloor of North 

Euboean Gulf, which lies between the two on-land locations. 

This study demonstrates that the hydrothermal fluids mainly in the Euboea samples 

contain a suite of elements such as Ag, As, Ba, Cu, Cl, S, Se, Sr, Zn which are in the same 

order of magnitude with hydrothermal fluids from several active mineralizing hydrothermal 

systems elsewhere, as for example: Ngawha Well 1-New Zealand, Ahuachapan Well 20-El 

Salvador, Reykjanes Well H8-Iceland, Matsao Well E-205-Taiwan (Henley et al., 1986), 

Imperial, USA (McKibben and Hardie, 1997), Dixie, USA (Bruton et al., 1997), Cerro 

Pietro, Mexico (Mercado and Hurtado, 1992); Hvergerdi-Iceland, Ohtake-Japan (Ellis and 

Mahon, 1977), Slak, Indonesia (Gallup, 1998).  

When compared with hydrothermal fluids from active hydrothermal systems depositing 

travertine, e.g. in the North Caucasus (Lavrushin et al., 2006) and Savo volcano, Solomon 

Islands (Smith, 2008), the studied fluids contain the same order of magnitude in elements 
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like Ba, Fe, Mn, Pb but higher concentrations in elements like As, Ca, Co, Cl, Cs, K, Mg, 

Na, Ni, S reflecting both the nature of fluid sources and fluid path (according to 

Giggenbach, 1988).  

 

Metallogenetic implications of the northwestern Euboea Island and Sperchios area 

hydrothermal system - Comparison with mineralized thermogenic travertines elsewhere 

 

According to Sillitoe (2015), travertines may be parts of low-, and intermediate 

sulfidation epithermal systems, but typically are poor indicators of precious metal 

mineralization, due to their usually distal position relative to hydrothermal upflow zones. 

However, manganese and iron oxides associated with travertine may scavenge a variety of 

metals, generally at subeconomic levels. 

In southern Tuscany (Italy), a number of carbonate-hosted “Carlin-type” gold 

mineralization occurs at the edges of the travertine related geothermal fields of Larderello, 

Amiata and Latera, areas previously known for Sb mineralization (Lattanzi, 1999). 

Mineralization is typically localized at the contact between carbonate rocks and overlying 

flysch and consists of silica replacement bodies (jasperoids) containing pyrite and stibnite. 

Thermogenic travertines in this area are located above Carlin-type mineralization and 

probably related to upflow zones of hydrothermal fluids (Lattanzi, 1999).  

  Travertines at the Senator mine in western Turkey contain high arsenic, derived from 

carbonate-hosted Sb mineralization, having affinities to Carlin-type deposits (Bernasconi et 

al., 1980; Nordstrom and Sharifi, 2014).   

In the Takab geothermal field (northwestern Iran), a considerable As enrichment in 

travertine and groundwaters, located in proximity to Au-As Carlin-type mineral deposits 

(e.g. Agdarreh deposit) has reported (Daliran, 2003, 2008; Nordstrom and Sharifi, 2014). 
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These anomalous As concentrations were related to waning stages of Quaternary volcanic 

activity. Daliran (2003) reported on the presence of springs and travertines, which contain 

up to percent range Cu, Se, Sb, Pb, and As, up to several thousand mg/Kg Hg and Te, and 

up to 1000 mg/kg Au and Ag. Within the Takab geothermal field, the active Angouran 

travertines display high concentrations in As, Ba, Zn, Cd and Ni, and considered to be 

formed contemporaneous and/or by remobilization of the carbonate replacement Angouran 

world-class Zn-Pb deposit (Boni et al., 2007; Daliran et al., 2013; Rossi et al., 2015). 

 In northeastern Greece, the Oligocene carbonate-replacement Pb-Zn-Cu-Ag deposit at 

Thermes, northeastern Greece (Arvanitidis et al., 1990; Kalogeropoulos et al., 1996) is 

spatially related to thermogenic travertine deposits. However, data about their 

mineralogical and geochemical composition is still lacking.  

The Ilia iron-rich travertines show ore grade concentrations in Fe (up to 28.9 wt. %) 

and As (up to 1.83 wt. %), in accordance to their high concentration in Ilia hydrothermal 

fluid. The thermogenic travertines at North Caucasus (Lavrushin et al., 2006) and volcano 

Savo, Solomon Islands (Smith, 2008) are associated with active metal deposition and at 

some chemical elements are characterized by concentrations much lower than those of the 

Euboea travertines, but comparable to those from Thermopylae (Table 6). The As and Fe 

content of the Ilia travertines are among the highest in the world, with values in North 

Caucasus and Savo not exceeding 626 mg/Kg and 6.8 wt. % respectively (Table 6). 

However, in the shallow submarine aragonite vent field at Tutum Bay, Ambitle island, 

Papua New Guinea, arsenic values (up to 3.3 wt. %) and iron values (up to 29.7 wt. %) 

measured from hydrous ferric oxides e.g. goethite, lepidocrocite, hematite and ferrihydrite 

that precipitate around vent edifices (Pichler and Veizer, 2004; Price and Pichler, 2005) are 

slightly higher than the As and Fe content in the Ilia travertines (up to 1.8 wt. % As and up 

to 28.9 wt. % Fe). 
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The discovery for the first time of sulfides (pyrite, arsenopyrite, galena, chalcopyrite, 

sphalerite, stibnite), native elements, alloys like Au±Cu-Ag, fluorite and REE-bearing 

phases, syngenetically enclosed within the pores of all studied travertines, as well as of 

high concentrations of precious and base metals at the hydrothermal fluid (e.g. up to 10 

μg/L Ag, up to 103 μg/L As, up to 1.1 wt. % Fe), suggest active metallogenic processes 

throughout the northwestern Euboea Island and Sperchios area hydrothermal system.  

This is verified by deep geothermal drilling at Aedipsos area (Chatzis et al. 2008), 

where active hydrothermal As-pyrite ± chalcopyrite ore deposition takes place within 

brecciated and silicified carbonates (i.e. jasperoids) at about 300 m below sea level 

(Kanellopoulos, unpublished data). Fluorite and kaolinite are additional gangue minerals.   

We suggest here a scenario, where deep, reduced and low-sulfidation hydrothermal 

fluids (e.g. Einaudi et al. 2003; Sillitoe and Hedenquist, 2003) within the stability field of 

pyrite, Fe-rich sphalerite and arsenopyrite, mixed during their upflow close to the surface 

with cool seawater and deposited ferryhydrite. According to Pichler and Veizer (1999) 

precipitation of ferrihydrite could take place via oxidation of Fe
2+

 in the hydrothermal fluid, 

through mixing with cool, alkaline, oxygenated seawater, favored by increase of Eh and pH 

and decrease in temperature. Similarly to iron, part of the arsenic, which remained in the 

solution after deposition of sulfides at depth, was deposited together with ferrihydrite on 

the surface.  

Based on the fact that minor amounts of metallic minerals (sulfides, alloys and native 

elements) are mostly located inside the pores of all studied travertines, it is suggested that 

they were probably formed at deeper levels of the hydrothermal system and later 

transferred as clastic grains by the hydrothermal fluids and gasses to the surface, where 

they were trapped by the fast precipitating thermogenic travertines.  
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The high REE content in Ilia iron-rich travertine (up to ~465 mg/Kg ΣREE) is caused 

by adsorption of REE-bearing phases by iron oxyhydroxides, similarly to that described at 

Tutum Bay, Papua New Guinea, where rare earth elements are known to be very effectively 

adsorbed by Fe
3+

 oxyhydroxides (Pichler and Veizer, 1999).  

There are several mineralogical and geochemical observations supporting the 

hypothesis of magmatic contribution to the studied hydrothermal system: (i) the presence 

of elements in their native form (e.g. Pb, Cu) which according to Rychagov et al., 2005, 

2006 are indicative for injection of a high-temperature magmatic fluid in geothermal 

reservoirs; (ii) the presence of native alloys (e.g. Au±Cu-Ag), and the enrichment of 

metalloids (e.g. As, Sb), which according to Williams-Jones and Heinrich (2005) and 

Saunders et al. (2016) highlight a transport as magmatic vapors from deep magmatic 

sources to the epithermal environment; (iii) the abundance of REE which may suggest a 

magmatic-related origin to hydrothermal deposits (Ciobanu et al., 2006; Voudouris et al., 

2013). 

We support the hypothesis that metals and metalloids in the study area were mainly 

derived from magmatic fluids, which after mixing with heated sea waters deposited sulfide 

mineralization at depth, and As-enriched hydrous iron oxides in the studied travertines at 

the surface. In this respect, the northwestern Euboea Island and Sperchios area 

hydrothermal system represents the first documented active terrestrial mineralizing 

hydrothermal system associated with ore-bearing travertines in Greece. Until now only 

shallow submarine hot springs across the south Aegean active volcanic arc were reported, 

where inputs of metals like Fe, Mn, As and Sb into surficial sediments have been found 

within the Santorini caldera and at Paleochori Bay, Milos island (Valsami-Jones et al., 

2005; Kilias et al., 2013).  
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Based on the available data a precise classification of the mineralization at depth is not 

possible. The metallic and gangue mineralogy present in the Aedipsos, Ilia and 

Thermopylae travertines and in the deep geothermal drill core at Aedipsos (As-rich pyrite, 

minor chalcopyrite, fluorite and presence of jasperoids) indicate remobilization from 

carbonate-hosted sulfide mineralization, similarly to that described above for Tuscany and 

northwestern Iran and suggest that the study area has potential for future base and precious 

metal discoveries.  

   

7. CONCLUSIONS 

 

The northern Euboea island and neighboring parts of the mainland in eastern Central 

Greece, i.e. the Sperchios area, contain several hot springs and thermogenic travertine 

deposits, which are surface manifestations of a single active hydrothermal system, most 

likely extending offshore within the Northern Euboean Gulf in a unique geological position 

at the back-arc region of the south Aegean active volcanic arc and at the western extremity 

of North Anatolian fault.  

i. High content of precious and base metals in the hydrothermal fluids (e.g. up to 10 μg/L 

Ag, up to 103 μg/L As, up to 1.1 wt. % Fe), suggest active ore mineralizing processes 

throughout the area. The observed limited variability in elemental concentrations of the 

hydrothermal fluids (e.g. Co, Ni and U in Kamena Vourla or Fe and As at Ilia), are 

attributed mainly to localized influence of the subsurface lithology.  

ii. The geochemical composition of the hydrothermal fluids is directly reflected in the 

metallic mineral phases identified in the travertines and the lithogeochemistry of the 

travertines. Typical example is the iron-rich (i.e. ferrihydrite-bearing) travertine in the 
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Ilia area, which shows ore grade concentrations in Fe (up to 28.9 wt. %) and As (up to 

1.83 wt. %), reflecting their high concentrations in the Ilia hydrothermal fluid.  

iii. Minor amounts of metal-bearing minerals such as pyrite, arsenopyrite, galena, 

chalcopyrite, sphalerite, stibnite, elements in their native form such as Pb, Ni, alloys 

such as Au±Cu-Ag, fluorite and REE-bearing phases, discovered for the first time, are 

syngenetically enclosed as clastic grains within the pores of all studied travertines, and 

were probably formed at deeper levels of the hydrothermal system, as carbonate-hosted 

sulfide mineralization, and later remobilized and transferred by the hydrothermal fluids 

to the surface. The high REE content in Ilia Fe±As- rich travertines (up to ~465 mg/Kg 

ΣREE) is caused by incorporation of REE-bearing phases by the iron oxyhydroxides. 

iv. For the formation of Fe±As- rich travertines we suggest a scenario, where reduced and 

low-sulfidation state hydrothermal fluids within the stability field of pyrite, Fe-rich 

sphalerite and arsenopyrite at depth, mixed close to the surface with cool seawater and 

deposited ferrihydrite. A magmatic contribution is suggested by the presence of 

elements in their native form such as Pb, Cu, alloys such as Au±Cu-Ag, metalloids 

such as As, Sb, and REE-bearing minerals in thermogenic travertines.  

v. The northwestern Euboea Island and Sperchios area hydrothermal system represents 

the first documented active terrestrial mineralizing hydrothermal system associated 

with ore-bearing travertines in Greece.  
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Figure Captions 

 

Figure 1. Geological map showing distribution of hot spring areas in the northern Euboea 

Island and Sperchios area. 

 

Figure 2. Field photos demonstrating mode of occurrence of thermogenic travertine in the 

study areas. (A) Hot water stream depositing thermogenic travertines in Thermopylae area.  

(B) Hot pond at thermogenic travertines depositions in Thermopylae area. (C) Cape 

formation in Aedipsos, composed only by thermogenic travertine, resulting from hot water 

discharge into the sea. (D) Detailed photo from the cape formation (see fig. 2C), where 

characteristic layers with different chemical composition of the thermogenic travertinc can 

be seen. (E) Self-settled artesian borehole of hot water creating a geyser at Aedipsos. (F) 

Artesian hot borehole, depositing thermogenic travertine in Aedipsos. (G) Ancient Roman 

baths, in Aedipsos, clogged by thermogenic travertine despotision. (H) A small travertine 

dome at Ilia, at the point of venting of the hot water from the pipe. It is a laminated Fe-rich 

travertine. 

 

Figure 3. Logarithmic diagram presenting the concentrations (in mg/L) of selected major 

and trace ions in the studied hydrothermal fluids. A co-variation between Na, K, Mg, Ca, 

SO4 and Cl can be observed. 

 

Figure 4. Chemical composition of hydrothermal fluid samples plotted in the Piper trilinear 

diagram (Red cycle: plotting area of the south Aegean active volcanic arc hydrothermal 

fluids, after Fytikas and Andritsos, 2004). 
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Figure 5. Chemical composition of hydrothermal fluid samples plotted in (A) Cl-SO4-

HCO3 trilinear diagram and (B) Na/1000-√Mg-K/100 trilinear diagram (the symbiology of 

the samples is the same with Fig 4). 

 

Figure 5. XRD pattern of iron-rich material from the Ilia travertine. The background (gray 

thick line) shows two characteristic broad peaks at around 35
o
 and 62

o
 in 2θ, which are 

typical of poorly crystalline ferrihydrite and sharp peaks corresponding mostly to aragonite 

(red columns). 

 

Figure 7. Photographs demonstrating mode of occurrence of Fe±As- rich travertines. (A 

and B) Hand specimens of iron rich travertine from Ilia. (C) Backscattered electron image 

(BSEI) of Fe-rich laminated travertine from Ilia. Black and white color showing areas with 

different average atomic weights. Lighter areas have a higher average atomic weight (Fe-

rich) than the darker areas (Ca-rich). (D) False color BSEI, derived from the corresponding 

black and white BSEI, displaying the distribution of Fe (red), Ca (Green) and Si (blue). 

 

Figure 8. Photomicrographs demonstrating ore and gangue mineralogy in the studied 

travertines (Backscattered electron images - BSEI). (A) Stibnite (Stbn) and zircon (Zr) 

inside the pores of CaCO3, from Aedipsos. (B) Au-Cu-Ag alloy inside the pores of 

ferrihydrite (Fh) in iron rich travertine from Ilia. (C) Chalcopyrite (Cp) inside the pores of 

iron rich travertine from Ilia. (D) Fluorite at Aedipsos sample. (E) Cassiterite and zircon 

inside the pores of the CaCO3 rich domain of an iron rich travertine from Ilia. (F) As-rich 

pyrite (Py) inside the pores of the CaCO3 rich domain of an iron rich travertine from Ilia. 

Ferrihydrite (Fh) is also present. (G) Ni sulfide inside the pores of CaCO3 from 

Thermopylae. (H) Sphalerite (Sl) inside the pores of CaCO3 part of iron rich travertine 
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from Ilia. (I) Sphalerite (Sl), galena (Gn) and pyrite (Py) inside the pores of 

ferrihydrite (Fh) in iron rich travertine from Ilia. 

 

Figure 9. ICP-MS analysis of travertine normalized against average Upper Continental 

Crust (Rudnick & Gao, 2003); (A) Major and trace elements. (B) REE. Yellow color 

represents the samples from Aedipsos, red color the samples from Ilia and green color the 

samples from Thermopylae. 
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Table 1. Physiochemical parameters, hydrochemical type and chemical analysis of the studied hot waters conducted by Spectrophotometer and titration. 

 

* = In parenthesis are the codes for those samples which were measured again in a different time period. 

 

Sample  
Locality 

T  
pH 

T.D.S.  E.C.  PO4
3-

 NO3
-
 SO4

2-
 Cl

-
 HCO3

-
 Hydroc. Description of 

samp. site no. (
o
C) (g/L) (mS/cm) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) type 

GIA-4 Gialtra 43.4 6.46 26.68 55.12 0.1 4.4 3700 16300 220 Na-Cl Spring 

GIA-11 (GIA-4)* Gialtra 43 6.43 26.16 52.38 0.289 3.6 3400 18470 228 Na-Cl Spring 

AD-1 Aedipsos  80.5 6.43 54.52 27.12 0.12 7.0 1500 16130 558 Na-Cl Borehole 

AD-20 (AD-1)* Aedipsos  82 7.4 26.98 56.73 0.33 6.2 1400 21120 352 Na-Cl Borehole 

AD-2 Aedipsos  75 5.85 53.64 26.68 0.08 6.6 1600 17300 518 Na-Cl Borehole 

AD-21 (AD-2)* Aedipsos  74 7.15 24.54 53.28 0.15 5.3 1300 19360 568 Na-Cl Borehole 

AD-3 Aedipsos  60.7 5.65 24.52 24.44 0.24 7.9 1600 13300 534 Na-Cl Borehole 

AD-4 Aedipsos  65.4 6.86 41.8 20.76 0.17 7.0 1100 13900 520 Na-Cl Spring 

AD-5 Aedipsos  69.9 6.3 52.96 26.24 0.17 7.0 1200 14900 590 Na-Cl Borehole 

AD-6 Aedipsos  50.8 7.54 54.68 27.2 0.16 5.7 1400 16000 296 Na-Cl Spring 

AD-15 Aedipsos  55.6 7.35 27.2 54.64 0.35 8.4 1500 18000 456 Na-Cl Borehole 

AD-100 Aedipsos  70.5 6.52 26.61 53.31 0.63 4.2 1200 18900 480 Na-Cl Borehole 

AD-101 Aedipsos  61 6.34 28.26 56.58 0.36 4.5 400 17540 480 Na-Cl Borehole 

AD-102 Aedipsos  74 6.4 26.25 52.56 0.28 5.7 1800 19230 510 Na-Cl Borehole 

AD-103 Aedipsos  73.3 6.4 26.49 53.07 0.52 14.4 1200 17410 528 Na-Cl Borehole 

AD-104 Aedipsos  70 6.15 25.71 51.48 0.19 3.6 2000 17930 548 Na-Cl Borehole 

AD-105 Aedipsos  58 7.13 24.54 49.17 0.54 5.4 1600 16160 315 Na-Cl Borehole 

HL-1 Ilia 60.9 6.07 9.3 18.5 0.51 11.9 744 12400 480 Na-Cl Spring 

AD-9 (HL-1)* Ilia 63.4 6.25 18.8 37.72 0.62 11.4 800 12700 554 Na-Cl Spring 

HL-11(HL-1)* Ilia 63 6.45 24.75 49.56 0.31 12 700 12050 424 Na-Cl Spring 

ΤΗΕ-1(ΚΒ-5)* Thermopylae 40.4 5.95 7.55 15.13 0.29 12.8 510 4400 756 Na-Cl Spring 

ΚΒ-5 Thermopylae 33.5 5.97 5.55 11.85 0.22 4.0 440 1800 803 Na-Cl Spring 

ΚΒΕ-10 Kam. Vourla 32.8 6.24 22.54 11.3 0.84 0.7 744 6720 540 Na-Cl Borehole 

ΚΒ-1 Kam. Vourla 35.5 5.92 11.53 16.6 0.06 4.0 960 7250 567 Na-Cl Spring 

ΚΒ-3Α Kam. Vourla 29.6 6.19 8.14 16.31 0.09 3.7 580 4650 560 Na-Cl Spring 

ΚΒ-3Β Kam. Vourla 30.2 6.09 7.96 15.92 0.19 4.0 560 4900 524 Na-Cl Spring 

ΚΒ-3C Kam. Vourla 30.3 6.14 8.23 16.5 0.1 4.0 580 5000 576 Na-Cl Spring 

ΚΒ-4 Kam. Vourla 30.3 6.06 9 18.13 0.15 3.1 680 5500 650 Na-Cl Spring 
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Table 2. Chemical analysis of the studied hydrothermal fluids conducted by AAS and Flame Photometer. 

Area Sample Cd Co Cr Mn Pb Ni Fe Zn Na K Ca Mg 

 No. (μg/L) (μg/L) (μg/L) (μg/L) (μg/L) (μg/L) (μg/L) (μg/L) (mg/L) (mg/L) (mg/L) (mg/L) 

E
u

b
o

ea
 

GIA-4 1 bdl bdl 16 3 bdl 310 5 12000 310 1090 540 

AD-1 1 bdl bdl 17 4 bdl 270 3 10600 350 1140 301 

AD-2 1 bdl bdl 30 4 bdl 900 8 10400 340 1110 299 

AD-3 1 bdl bdl 20 3 bdl 170 7 9600 310 1070 262 

AD-4 1 bdl bdl 130 3 bdl 90 7 8400 270 910 218 

AD-5 1 bdl bdl 60 6 bdl 1180 4 9600 270 1140 291 

AD-6 1 bdl bdl 21 5 bdl 160 15 10200 330 1040 297 

AD-15 1 250 bdl 22 1 bdl 190 8 10500 340 1090 295 

AD-20 bdl bdl bdl 55 1 bdl 150 3 9900 280 1210 343 

AD-21 bdl bdl bdl 43 1 bdl 1200 2 9100 290 1170 340 

HL-1 bdl 4 12 490 4 bdl 4900 13 6900 210 1070 237 

AD-9 bdl bdl 17 430 2 bdl 11000 6 7300 220 1060 219 

E
a

st
er

n
 C

e
n

tr
a

l 

G
re

ec
e
 

THE-1 1 1 0.3 1 3 3 5 4 2750 75 470 219 

ΚΒ-5 0.1 3 bdl 2 2 2 29 9 3400 90 520 215 

KBE-10 bdl 6 3 780 4 35 1040 8 3800 83 510 267 

KB-1 0.2 9 bdl 1490 2 37 290 8 5900 166 720 323 

KB-3A 0.2 1 bdl 8 2 6 26 13 4200 86 520 220 

KB-3B 0.1 3 bdl 7 2 6 23 11 3800 91 480 197 

KB-3C 0.2 2 bdl 7 2 6 38 12 4000 88 520 218 

KB-4 0.2 bdl bdl 2 3 8 100 8 5000 132 650 291 

bdl = below detection limit. 
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Table 3. Chemical analysis of hydrothermal fluids conducted by ICP-AES and ICP-MS.  

  

Northern Euboea Eastern Central Greece 

Aedipsos Gialtra Ilia Thermopylae Kamena Vourla 

AD-1* AD-5* AD-100 AD-101 AD-102 AD-103 AD-104 AD-105 GIA-11 HL-1* HL-11 THE-1* KBE-10* KB-1* 

Ag (μg/L) 10 7 - - - - - - - bdl - bdl 1.1 0.6 

Al (μg/L) bdl 370 bdl bdl bdl bdl bdl bdl bdl 218 bdl 16 17 bdl 

As (μg/L) 69 67 bdl bdl bdl bdl bdl bdl bdl 84 bdl 100 28 30 

Au (μg/L) bdl bdl - - - - - - - bdl - bdl bdl bdl 

B (mg/L) 9.8 9.1 - - - - - - - 10.7 - 2.9 3.5 3.3 

Ba (μg/L) 340 280 160 160 160 160 130 120 40 270 120 130 150 190 

Be (μg/L) - - 0.6 0.5 0.6 0.6 0.6 bdl bdl - 0.6 - - - 

Br (mg/L) 67.5 66.4 - - - - - - - 4.4   14.7 24.6 25.1 

Cs (μg/L) 390 410 290 300 290 290 280 200 90 460 320 260 190 200 

Cu (μg/L) 54 65 8 9 9 10 8 16 15 54 6 15 20 23 

Ga (μg/L) - - 1 1.1 1.3 1.1 1.2 1 - - 0.6 - - - 

Ge (μg/L) bdl bdl 11 11 11 11 10 9 17 8 12 1 bdl bdl 

La (μg/L) 1.6 1.6 bdl bdl bdl bdl bdl bdl bdl 1.9 bdl 0.2 0.2 0.2 

Li (μg/L) 1520 1450 1410 1420 1430 1460 1390 1290 620 300 bdl  890 390 360 

Rb (μg/L) 292 290 270 270 270 270 260 230 161 350 310 270 120 130 

Sb (μg/L) bdl bdl bdl bdl bdl bdl 1 bdl bdl bdl bdl bdl bdl bdl 

Se (μg/L) 380 390 - - - - - - - 270 - 89 140 150 

Si (mg/L) 37 35 21 21 21 22 21 20 8.6 69 43 18 27 15 

Sn (μg/L) bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl 2.3 

Sr (mg/L) 17 17 8.2 8.5 8.5 8.6 8.4 7.9 7.9 30 26 12 5.8 6.1 

Tl (μg/L) 1.9 2.2 3 2 3 3 2 2 bdl  1.64 2 bdl 0.3 0.4 

U (μg/L) bdl bdl bdl bdl bdl bdl bdl 1 9 bdl 0 bdl 12 10 

V (μg/L) 76 70 25 26 26 28 26 26 28 50 18 20 28 30 

Y (μg/L) bdl bdl 0.07 0.07 0.07 0.07 0.2 0.08 0.07 bdl 0.13 0.2 0.2 0.2 

bdl = below detection limit, * = analysis made in ACME labs, the rest of the samples analysed in NHM labs. 
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Table 4. Representative microanalyses of Au-Cu-Ag alloy (1), pyrite (2, 3), As-rich pyrite (4), arsenopyrite (5, 6), chalcopyrite (7), galena 

(8), sphalerite (9-11), stibnite (12-13). 

Samp. 1 2 3 4 5 6 7 8 9 10 11 12 13 

Area IL THE IL IL THE IL IL THE IL IL IL AD AD 

Ag 20.71 bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl 

Pb bdl bdl bdl bdl bdl bdl bdl 87.32 bdl bdl bdl bdl bdl 

Fe 5.41 47.01 46.38 46.64 33.17 34.09 30.38 bdl 6.29 16.65 18.73 bdl 2.78 

Cu 16.9 bdl bdl bdl bdl bdl 32.05 bdl bdl bdl bdl bdl bdl 

Zn 1.73 bdl bdl bdl bdl bdl bdl bdl 61.74 48.49 47.93 bdl bdl 

Au 57.19 bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl 

Sb bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl 69.37 65.22 

As bdl bdl bdl 1.41 44.71 44.27 bdl bdl bdl bdl bdl bdl bdl 

Mn bdl bdl bdl bdl bdl bdl bdl bdl bdl 1.02 0.51 bdl bdl 

S bdl 53.46 55.32 52.65 21.49 20.75 35.3 11.84 32.5 34.8 31.23 29.5 31.97 

              

Total 101.94 100.47 101.7 100.7 99.37 99.11 97.73 99.16 100.53 100.96 98.4 98.87 99.97 

              

Atoms 1 3 3 3 3 3 4 2 2 2 2 5 5 

              

Ag 0.220 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Pb 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.066 0.000 0.000 0.000 0.000 0.000 

Fe 0.111 1.006 0.975 1.004 0.957 0.991 1.012 0.000 0.109 0.278 0.327 0.000 0.157 

Cu 0.305 0.000 0.000 0.000 0.000 0.000 0.939 0.000 0.000 0.000 0.000 0.000 0.000 

Zn 0.030 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.912 0.692 0.715 0.000 0.000 

Au 0.333 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Sb 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.912 1.692 

As 0.000 0.000 0.000 0.023 0.962 0.959 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Mn 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.017 0.009 0.000 0.000 

S 0.000 1.994 2.025 1.974 1.081 1.050 2.049 0.934 0.979 1.013 0.949 3.088 3.150 

AD = Aedipsos, IL = Ilia, THE = Thermopylae, bdl = below detection limit. 
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Table 5. Metallic and non-metallic mineral phases identified in the studied travertines. 

 
Metallic and non-metallic 

 mineral phases 
Aedipsos Ilia Thermopylae 

Calcite * * * 

Aragonite * *   

Ferrihydrite * *   

Halite *     

Sylvite *     

Gypsum *     

Barite * *   

Fluorite * *   

Zircon * * * 

Pyrite * * * 

Arsenopyrite * * * 

Galena  * * 

Sphalerite 
Fe-poor   * * 

Fe-rich    *   

Chalcopyrite   *   

Stibnite * * * 

Anglesite   * * 

Awaruite   *   

Native Ni     * 

Native Pb   *   

Native Cu   *   

Cu-Zn(±Fe±Sn) alloys * * * 

Ni-Co-Cu-Sn alloy    *   

Ni sulfide     * 

Au-Ag alloys   *   

Au-Cu-Ag alloys   *   

REE minerals   *   

Cassiterite   *   

Fe-Ti Oxides *     

Fe Oxides * * * 

Cr Oxides *   * 
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Table 6. Whole rock travertine chemistry range as determined  

by ICP-MS and ICP-AES analysis and comparison with travertines elsewhere. 

 

EAST. CEN. GR. EUBOEA RUSSIA1 
SOLOMON 

ISLANDS2 

PAPUA NEW 

GUINEA3 

THERMOPYLAE AEDIPSOS ILIA N. 

CAUCASUS 

SAVO 

VOLCANO 

TUTUM 

BAY (N=2) (N=23) (N=3) 

Ca % 34.2 – 35.3 3.2 – 62 10.3 - 21.9 0.4 – 49.3 32 - 37 37.2 - 38.5 

Na mg/kg 1390 – 2400 700 - 33100 3280 - 4960 bdl - 6870 140 - 630 370 - 590 

P mg/kg 48 25 - 440 71 - 280 bdl - 756 90 - 410 44 - 87 

S mg/kg 4670 – 4940 230 - 67800 650 - 2740 30 – 6650 1500 - 10500 bdl 

Si mg/kg 190 – 200 12 - 950 86 - 340 27 – 8140 - - 

Al mg/kg 52 – 75 6 - 1150 54 - 150 9 – 7475 - 530 - 1800 

As mg/kg 97 – 118 66 - 230 4895 - 18300 - 0.6 - 626 
- 

(up to 33200) 4 

B mg/kg 17 – 19 3 - 50 73 - 135 bdl – 625 bdl - 36 - 

Ba mg/kg 47 – 51 3 - 145 80 - 90 4 - 10890 23 - 167 bdl - 47 

Be μg/kg 300 – 380 83 - 2540 24500 - 57800 bdl - 47500 - bdl 

Cd μg/kg 9 – 13 1 - 25 15 - 18 - 50 - 360 bdl -400 

Co μg/kg bdl bdl bdl bdl -48200 100 - 2900 bdl 

Cr μg/kg bdl bdl bdl bdl - 29000 1700 bdl 

Cs μg/kg 320 – 370 20 - 1240 1230 - 1540 bdl - 77500 - 40 - 14000 

Cu μg/kg bdl 3600 - 14700 bdl bdl - 58500 150 - 780 bdl - 18000 

Fe mg/kg 116 – 170 49 - 23950 131000 - 289000 114 - 68300 600 - 22900 
490 – 1260 

(up to 29.7 wt. %)4 

Hf μg/kg bdl 12-56 14 - 45 bdl - 3600 - 80 - 1400 

K mg/kg 124 – 229 36 - 1090 335 - 510 bdl - 1270 bdl - 100 - 

Li μg/kg 6520 – 6700 140 - 3900 1530 - 1940 bdl - 88600 - - 

Mg mg/kg 6700 – 6850 87 - 2990 545 - 690 bld - 41800 900 - 4300 240 - 540 

Mn mg/kg 5 – 7 1 - 84 74 - 195 5 - 18000 1260 - 7065 77 - 540 

Ni μg/kg bdl bdl bdl bdl – 48200 1500 - 4000 bdl 

Pb μg/kg 370 – 530 348 - 10600 720 - 2210 bdl – 34600 30 - 1250 7000 - 27000 

Rb μg/kg 340 417 - 690 520 - 790 16 - 12400  430 - 49000 

Sb μg/kg 10 –16 30 - 4580 350 - 1750 bdl - 400 bdl - 90 bdl 

Sc μg/kg bdl 130 - 630 2560 - 8870 - 100 - 400 bdl 

Sn μg/kg bdl 90 - 810 bdl - - - 

Sr mg/kg 1918 – 2160 254 - 3960 2515 - 4260 24 - 13620 1150 - 3970 9500 - 11000 

Th μg/kg 7 – 11 bdl - 150 9 - 41 bdl - 3700 - 30 - 970 

Ti μg/kg 1920 1140 - 11510 2430 - bdl - 90000 bld - 119900 

U μg/kg 23 – 31 10 - 91 75 - 200 bdl - 6500 bdl - 200 30 - 1100 

V μg/kg bdl 140 - 2560 1040 - 2610 bdl - 28800 - bdl 

Y μg/kg 200 – 290 80 - 7980 71100 - 258900 61 - 86000 - 18000 - 90000 

Zn μg/kg 4520 – 4650 2520 - 25900 16000 - 24300 bdl -162000 300 - 21000 bdl 

Zr μg/kg 180 – 250 29 - 2080 290 - 1070 bdl - 338000 - 700 - 49000 

La μg/kg bdl 180 - 1100 14300 - 57300 bdl - 32100 700 - 2700 - 

Ce μg/kg 100 – 120 19 - 1660 27500 - 119300 60 - 78200 - - 

Pr μg/kg 14 – 15 2 - 220 3640 - 16900 7 - 8400 - - 

Nd μg/kg 52 –64 6 - 1110 16700 - 76500 57 - 31000 - - 

Sm μg/kg 12 – 15 3 - 390 5280 - 24400 bdl - 7200 - - 

Eu μg/kg 3 – 4 1 - 150 1850 - 8300 bdl - 1700 - - 

Gd μg/kg 18 – 20 6 - 770 8830 - 38400 22 - 8700 - - 

Tb μg/kg 2 – 3 bdl - 140 1750 - 7580 bdl - 1600 - - 

Dy μg/kg 15 – 18 1 - 950 12700 - 51300 bdl - 11900 - - 

Ho μg/kg 4 bdl - 190 2710 - 10800 bdl - 2800 - - 

Er μg/kg 54 – 130 7 - 1140 7570 - 29700 10 - 9800 - - 

Tm μg/kg 2 bdl - 60 940 - 3760 bdl - 1700 - - 

Yb μg/kg 6 – 9 2 - 300 5230 - 19800 bdl – 11000 - - 

Lu μg/kg 1 bdl - 38 650 - 2410 bdl - 1800 - - 
1 = Lavrushin et al., 2006, 2 = Smith, 2008. 3 = Pichler and Veizer, 2004, 4 = Price and Pichler, 2005, bdl = below detection limit. 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 
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Highlights 

 

 A new active terrestrial mineralizing hydrothermal system associated with ore-

bearing travertines in northern Euboea (Evia) and Sperchios area, Greece, is 

documented here for the first time. 

 Some travertines are extremely enriched in Fe (up to 28.9 wt. %) and As (1.83 

wt. %) and contain clastic grains of sulfides, native elements, precious metals 

alloys and REE phases, indicating their remobilization from sulfide 

mineralization at depth. 

 A comparison between the studied hydrothermal system and other similar 

mineralizing hydrothermal systems elsewhere, suggests that the study area has 

potential for future base and precious metal discoveries.  
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