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a b s t r a c t

Concentrations of a number of organophosphate flame retardants (PFRs) were measured in floor dust
collected from living rooms in Australia (n ¼ 42), Canada (n ¼ 14), Germany (n ¼ 22), and Kazakhstan
(n ¼ 9); cars from Australia (n ¼ 39) and Germany (n ¼ 19); and offices from Germany (n ¼ 25) and
Kazahkstan (n ¼ 8). PFR concentrations in these samples were compared with each other and with
previously reported data for PFRs in dust from similar microenvironments in the UK. Our data reveal
significant between-country differences in both absolute concentrations and the relative abundance of
specific PFRs in each of the microenvironments studied. Most notably, concentrations of TCIPP in UK
living room dust (median ¼ 21 mg g�1) exceeded significantly (p < 0.05) those in all other countries
studied here; a substantial number of car dust samples contained elevated concentrations of TDCIPP, and
German samples generally contained lower levels of PFRs in all microenvironments studied. In addition,
PFRs were determined in dust samples collected from living room couches in both Australia (n ¼ 41) and
the UK (n ¼ 10). The elevated concentrations of TCIPP in UK living room dust are likely attributable to the
favoured use of this PFR in UK couch foam. This is indicated by concentrations of TCIPP in UK couch dust
(median ¼ 610 mg g�1) exceeding significantly those in Australian couch dust (median ¼ 2.9 mg g�1).
Moreover, concentrations of TCIPP in UK couch dust originating from couches 15 years old or less, display
a marked relationship with the age of the couch, with concentrations in such samples increasing
significantly (p < 0.01) with couch age.

Copyright © 2016, The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi
Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Recent restrictions worldwide on the use of polybrominated
diphenyl ethers (PBDEs), have led to increased use of alternative
flame retardants, such as organophosphate flame retardants (PFRs).
As PFRs are used as additive flame retardants (FRs), their transfer
from products in which they are used into the environment is
relatively facile, and their presence in indoor dust has been re-
ported in a number of studies [1e6,14,15,17,19,20,24,26,27,29,30].
).
nications Co., Ltd.

vier on behalf of KeAi

and hosting by Elsevier B.V. on be
by-nc-nd/4.0/).
We reported recently on concentrations of PFRs in samples of floor
dust from UK cars, school classrooms, homes, and offices [11].

The currently available data on the adverse health effects of PFRs
were reviewed recently [31]. In summary, chlorinated alkyl phos-
phates such as tris(2-chloroethyl) phosphate (TCEP), tris(2-
chloroisopropyl) phosphate (TCIPP), and tris(1,3-dichloro-2-
propyl)phosphate (TDCIPP) are suspected carcinogens, with other
effects such as reduced thyroid hormone levels [25], contact
dermatitis [12], and neurotoxicity [16] also reported for TDCIPP. For
the non-chlorinated PFRs, reported impacts include links with
altered hormone levels and decreased semen quality for triphenyl
phosphate (TPHP) [25]; neurotoxicity for tri-cresylphosphate
(TMPP) [7]; haemolytic effects for 2-ethylhexyl diphenyl phos-
phate (EHDPP) [22]; and increased risk of mucosal symptoms of
sick housing syndrome linked with higher indoor concentrations of
tri-n-butyl phosphate (TNBP) [23].

While our UK study found no significant relationships between
PFR concentrations in dust from cars, classrooms, homes, and
half of KeAi Communications Co., Ltd. This is an open access article under the CC BY-
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offices and the presence of putative PFR sources in such UK mi-
croenvironments [11]; the same study did highlight elevated
concentrations of TCIPP in house dust and suggested that this was
likely attributable to extensive use of TCIPP in couch foam, as re-
ported in the US [28]. This study explores this further, by
comparing concentrations of TCIPP in Australian couch dust and
from living rooms in which the couch was located; hypothesising
that significantly elevated concentrations of TCIPP in couch
compared to floor dust, combined with significant positive cor-
relation between the two groups, would indicate couches to be a
significant source. Moreover, while our earlier UK study [11]
highlighted possible international differences in the absolute
concentrations and relative abundance of individual PFRs in in-
door dust; disparities between the sampling and analytical
methodology employed by the various laboratories conducting
studies in different countries, introduces some uncertainty. As a
result, this study employs identical dust collection and analytical
procedures to evaluate differences in concentrations of PFRs in
samples of indoor dust taken from a variety of microenvironment
categories in each of the following countries: Australia, Canada,
Germany, and Kazakhstan. Concentrations reported in these
samples are compared with those reported previously for the UK.
To the best of our knowledge, these data are the first reported for
Kazahkstan.
2. Materials and methods

2.1. Sampling

Samples of settled dust were collected at various points over the
period 2011 to 2012 (except for Kazahkstani samples that were
collected in 2009) using previously reportedmethods [21]. Samples
were collected from: cars in Australia (n ¼ 39) and Germany
(n ¼ 19), living rooms in Australia (n ¼ 42), Canada (n ¼ 14), Ger-
many (n ¼ 22), and Kazahkstan (n ¼ 9); as well as offices from
Germany (n ¼ 25) and Kazahkstan (n ¼ 8). We also collected couch
dust samples from Australia (n ¼ 41) and the UK (n ¼ 10).
Australian samples were collected predominantly from Brisbane
and Sydney, Canadian from Toronto, German from several different
cities, Kazahkstani from Almaty and Astana, while UK sampleswere
obtained in the Birmingham area. For offices and living rooms,
samples were obtained by vacuuming a set area of floor (1 m2 if
carpeted, 4 m2 if bare floor) for a set duration (1 min if carpeted,
4 min if bare floor). For cars, the seats and the dashboard area were
sampled for 2 min, with couch dust collected by vacuuming the
areas in contact with the sitter for 2min. Dust was retainedwithin a
nylon “sock” (25 mm mesh size), placed in the vacuum cleaner
furniture attachment. Following collection, samples were passed
through a 500 mm mesh sieve prior to analysis.

2.2. Analysis

Consistent with our previous study of PFRs in UK indoor dust,
we measured concentrations of the following PFRs: TDCIPP, TCIPP,
TPHP, TNBP, EHDPP, TCEP, and TMPP. An exception to this was for
12, 6, and 10 samples of German car, living room, and office dust
respectively, for which data have been reported previously [10] but
in which EHDPP was not measured. Concentrations were deter-
mined via GC-MS in accordance with methods reported previously
[10,11]. Briefly, dust samples (50 mg, accurately weighed), were
treated with 100 ng each of d15-TPHP and d27-TNBP as internal (or
surrogate) standards, and extracted via vortexing, sonication, and
centrifugation with three successive aliquots of hexane:acetone
(3:1 v/v, 2 mL). The combined extracts were reduced using a gentle
stream of N2 to incipient dryness and reconstituted with 1 mL
hexane prior to elution through a pasteur pipette containing 1 g
Florisil. Following initial elution with hexane (8 mL, fraction not
analysed), PFRs were eluted with ethyl acetate (10 mL). This second
fraction was reduced to near dryness under a stream of N2 prior to
reconstitution with 100 mL of 1 ng/mL triamylphosphate (TAP) in
iso-octane as recovery determination (or syringe) standard. Final
sample extracts were analysed via GC-EIMS using an Agilent 5975C
MSD fitted with a DB-5ms column (30 m, 0.25 mm id, 0.25 mm film
thickness). The GC temperature programme was 90 �C, hold for
1.25 min, ramp 10 �C/min to 170 �C, ramp 5 �C/min to 240 �C, hold
for 10 min, ramp 20 �C/min to 310 �C, hold for 10 min. The mass
spectrometer was operated in selected ion electron ionisation
mode, with Table SD-1 listing the ions monitored for each targeted
compound.

Purchased standards of TCIPP, TDCIPP and TMPP contained
different isomers. While the commercial TCIPP mixture consists of
3 different isomers, the third eluting isomer has a markedly lower
response than the others, and can only be seen at higher concen-
trations. Thus we report TCIPP levels here as a sum of the 1st two
eluting isomers only (referred to as TCIPP 1 and TCIPP 2) [8,11].
Likewise, consistent with our UK study [11], concentrations of
TDCIPP and TMPP in this study are reported as the sum of both and
all four isomers respectively.
2.3. QA/QC

One aliquot of SRM2585 (NIST, organics in dust) was analysed
with every batch of 10 dust samples. As the samples reported here
are part of a larger PhD study, a total of 56 aliquots of SRM2585
were analysed. Table SD-2 illustrates the high reproducibility of our
method with relative standard deviations ranging between 6.4%
and 14% for individual PFRs. Neither certified nor indicative values
for our target PFRs are reported by NIST. Nonetheless, Table SD-2
compares our data with the average±sn (consensus) values ob-
tained for SRM2585 in an interlaboratory trial of PFR analysis in
environmental samples [8]. The good agreement between our re-
ported concentrations and those reported in the interlaboratory
trial is evidence that our data are consistent with those published
by other researchers.

One blank (comprising pre-baked Na2SO4 treated as a dust
sample) was analysed with every sample batch (thus every 6th
sample was a blank), and a total of 107 blanks were analysed. Field
blanks were also collected. These consisted of pre-baked Na2SO4,
taken to the sampling location, spread on aluminium foil and
vacuumed as a normal sample e i.e. 50 mg of Na2SO4 was analysed
as a surrogate for dust. Concentrations in a batch of samples were
not corrected for those detected in blanks where the concentration
of the target PFR in the blank from the same batch was less than 5%
of the lowest concentration in that batch. Where the PFR concen-
tration in the blank was between 5% and 20% of the concentration
in samples from that batch, concentrations were corrected
accordingly via subtraction of the blank concentration. If blank
concentrations exceeded 20% of those in samples from the same
batch, all samples in that batch were discarded and reanalysed.
Concentrations of TNBP, EHDPP, TDCIPP and TMPP were below
detection limits in all blank samples analysed. In contrast,
(expressed as ng PFR per g Na2SO4 “dust”) low levels of TCEP
(median ¼ 0.023 mg g�1), TCIPP (median ¼ 0.03 mg g�1), and TPHP
(median 0.006 mg g�1) were detected in a small proportion of
blanks. Where appropriate, correction for these blank levels was
conducted.



Table 2
Statistically significant (p < 0.05) differences in concentrations of PFRs in living room
floor dust from Australia, Canada, Germany, Kazakhstan, and the UK.

PFR Significant difference

TnBP Australia, Kazakhstan > UK
TCEP Australia, Canada, Kazakhstan, UK > Germany
TCIPP UK > Australia, Canada, Germany, Kazakhstan
TPHP Canada, Australia, Kazakhstan, UK > Germany
TDCIPP Australia, Canada, UK > Germany

Table 3
Summary of Concentrations (mg g�1) of PFRs in Car Dust from Australia, Germany,
and the UK.

PFR/Statistical Parameter Australia Germany UKa

TnBP
Minimum <0.03 <0.03 <0.03
Median 0.11 <0.03 <0.03
Maximum 8.4 0.63 1.2
TCEP
Minimum <0.06 <0.06 <0.06
Median 2.0 0.40 1.2
Maximum 62 5.1 8.7
TCIPP
Minimum 0.31 0.29 2.4
Median 24 2.9 53
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3. Results and discussion

3.1. PFRs in living room dust from Australia, Canada, Germany, and
Kazahkstan

A statistical summary of the concentrations of PFRs in all sam-
ples of living room dust analysed in this study is provided as Table 1,
alongside data from our previous study of UK living room dust for
comparison. Concentrations of PFRs in all individual samples ana-
lysed in this study are provided as Table SD-3. PFRs were detected
in nearly all samples, with TCIPP the most abundant in Australia,
Germany and the UK; while TPHP was the most abundant PFR in
Canada and Kazahkstan. Using IBM SPSS Statistics for Mac (version
22.0.0.0), we applied ANOVA with Tukey post-hoc test to evaluate
the hypothesis that significant differences exist between concen-
trations of individual PFRs in living room dust from the countries
studied here. As visual inspection and a Kolmogorov-Smirnov test
revealed the data were not normally distributed, concentrations
were log-transformed prior to ANOVA. Table 2 summarises the
significant differences revealed by this analysis. Two particularly
salient features are that: (a) concentrations of TCIPP in UK living
room floor dust exceed significantly those in the other four coun-
tries studied, and (b) that PFR concentrations in Germany are
markedly lower than in any of the other countries.
Maximum 310 100 370
TPHP
Minimum 0.33 0.33 0.27
Median 3.7 1.8 3.3
Maximum 85 11 170
EHDPP
Minimum 0.18 0.01 0.29
Median 0.63 1.2 2.2
Maximum 4.9 1.9 11
TDCIPP
Minimum 0.06 <0.03 0.11
Median 2.3 4.1 31
Maximum 730 620 740
3.2. PFRs in dust from cars sampled in Australia and Germany

Table 3 summarises concentrations of target PFRs in samples of
dust collected from cars in Australia and Germany, alongside our
previously published data for UK cars [11]. Particular points of note
here are that while TCIPP is predominant in cars sampled in
Australia and the UK, it is another chlorinated PFR (TDCIPP) that
predominates in cars sampled in Germany. Moreover, TDCIPP is
present at substantial concentrations in Australian and UK car dust,
Table 1
Summary of concentrations (mg g�1) of PFRs in living room floor dust from Australia,
Canada, Germany, Kazakhstan, and the UK.

PFR/Statistical Parameter Australia Canada Germany Kazakhstan UKa

TnBP
Minimum <0.03 <0.03 <0.03 <0.03 <0.03
Median 0.06 0.13 <0.03 0.11 <0.03
Maximum 8.4 1.2 0.25 0.23 0.09
TCEP
Minimum <0.06 0.19 <0.06 0.62 <0.06
Median 0.60 0.69 0.21 1.4 0.81
Maximum 24 37 5.7 6.8 28
TCIPP
Minimum 0.24 0.12 0.33 0.43 3.7
Median 1.8 1.2 1.0 1.0 21
Maximum 24 37 5.7 6.8 100
TPHP
Minimum 0.24 0.02 0.07 1.2 0.49
Median 1.2 1.6 0.23 3.8 3.3
Maximum 31 37 18 9.2 110
EHDPP
Minimum <0.01 0.01 <0.01 0.06 0.18
Median 0.38 0.39 0.14 0.27 1.6
Maximum 5.1 0.73 0.56 1.2 130
TDCIPP
Minimum <0.03 0.03 <0.03 <0.03 0.06
Median 0.32 1.1 0.08 0.11 0.71
Maximum 11 3.2 14 2.0 14
TMPP
Minimum <0.01 <0.01 <0.01 <0.01 <0.01
Median 0.04 <0.01 0.14 <0.01 0.02
Maximum 3.0 0.67 1.3 1.1 14

a Reported in Ref. [11].

TMPP
Minimum <0.01 <0.01 <0.01
Median 0.31 0.86 0.59
Maximum 240 150 5.6

a Reported in Ref. [11].
and the maximum concentrations of any PFR in any microenvi-
ronment in this study are of TDCIPP in cars (730, 620, and
740 mg g�1 in cars sampled in Australia, Germany, and the UK
respectively). These higher concentrations of TDCIPP in car dust are
consistent with other studies [9,13] and reports that TDCIPP is used
only in applications requiring an especially high degree of flame
retardancy due to its higher cost compared to TCIPP [18]. One such
application is in polyurethane foam used in cars. As for living room
dust we examined our data for significant differences in concen-
trations of target PFRs in cars from different countries, by sub-
jecting log-transformed concentrations to ANOVA, and the
significant differences detected by this analysis are shown in
Table 4. The principal features are that concentrations of TCIPP,
EHDPP, and TDCIPP in UK car dust exceed significantly those in cars
Table 4
Statistically significant (p < 0.05) differences in concentrations of
PFRs in car dust from Australia, Germany, and the UK.

PFR Significant difference

TnBP Australia > UK
TCIPP Australia, UK > Germany
EHDPP UK > Australia
TDCIPP UK > Australia, Germany



Table 6
Statistically significant (p < 0.05) differences in concentrations of
PFRs in office floor dust from Germany, Kazakhstan, and the UK.

PFR Significant difference

TCIPP UK > Germany, Kazakhstan
EHDPP UK > Germany, Kazakhstan
TDCIPP UK > Germany
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from at least one of the other two countries studied. However, TnBP
is rarely detected in UK cars and concentrations of this PFR in
Australian vehicles significantly exceed those in the UK.

We also examined our data to check for any relationship be-
tween vehicle age and the concentrations of each target PFR. No
significant relationships were detected, with one exception; that
concentrations of EHDPP in cars sampled in Australia displayed a
significant negative correlation (p ¼ 0.03) with vehicle age. This
implies that concentrations of EHDPP are higher in newer vehicles.
We also checked for any systematic influence of vehicle manufac-
turer on PFR concentrations and found none. As an illustration,
while the concentration of TDCIPP in one Toyota Corolla made in
1997 was 740 mg g�1, in another 1997 Corolla, the concentration of
the same PFR was 0.12 mg g�1. While our database is small, and a
larger study may lead to different conclusions, this wide disparity
in TDCIPP concentrations between these two identical car models
manufactured in the same year, suggests that the factors influ-
encing concentrations of PFRs in car dust are complex and multi-
factorial, and likely depend not only on the year and country of
manufacture, but on additional factors such as foam cushions, car
seats etc. introduced by the car owner.
3.3. PFRs in dust from offices in Australia, Germany, and Kazahkstan

Concentrations of target PFRs detected in dust taken fromoffices
in Germany and Kazahkstan, alongside those in our earlier study of
UK offices are summarised in Table 5. Of particular note, while
TCIPP is the predominant PFR in German and UK office dust, TPHP is
the major PFR in offices in Kazakhstan. ANOVA of log-transformed
concentrations was performed to evaluate the existence of any
significant differences in concentrations of target PFRs in office dust
from the different countries studied. The significant differences
revealed by this analysis are shown in Table 6, revealing concen-
trations of TCIPP, EHDPP, and TDCIPP in UK offices to significantly
Table 5
Summary of Concentrations (mg g�1) of PFRs in Office Dust from Germany,
Kazakhstan, and the UK.

PFR/Statistical Parameter Germany Kazakhstan UKa

TnBP
Minimum <0.03 <0.03 <0.03
Median 0.17 0.07 <0.03
Maximum 0.76 0.48 1.3
TCEP
Minimum <0.06 0.95 <0.06
Median 0.13 2.5 0.87
Maximum 12 5.8 160
TCIPP
Minimum 0.18 0.87 3.6
Median 1.6 2.2 33
Maximum 13 100 230
TPHP
Minimum 0.20 0.39 0.56
Median 1.5 5.3 4.3
Maximum 8.8 48 50
EHDPP
Minimum 0.13 0.08 0.15
Median 0.36 0.26 5.3
Maximum 3.8 0.57 81
TDCIPP
Minimum <0.03 <0.03 <0.03
Median 0.14 0.91 0.48
Maximum 2.2 4.0 51
TMPP
Minimum <0.01 0.01 <0.01
Median <0.01 0.38 <0.01
Maximum 1.9 10 5.3

a Reported in Ref. [11].
exceed those in Germany in all cases and Kazakhstan for TCIPP and
EHDPP. While not significant, it is noteworthy that median con-
centrations of TCEP, TPHP, TDCIPP, and TMPP are all highest in
Kazakhstani office dust.

3.4. Patterns of PFR contamination in dust from different countries
and microenvironments

In addition to differences in absolute concentrations of target
PFRs in dust from various microenvironments in different coun-
tries, we also examined our data for between-country variations in
the relative abundance of individual PFRs. To do so, we first nor-
malised concentrations of each individual PFR to SPFRs in each
sample. We then subjected these normalised data to principal
component analysis using SPSS. Figs.1e3 show plots of the first two
principal components (PC1 and PC2) obtained for living rooms, car,
and office dust respectively. Combined, these two PCs accounted for
43, 48, and 50% of the variance in the datasets for living room, car,
and office dust respectively.

For living room dust samples (Fig. 1), PC1 scores (y axis) are
driven primarily in a negative direction by high relative abundances
of TCIPP and in a positive direction by high relative abundances of
TPHP. For PC2 (x axis), high scores result from an elevated relative
abundance of EHDPP, with high relative abundances of TDCIPP and
TCEP yielding lower, more negative PC2 scores. Consequently,
while Fig. 1 shows some overlap between samples from different
countries, three fairly distinct clusters are evident. All bar five of the
UK samples display negative PC1 scores, with most falling within
the cluster shaded green at a diagonal across the bottom two
quadrants. This arises principally due to the relative abundances of
TCIPP (high) and EHDPP (low) in most UK samples. Most Australian
and Canadian samples fall within the blue shaded cluster with low
scores for both PC1 (driven by relatively high abundances of TPHP)
and (particularly) PC2 e the latter arising as a consequence of high
relative abundances of TDCIPP. Finally, all the Kazahkstani samples
are located in the top (purple shaded) cluster, all with positive PC1
(due to a predominance of TPHP) and (with one exception) negative
PC2 scores e the latter due to a high relative abundance of TCEP.

Looking at the PC score plot for car dust samples (Fig. 2), it is
apparent that with just 3 exceptions, all UK samples fall into the
green shaded cluster spanning the bottom two quadrants due to
their negative PC1 (y axis) scores. These negative PC1 scores result
from the high relative abundance of both TCIPP and TDCIPP in UK
car dust. Differentiation between UK samples occurs as a result of
the relative abundance of these two chlorinated PFRs in individual
samples; those in which TCIPP predominates having high PC2 (x
axis) scores, while those dominated by TDCIPP having low PC2
scores. Samples from other countries are spread more evenly
throughout component space, though one German and 12 Austra-
lian samples in which TCIPP is substantially elevated are grouped
tightly together in the bottom right quadrant of the plot.

The PC score plot for office dust samples is shown in Fig. 3. Two
clear clusters are evident. The red shaded cluster lying in the bot-
tom left quadrant of component space encompasses the majority of
the UK samples. This arises due to the negative scores for both PC1
(y axis) and PC2 due respectively to high relative abundances of



Fig. 1. Plot of scores for principal components 1 and 2 for living room floor dust samples.

Fig. 2. Plot of scores for principal components 1 and 2 for car dust samples.

Fig. 3. Plot of scores for principal components 1 and 2 for office floor dust samples.
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TCIPP and EHDPP in UK office dust. The other (green shaded) cluster
that occupies the top right quadrant contains 6 out of the 8
Kazahkstani samples. This reflects the high proportions of TPHP
(PC1) and TMPP (PC2) in these samples.
3.5. Do concentrations of TCIPP in Australian couch dust exceed
those in matched floor dust samples?

Of the 41 couch dust samples collected in Australia, 40 corre-
sponding floor dust samples (i.e. taken from the same room as the
couch was located) were available. We therefore tested the hy-
pothesis that concentrations of TCIPP in couch dust would exceed
significantly those in corresponding floor dust samples. To do so,
we conducted a paired t-test comparison of log-transformed con-
centrations in both datasets. This analysis revealed concentrations
of TCIPP in couch dust (average ¼ 29 mg g�1) to exceed significantly
(p ¼ 0.014), those in corresponding floor dust samples
(average ¼ 4.1 mg g�1). This is consistent with the hypothesis that
couches are a net source of TCIPP in Australian homes. However,
this is contradicted by the absence of significant correlation
(p > 0.1) between log-transformed TCIPP concentrations in dust
from couches and the corresponding living room floors. This latter
observation indicates that couches are not the only source of TCIPP
in Australian living rooms.
3.6. Do TCIPP concentrations in UK couch dust exceed significantly
those in Australian couch dust?

A t-test comparison of log-transformed concentrations of TCIPP
in Australian and UK couch dust reveals concentrations in UK couch
dust (median ¼ 610 mg g�1) to exceed significantly those in
Australian couch dust (median¼ 2.9 mg g�1). This is consistent with
the significantly higher TCIPP concentrations in UK compared to
Australian living room dust (Table 2).
3.7. Influence of couch age on concentrations of TCIPP in couch dust

No discernible relationship was evident between couch age and
concentrations of TCIPP in Australian couch dust. In contrast, the
influence of couch age on concentrations of TCIPP in UK couch dust
was examined by plotting TCIPP concentration against couch age
for the 9 out of 11 couches for which information on the couch age
was available (Fig. 4). When all data were plotted, no significant
relationship was detected. However, one couch was antique and
conservatively estimated by its owner to be around 50 years old.
When this sample was removed as an outlier, a significant positive



Fig. 4. Plot of concentration of TCIPP in UK couch dust Against couch age.
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relationship (R¼ 0.93, p < 0.01) was evident between couch age for
couches �15 years old and the concentration of TCIPP in the cor-
responding floor dust sample. Closer inspection of this small UK
dataset, reveals the highest TCIPP concentrations
(1400e1600 mg g�1) to be in dust sampled from the 3 couches that
were purchased between 11 and 15 years prior to dust sample
collection. Concentrations of TCIPP in samples from couches
sampled between 1 and 7 years were much lower
(240e360 mg g�1), with that in dust sampled from a couch pur-
chased just 3 months hitherto only 1.81 mg g�1 TCIPP. While more
data are required to confirm these findings, this suggests that while
couches are a substantial source of TCIPP in UK homes, use of this
PFR in UK couches has declined substantially from a decade or so
ago. While this will likely lead to a reduction in TCIPP concentra-
tions in UK homes, it suggests that substantial quantities of soft
furnishings containing TCIPP will enter the UK waste stream in
coming years as unwanted furniture is discarded.
3.8. Assessment of human health risk arising from exposure to PFRs
via dust ingestion

While exposure and risk assessment was not a primary objective
of this study, we have previously done so for the UK population
based on the same dust samples mentioned for comparison pur-
poses in this paper [11]. In our earlier paper, we noted that the
highest risk was for our high-end exposure estimate of toddler
exposure to TCIPP, which based on UK datawas ~5 times lower than
a health based limit value (HBLV) for this PFR [26]. Our UK exposure
estimates for other PFRs were all at least 90 times lower than the
corresponding HBLV. As this current study shows UK dust to
contain the highest concentrations of TCIPP and most other PFRs,
we conclude that exposure via dust ingestion in the other countries
studied here will also not exceed existing HBLVs. It should be noted
however, that current HBLVs have no legislative standing and that
future advances in toxicological understanding may reduce these
apparent margins of safety. Furthermore, consideration of other
exposure pathways such as diet, inhalation, and dermal uptakemay
narrow erode further the gap between HBLVs and exposure.
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