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Abstract  9 

Background: Computational modeling of biological cells usually ignores their 10 

extracellular fields, assuming them to be inconsequential. Though such an assumption 11 

might be justified in certain cases, it is debatable for networks of tightly packed cells, 12 

such as in the central nervous system and the syncytial tissues of cardiac and smooth 13 

muscle.  14 

New Method: In the present work, we demonstrate a technique to couple the 15 

extracellular fields of individual cells within the NEURON simulation environment. The 16 

existing features of the simulator are extended by explicitly defining current balance 17 

equations, resulting in the coupling of the extracellular fields of adjacent cells. 18 

Results: With this technique, we achieved continuity of extracellular space for a 19 

network model, thereby allowing the exploration of extracellular interactions 20 

computationally. Using a three-dimensional network model, passive and active 21 

electrical properties were evaluated under varying levels of extracellular volumes. 22 

Simultaneous intracellular and extracellular recordings for synaptic and action 23 

potentials were analyzed, and the potential of ephaptic transmission towards functional 24 

coupling of cells was explored. 25 
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Comparison with Existing Method(s): We have implemented a true bi-domain 26 

representation of a network of cells, with the extracellular domain being continuous 27 

throughout the entire model. This has hitherto not been achieved using NEURON, or 28 

other compartmental modeling platforms. 29 

Conclusions: We have demonstrated the coupling of the extracellular field of every cell 30 

in a three-dimensional model to obtain a continuous uniform extracellular space. This 31 

technique provides a framework for the investigation of interactions in tightly packed 32 

networks of cells via their extracellular fields. 33 

Keywords: Extracellular Space, Electrical Syncytium, Compartmental Modeling, 34 

NEURON, Extracellular Recordings, Triphasic Action Potential, Ephaptic Coupling 35 

 36 

1. Introduction 37 

Electrical modeling techniques for biological cells, such as the compartmental approach 38 

(Rall, 1964), involve the conversion of cellular features into their electrical equivalents. 39 

Cells and networks are described in terms of combinations of various electrical 40 

components, forming large complex circuits. Compartmental modeling platforms, such 41 

as NEURON, simulate these models by solving the resultant electrical equivalent circuits 42 

(Hines & Carnevale, 1997). When undertaking such modeling, it is common practice to 43 

ignore the extracellular fields, assuming them to be inconsequential in determining 44 

transmembrane voltage changes (Rall, 1959; Koch, 2004). All points outside the 45 

membrane are considered to be connected to ground. This might be a reasonable 46 

assumption in cases where the interstitial space between cells is large, resulting in a low 47 

value of extracellular resistance. This allows for considerable simplification in the 48 
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electrical equivalent circuit, and its analysis. But for tissues where cells are tightly 49 

packed together, such as in the central nervous system and the syncytial tissues of 50 

cardiac and smooth muscle, this assumption might not be justified. Here, the peripheral 51 

cells might have a relatively large volume of extracellular space around them, but the 52 

bulk of the cells that lie in the interior and are closely packed, may be surrounded by 53 

very little interstitial space. For such cells, the resistance offered by the extracellular 54 

field could be significant and is likely to influence their electrical activity. Goldwyn & 55 

Rinzel (2016) demonstrated that a neuronal population could generate millivolt-scale 56 

extracellular potentials, and that this could induce millivolt-scale perturbations in the 57 

membrane potential of a neuron. As the cells are part of an electrical network, the 58 

effects will not remain localized but propagate to a more macroscopic level, and may 59 

affect tissue function. For example, it has been reported that differences in the 60 

extracellular resistance between the peripheral cells and those in the interior, affects 61 

the shape of the excitation wavefront with the former leading action potential 62 

propagation (Suenson, 1991). 63 

Reduced extracellular volume also brings about the possibility of ephaptic coupling, 64 

whereby electrical transmission between adjacent cells is feasible even in the absence 65 

of intercellular pathways, by means of electric field interactions between them (Holt & 66 

Koch, 1999; Mori et al., 2008). It has been shown that action potential propagation could 67 

occur even in the absence of functional gap junctions (Sperelakis & McConnell, 2002). 68 

Such coupling could arise not just at junctional clefts between cells, but also at other 69 

regions where the cells are in close proximity (Lin & Keener, 2013). The phenomenon of 70 

ephaptic transmission holds significance especially for: (i) nerve fibers in the central 71 

nervous system where many axons are unmyelinated and densely packed, such as in the 72 
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olfactory system, and (ii) syncytial tissues, such as cardiac and smooth muscle, owing to 73 

their tight packing of cells. It has been argued that coupling between cells in syncytial 74 

tissues exists not merely owing to the presence of gap junctions, but also as an outcome 75 

of electric field interactions, with the latter playing a more dominant role in certain 76 

scenarios (Lin & Keener, 2013), particularly over regions of the cells where gap 77 

junctions are not present. Impulse transmission by means of ephaptic coupling has been 78 

demonstrated to be feasible between two intestinal smooth muscle bundles (Sperelakis 79 

& McConnell, 2002). Though the functional role of ephaptic coupling has been widely 80 

argued (Sperelakis, 2002), there has been a dearth of any focused computational studies 81 

towards its investigation (Koch, 2004).  82 

There exist cable theory formalisms that account for extracellular space (Plonsey & 83 

Barr, 1991; Bédard & Destexhe, 2013), thereby enabling quantitative predictions. But 84 

traditional cable theory and its derivatives are applicable only for uniform continuous 85 

cable structures. In the present work, we model individual cells as small cable segments. 86 

These are coupled to each other by means of discrete gap junctional coupling 87 

mechanisms to form a long one-dimensional chain, and subsequently extended to form 88 

a three-dimensional network. Keener (1990, 1991) has demonstrated that the 89 

traditional cable theory cannot be applied to such structures, and proposes a modified 90 

cable theory to incorporate the effect of discrete gap junctions. Unfortunately, this 91 

modified cable theory does not consider the extracellular space as it is derived under 92 

the assumption of an extensive extracellular medium. 93 

The work presented here describes a technique to explore extracellular interactions 94 

computationally by enabling continuity of extracellular space for a network model. The 95 

implementation is presented for the NEURON simulation platform, a widely employed 96 
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tool for modeling neurons and neuronal networks (Hines & Carnevale, 1997). It has also 97 

been employed for modeling cardiac (Casaleggio et al., 2014) and smooth muscle tissue 98 

(Appukuttan et al., 2015a). NEURON employs the compartmental modeling approach 99 

and supports features for implementing extracellular fields. For example, a neuronal 100 

model comprising soma, axon and dendrites can be developed, and NEURON would 101 

automatically connect the extracellular fields of the various sections. A limitation is that 102 

the extracellular fields of individual cells are not coupled in the same manner. Thus, 103 

when attempting to model a network of cells, such as a cardiac syncytium or a bundle of 104 

smooth muscle cells, or closely packed never fibers, the extracellular field of each cell is 105 

disconnected from that of other cells in its neighborhood. Naturally, this does not offer 106 

an accurate representation of interstitial space in the tissue, and would also disallow the 107 

investigation of ephaptic coupling. 108 

We here demonstrate a technique to couple the extracellular fields of individual cells 109 

within the NEURON environment, so as to obtain a continuous extracellular space. We 110 

extend this technique to connect the extracellular fields of all cells in an electrical 111 

network. A model of the detrusor syncytium has been adopted for this purpose 112 

(Appukuttan et al., 2015a). This model provides the benefit of reduced cellular 113 

morphology, uniformity in arrangement of cells within the network, and an opportunity 114 

to compare and contrast electrical response owing to gap junctional and ephaptic 115 

coupling. This affords a simpler demonstration of the implementation and its analysis, 116 

but the approach presented can be extended to any configuration of electrical networks 117 

of cells. The extracellular fields of peripheral and internal cells have been differentiated 118 

in our study to reflect the differences in volume of extracellular space around the cells. 119 

Certain predictions regarding electrical transmission and action potential (AP) 120 
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propagation were tested using the model developed, and the potential effect of ephaptic 121 

coupling was explored. Finally, to demonstrate the ease of extending this technique 122 

towards neuronal networks, we present an example of implementing this method for 123 

coupling the extracellular fields of two adjacent neurons and present certain outcomes 124 

from their simulation.  125 

 126 

2. Methods 127 

Fig. 1 illustrates the electrical equivalent circuit for a cell, modeled as a cylinder with 128 

three segments, without an explicit extracellular field. The cell is endowed with passive 129 

membrane channels. Each compartment consists of a parallel combination of a resistor 130 

and a capacitor (R-C), with the former representing the conductivity of the passive ion 131 

channels (g_pas) and the latter representing the capacitance due to the lipid bilayer of 132 

 

Figure 1: Illustration of a single cell in NEURON (a) Conceptual model, (b) Planar view 
of model showing division into three compartments, (c) electrical equivalent circuit of 
cell. Internal and terminal nodes are marked using hollow and filled circles, 
respectively. Parameters have been named in accordance with the NEURON simulator, 
with their values tabulated in Table 2. 
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the cell membrane (cm). The voltage source in series with the resistance represents the 133 

reversal potential of the passive channels (e_pas). The compartments are connected 134 

intracellularly via resistive pathways denoting the cytoplasmic resistivity (Ra), while 135 

extracellularly all are connected to ground. Each compartment is represented via an 136 

internal node (hollow circles), while the extremities of the cell (or section) are 137 

represented by terminal nodes (filled circles). The membrane potential (v) for each 138 

compartment is measured across its R-C circuit (as shown in Fig. 1), i.e. the difference of 139 

the intracellular potential (vi) and the extracellular potential (ve) (Eq. 1). The latter is 140 

equal to zero when the extracellular space is grounded, and the membrane potential 141 

equates to the internal potential. 142 

 𝑣 =  𝑣𝑖 − 𝑣𝑒  (1) 

The extracellular field can be incorporated into cells in NEURON using the built-in 143 

extracellular mechanism. By default, it equips each section with two layers of 144 

extracellular field, but can be changed if desired. With the incorporation of the 145 

extracellular mechanism to the above model, we obtain two layers of extracellular field 146 

for each compartment. Every compartment will now have an internal node, and two 147 

extracellular nodes, vext[0] & vext[1]. This is illustrated in Fig. 2.  148 

Each layer has an R-C circuit, produced by the parallel combination of xg and xc, with 149 

the last layer additionally having a voltage source in series with the resistor. The 150 

extracellular potential (ve) just outside the membrane is termed vext[0] in NEURON, 151 

and is no longer directly connected to ground. Hence, ve can now influence the 152 

membrane potential (v). The internal potential (vi), when required, can be evaluated as 153 

the sum of v and ve. The extracellular layers of adjacent compartments are connected by 154 

means of axial resistances (xraxial).  155 
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NEURON offers these multi-layer representations of the extracellular space to enable 156 

modeling of various biophysical and/or experimental settings. For example, the 157 

resistive components in the membrane-adjacent layer allows for inclusion of nearest-158 

neighbor extracellular interactions, such as mimicking an unmyelinated axon 159 

surrounded by a thin layer of extracellular electrolyte, suspended in an oil bath. The 160 

capacitive components in this layer allow for simplistic representation of myelination. 161 

The outermost layer, containing the voltage source, is useful mostly as a hook for 162 

applying an extracellular driving force to the cell. But all these parameters can be 163 

utilized in other ways as per the modeling requirements. 164 

 

Figure 2: Electrical equivalent circuit of a cell, divided into three compartments, in 
NEURON with the default extracellular mechanism. Parameters have been named in 
accordance with the NEURON simulator, with their values tabulated in Tables 1 and 2. 
Note the presence of two layers of extracellular field.  
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As the objective of the current study is to demonstrate the linking of extracellular fields 165 

of individual cells, it is useful to reduce the extracellular field to a single layer. The same 166 

methodology can then be followed for other layers, where required. Simplifying the 167 

extracellular field can be achieved by adjusting the parameters of the extracellular 168 

mechanism. The various parameters, their dimensions, and their values for the 169 

simplified model are listed in Table 1. By setting the parameters of the second 170 

extracellular layer (xraxial[1], xc[1], xg[1], e_ext) as specified in Table1, we are able to 171 

connect the first layer directly to ground. Additionally, setting the capacitance of the 172 

first extracellular layer (xc[0]) to zero, allows us to obtain a purely resistive 173 

extracellular field. This is a common representation that is undertaken when modeling 174 

extracellular spaces (Bennett et al., 1993; Lindén et al., 2013). The combined effect of 175 

the above is illustrated in Fig. 3, where the cell has a single resistive extracellular layer. 176 

Table 1: Parameters provided by extracellular mechanism, with their units and values. 
The parameter names and units have been kept consistent with the NEURON 
simulator, and correspond to those in Fig. 2. NEURON requires values of axial resistors 
to be specified as resistivities and those of radial resistors as conductivities. Infinity 
has been specified as 109 and zero represented by 10-9. The latter was found necessary 
to eliminate certain errors in numerical integration. Note that xg[0] has different 
values for peripheral and internal cells in a syncytium. 

Parameter Units Value 

xraxial[0] MΩ/cm 161.8 

xc[0] µF/cm2 0 

xg[0] S/cm2 109 / 10-9 

xraxial[1] MΩ/cm 109 

xc[1] µF/cm2 0 

xg[1] S/cm2 109 

e_ext mV 0 
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Determination of values for the remaining parameters (xraxial[0] and xg[0]) is 177 

discussed in section 2.3. 178 

2.1. Coupling Extracellular Fields 179 

When we create two individual cells in NEURON, with the aforementioned 180 

specifications, each of them will have an electrical equivalent circuit as shown in Fig. 3. 181 

They will be electrically isolated from one another, both intracellularly and 182 

extracellularly. The cells can be linked intracellularly by means of gap junctions and 183 

several such modeling studies have been carried out in the past (Crane et al., 2001; 184 

Migliore et al., 2005). Gap junctions are often modeled as passive resistive pathways 185 

linking two cells. Setting up intracellular coupling in NEURON is relatively simple, and 186 

we have in the past extended this approach to simulate large 3-D networks of smooth 187 

muscle cells (Appukuttan et al., 2015a). The problem addressed in the present study is 188 

the linking of the extracellular fields of two cells. 189 

 

Figure 3: Electrical equivalent circuit of a cell, divided into three compartments, in 
NEURON with simplified extracellular mechanism. The modified model has only a 
single layer of extracellular field. 
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For purposes of exposition, consider a model of two identical cells, each having a single 190 

resistive layer of extracellular field, and coupled end-to-end electrically by means of gap 191 

junctions, as presented in Fig. 4. As seen in the figure, the extracellular fields of the two 192 

cells are still not directly connected, and thus extracellular potentials of cell 1 cannot 193 

directly affect those of cell 2. Any effect will be indirect owing to the gap junctional 194 

coupling of the intracellular regions. This would clearly not be a faithful representation 195 

of the topology that obtains physiologically, where the extracellular space does not 196 

feature such discontinuities. To overcome this mismatch, we require an ‘extracellular 197 

link’ between the adjacent extracellular nodes of the two cells, as illustrated in Fig. 5. It 198 

should be noted that though this connection appears similar to the gap junctional 199 

resistance that couples the internal nodes of adjacent cells, NEURON does not allow the 200 

same approach for modeling links between extracellular nodes. The solution lies in 201 

explicitly defining current balance equations to be solved by NEURON. This can be 202 

accomplished using the LinearMechanism class offered by NEURON. The relevant 203 

current balance equations that need to be defined are: 204 

 

Figure 4: Planar view and electrical equivalent circuit of two cells connected via a gap 
junction (shown in red). The terminal nodes are not shown here. Note that the 
extracellular fields of the two cells are disconnected. 
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𝐼𝑒𝑥𝑡1→2
= −𝐼𝑒𝑥𝑡2→1

 (2) 

𝐼𝑒𝑥𝑡1→2
= 𝑔𝑒×{𝑣𝑒𝑥𝑡1,3 − 𝑣𝑒𝑥𝑡2,1} (3) 

𝐼𝑒𝑥𝑡2→1
= 𝑔𝑒×{𝑣𝑒𝑥𝑡2,1 − 𝑣𝑒𝑥𝑡1,3} (4) 

Expanding the terms, we get, 205 

𝐼𝑒𝑥𝑡1→2
= (𝑔𝑒×𝑣𝑒𝑥𝑡1,3) − (𝑔𝑒×𝑣𝑒𝑥𝑡2,1) (5) 

𝐼𝑒𝑥𝑡2→1
= −(𝑔𝑒×𝑣𝑒𝑥𝑡1,3) + (𝑔𝑒×𝑣𝑒𝑥𝑡2,1) (6) 

where ge is the conductance of the extracellular link, vext1,3 and vext2,1 are the 206 

extracellular potentials (ve) at the 3rd node of cell 1 and 1st node of cell 2, respectively 207 

(see Fig. 5), and 𝐼𝑒𝑥𝑡1→2
 and 𝐼𝑒𝑥𝑡2→1

 are the currents flowing across the extracellular link 208 

from cell 1 to 2, and cell 2 to 1, respectively. These equations are fed into NEURON by 209 

means of the LinearMechanism class as presented in the following section. 210 

It should be noted that the extracellular link can be established even in the absence of 211 

gap junctional coupling. Such a configuration is discussed in section 3.1, and also in 212 

section 3.4 while evaluating ephaptic coupling. Here, we have presented both gap 213 

 

Figure 5: Electrical equivalent circuit of two cells connected via gap junction (shown in 
red) with coupled extracellular mechanisms (shown in blue). The terminal nodes are 
not shown here. 
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junctional coupling and the extracellular link to help illustrate the difference in the 214 

underlying electrical equivalent circuits. 215 

2.2 Implementing Extracellular Link Using LinearMechanism 216 

The template equation for LinearMechanism is given by: 217 

𝑐
𝑑𝑦

𝑑𝑡
+ 𝑔𝑦 = 𝑏 (7) 

As the extracellular link to be modeled does not have a capacitive component (c), Eq. 7 218 

reduces to: 219 

𝑔𝑦 = 𝑏 (8) 

Eqs. 5 and 6 can be fitted into this form by having: 220 

𝑔 = [
𝑔𝑒 −𝑔𝑒

−𝑔𝑒 𝑔𝑒 ] ,       𝑦 = [
𝑣𝑒𝑥𝑡1,3

𝑣𝑒𝑥𝑡2,1
] ,       𝑏 = [

0
0
] (9) 

The specific compartments that are to be linked extracellularly, e.g. the last 221 

compartment of cell 1 with the first compartment of cell 2, are defined by means of the 222 

other input parameters of the LinearMechanism class, namely sl and xvec. The optional 223 

parameter [layervec] allows specification of the extracellular layer in context. The above 224 

approach can be extended to couple the extracellular space of a chain of several cells. 225 

Fig. 6 shows examples of a chain of three cells, coupled longitudinally and transversely. 226 

The gap junctions are not shown in the figure for simplicity. For longitudinal coupling, 227 

the gap junctions can be connected end-to-end (see Fig. 4), whereas for transverse 228 

coupling, they can be modeled as linked across the entire length of the cells, or merely 229 

across the central compartments. We prefer the latter approach, in accordance with our 230 

past studies (Appukuttan et al., 2015a). In terms of the extracellular fields, a major 231 

difference between longitudinal and transverse configurations lies in the number of 232 

extracellular links that are required to be established. In the case of longitudinal 233 
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coupling, only the most adjacent compartments between cells need to be linked 234 

extracellularly (Fig. 6a), while under transverse coupling, each of the corresponding 235 

compartments of adjacent cells need to be linked extracellularly (Fig. 6b). The 236 

parameters in Eq. 9 would be specified as shown in Eqs. 10 and 11 for the longitudinal 237 

and transverse coupling examples, respectively, discussed here. Certain elements of 238 

parameter g for the transverse configuration have double the conductance value owing 239 

to the corresponding nodes (vext2,1, vext2,2, vext2,3) forming two extracellular links, one 240 

each with cells 1 and 3. 241 

𝑔 = [

𝑔𝑒 −𝑔𝑒 0 0
−𝑔𝑒 𝑔𝑒 0 0
0 0 𝑔𝑒 −𝑔𝑒
0 0 −𝑔𝑒 𝑔𝑒

] ,       𝑦 = [

𝑣𝑒𝑥𝑡1,3

𝑣𝑒𝑥𝑡2,1

𝑣𝑒𝑥𝑡2,3

𝑣𝑒𝑥𝑡3,1

] ,       𝑏 = [

0
0
0
0

] (10) 

 

 

𝑔 =

[
 
 
 
 
 
 
 
 

𝑔𝑒 0 0 −𝑔𝑒 0 0 0 0 0
0 𝑔𝑒 0 0 −𝑔𝑒 0 0 0 0
0 0 𝑔𝑒 0 0 −𝑔𝑒 0 0 0

−𝑔𝑒 0 0 2𝑔𝑒 0 0 −𝑔𝑒 0 0
0 −𝑔𝑒 0 0 2𝑔𝑒 0 0 −𝑔𝑒 0
0 0 −𝑔𝑒 0 0 2𝑔𝑒 0 0 −𝑔𝑒
0 0 0 −𝑔𝑒 0 0 𝑔𝑒 0 0
0 0 0 0 −𝑔𝑒 0 0 𝑔𝑒 0
0 0 0 0 0 −𝑔𝑒 0 0 𝑔𝑒 ]

 
 
 
 
 
 
 
 

,       𝑦 =

[
 
 
 
 
 
 
 
 
𝑣𝑒𝑥𝑡1,1

𝑣𝑒𝑥𝑡1,2

𝑣𝑒𝑥𝑡1,3

𝑣𝑒𝑥𝑡2,1

𝑣𝑒𝑥𝑡2,2

𝑣𝑒𝑥𝑡2,3

𝑣𝑒𝑥𝑡3,1

𝑣𝑒𝑥𝑡3,2

𝑣𝑒𝑥𝑡3,3]
 
 
 
 
 
 
 
 

,       𝑏 =

[
 
 
 
 
 
 
 
 
0
0
0
0
0
0
0
0
0]
 
 
 
 
 
 
 
 

 (11) 

 

Figure 6: Chain of three cells electrically coupled (a) longitudinally, (b) transversely. 
For simplicity gap junctions are not shown, and only extracellular links between the 
cells are illustrated (represented by arrows). It should be noted that the extracellular 
links, irrespective of the orientation of coupling, are always established via ge. 
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The implementations of these examples were validated via equivalent circuit 242 

representations on Multisim®, a SPICE based simulation environment developed by 243 

National Instruments, capable of checking the integrity of circuit designs and to predict 244 

their behavior. The above approach of linking extracellular spaces of chains of cells can 245 

be employed to develop three-dimensional syncytial models of cells. This can be 246 

accomplished by employing arrays of LinearMechanism instances, one for each of the 247 

longitudinal and transverse chains present in the network, as illustrated in Fig. 7.  248 

2.3 Model Development and Modifications 249 

The development of the three-dimensional model of smooth muscle cells is as described 250 

in an earlier study (Appukuttan et al., 2015a), where the cells were coupled only 251 

intracellularly by means of gap junctions. The parameters, and their values, that define 252 

the biophysical properties of individual cells are described in Table 2. In the present 253 

model we also incorporate the coupling of the extracellular fields using the approach 254 

discussed earlier. The number of compartments per cell (nseg) was reduced to 5 for the 255 

3-D model in view of the increased complexity owing to the addition of the extracellular 256 

 

Figure 7: Representation of a 3-D syncytium of cells arranged in a cubic lattice layout. 
An example of a chain of cells along each of the three axes is highlighted. Each sub-
block represents a single cell. 
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fields. For exploration of active membrane properties, the cells were endowed with 257 

Hodgkin-Huxley (HH) channels, enabling them to produce APs. It should be noted that 258 

this does not result in a physiologically accurate AP for the tissue under consideration, 259 

but offers a well understood paradigm for the analysis of the model. Once a 260 

physiologically relevant AP mechanism for the detrusor is satisfactorily developed, it 261 

can be easily substituted into the model. At the present time such a model is 262 

unavailable, and the focus here lies in the demonstration of the extracellular coupling 263 

and to explore its influence on the electrical activity of syncytial tissues. 264 

An important step in setting up the extracellular field is to determine the volume of 265 

interstitial space and its resistivity. This is often defined in terms of a ratio of the 266 

intracellular to extracellular resistivities (Ra/Re) (Bennett et al., 1993; Roth, 1997). As 267 

experimental studies on the detrusor have not focused on quantifying the extracellular 268 

space, we set Ra/Re = 4 based on an earlier discrete model developed for smooth 269 

muscle (Bennett et al., 1993). As Ra in our model is 183 Ω.cm, Re evaluates to 45.75 270 

Table 2: Parameters used for defining individual cells in NEURON when equipped with 
only passive membrane channels 

Parameter Symbol Value 

Cell Length L 200 µm 

Cell Diameter diam 6 µm 

Compartments per Cell nseg 51 (1-D) / 5 (3-D) 

Cytoplasmic Resistivity Ra 183 Ω.cm 

Membrane Resistivity Rm 132.5 kΩ.cm2 

Membrane Capacitance cm 1 µF/cm2 

Resting Potential  e_pas ―50 mV 

Gap Junctional Resistance – 30.6 MΩ 
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Ω.cm, which translates to a value of 161.8 MΩ/cm for xraxial[0] (see Eq. 12; note that Re 271 

is multiplied by 1e-6 to convert units to MΩ.cm). 272 

𝑥𝑟𝑎𝑥𝑖𝑎𝑙[0] =
𝑒𝑥𝑡𝑟𝑎𝑐𝑒𝑙𝑙𝑢𝑙𝑎𝑟 𝑟𝑒𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑐𝑟𝑜𝑠𝑠– 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎
=

𝑅𝑒×1𝑒– 6

𝜋×(3𝑒– 4)2
= 161.8 𝑀𝛺/𝑐𝑚 (12) 

Another factor to be considered is the differences in interstitial space between 273 

peripheral and internal cells in a syncytium. Cells on the periphery are expected to have 274 

access to a larger volume of extracellular space as compared to those located in the 275 

interior. The former can be modeled as having a direct connection to ground by setting 276 

xg[0] to infinity, while the limited extracellular space for the latter is realized by setting 277 

xg[0] to zero. The path to ground for these cells is, effectively, via their connection to the 278 

peripheral cells. The final parameter that needs to be defined is the conductance of the 279 

extracellular link (ge). In this study, we have set ge equal to the extracellular 280 

conductance between any two adjacent compartments of the cells. As Re is 47.75 Ω.cm, 281 

the absolute resistance (rlink) between the extracellular nodes of adjacent compartments 282 

in our model is 0.647 MΩ, and this translates to 0.205 S/cm2 as shown in Eqs. 13 and 14. 283 

Note that in Eq. 14, rlink is adjusted to obtain value in Siemens, and that the surface area 284 

refers to the curved surface area of a single compartment of the cell. Such a 285 

configuration would maintain isotropy across the extracellular space of the entire 286 

syncytial model, both along the longitudinal and transverse axes. 287 

𝑟𝑙𝑖𝑛𝑘 = 𝑥𝑟𝑎𝑥𝑖𝑎𝑙[0]×
𝑐𝑒𝑙𝑙 𝑙𝑒𝑛𝑔𝑡ℎ

𝑛𝑠𝑒𝑔
= 161.8×

200𝑒–4

5
≈ 0.647 𝑀𝛺 (13) 

𝑔𝑒 =
1

𝑟𝑙𝑖𝑛𝑘×𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 
=

1𝑒– 6

0.647
×

1

2𝜋×3𝑒–4×
200𝑒–4

5

≈ 0.205 𝑆/𝑐𝑚2 (14) 

It is important to note that while modeling gap junctions in the presence of extracellular 288 

mechanism, the gap junctional current should be defined as ELECTRODE_CURRENT as 289 
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opposed to NONSPECIFIC_CURRENT. The latter is defined in NEURON as a membrane 290 

current, and would thereby result in the contribution of the gap junctional current to 291 

the transmembrane current. Ideally, gap junctional current should be considered as 292 

moving between the intracellular regions of two cells, and not being transferred via the 293 

extracellular space. Hence, it should not make any direct contribution to the 294 

transmembrane current. Also, for a NONSPECIFIC_CURRENT, v refers to the true 295 

transmembrane potential whereas for an ELECTRODE_CURRENT, v refers to the 296 

internal potential, i.e. relative to ground; the sum of transmembrane potential and any 297 

radial voltage drop across the extracellular mechanism. Gap junction mechanisms, if 298 

present, should be modified in accordance to the above. 299 

 300 

3. Results 301 

3.1 Demonstration of Extracellular Coupling 302 

To demonstrate the linking of extracellular fields, we shall consider a simple model 303 

involving only two cells, such as in Fig. 4, but without gap junctional coupling between 304 

the cells. One of the cells (Cell 1) is excited at its center by means of synaptic activity, 305 

mimicked using an AlphaSynapse (Hines & Carnevale, 2001). The observed peak 306 

depolarizations at the nearest intracellular and extracellular nodes, between the two 307 

cells, is summarized in Table 3. When the extracellular fields are disconnected, the 308 

depolarization in Cell 1 is neither propagated to Cell 2, nor does it affect its extracellular 309 

field. But when we link their extracellular fields using the approach presented earlier, it 310 

is seen that the depolarization in Cell 1 causes a change in the extracellular field of Cell 2 311 
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as well. This demonstrates that we have been able to link the two extracellular spaces. It 312 

can be noted that this does not produce any change in the peak depolarization of Cell 1. 313 

3.2 Passive and Active Electrical Properties 314 

Various electrical parameters were evaluated using a 1-D model of a chain of 181 cells, 315 

coupled to each other intracellularly via gap junctions, and extracellularly by means of 316 

the extracellular link described earlier. These include parameters often used to describe 317 

passive membrane properties, such as the length constant, time constant, and the input 318 

resistance. The stimulus was applied at the central cell, and the total number of cells 319 

(181) was set such as to prevent reflection of current at the ends (Jack et al., 1975). The 320 

parameters were evaluated for various values of Ra/Re.  321 

Fig. 8 plots these parameters with respect to the centrally located cell. It can be seen 322 

that all the parameters begin to settle from Ra/Re = 2 onwards. For lower ratios, 323 

representing limited interstitial volumes, there is a sharp decline in the length constant 324 

and input resistance, and a rapid rise in the time constant. With the incorporation of HH 325 

channels, the cells were capable of producing APs. This allowed the determination of AP 326 

propagation velocity. It was found that the AP propagation velocity increased with an 327 

increase in the extracellular volume, before eventually saturating at around 30 cm/s. 328 

Table 3: Peak depolarizations observed at the adjacent intracellular and extracellular 
nodes of two cells, in the absence and presence of the extracellular link. Cell1 is 
excited by means of synaptic activity. 

Cell Parameter Without Link With Link 

Cell1 
v 23.92 mV 23.92 mV 

vext[0] 2.48 µV 1.24 µV 

Cell2 
v 0 mV 0 mV 

vext[0] 0 µV 1.24 µV 
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3.3 Recording Extracellular Electrical Activity 329 

Here we consider a 3-D syncytial model of size 5-cube (5 x 5 x 5 cells). The 330 

implementation of the continuous extracellular space allows us to obtain extracellular 331 

recordings during simulations. Fig. 9 shows simultaneous intracellular and extracellular 332 

recordings of a synaptic potential at the centroidal cell in the syncytium. It is seen that 333 

for Ra/Re = 4, the membrane potential depolarizes by around 3.5 mV, but the 334 

extracellular potential only varies by a maximum of 33 µV. If the volume of interstitial 335 

space is reduced by setting Ra/Re = 0.01 (as discussed in the following section), then 336 

the same stimulus produces a 12.7 mV depolarization and 10.5 mV extracellular 337 

 

Figure 8: Variation in electrical properties determined for the central cell in a 1-D 
chain of cells, coupled both intracellularly and extracellularly, with changes in the 
ratio of intracellular to extracellular resistance. The panels show (a) the membrane 
length constant, (b) the membrane time constant, (c) the input resistance, and (d) AP 
conduction velocity. 
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potential. In the latter case, the peak extracellular potential is even larger than the peak 338 

intracellular potential (10.5 mV vs 2.8 mV). It should be noted that the change in 339 

extracellular potential is negative-going, and opposite in polarity to the membrane 340 

potential. 341 

Fig. 10 shows simultaneous intracellular and extracellular recordings from two 342 

different cells in our model. The trace in red is obtained from the centroidal cell, which 343 

is stimulated by means of supra-threshold synaptic input. The blue trace shows the 344 

propagated AP at a distant, non-peripheral cell in the syncytium. The extracellular 345 

recordings from these cells show that the extracellular AP has a biphasic shape at the 346 

site of stimulation, and as it propagates to other cells, it exhibits a triphasic extracellular 347 

AP, as expected from biophysical considerations (Stys & Kocsis, 1995). The first phase 348 

 

Figure 9: Simultaneous intracellular and extracellular recordings of synaptic 
potentials at the centroidal cell in a 3-D syncytial model of size 5-cube. Panels in A and 
B show recordings for Ra/Re = 4 and 0.01, respectively. Panels plot (i) transmembrane 
potential, (ii) extracellular potential, and (iii) intracellular potential. The extracellular 
potential peaks well before the intracellular potential. Note particularly the large 
change in extracellular potential on changing Ra/Re (see ranges of ordinate). 
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(positive), corresponding to the AP foot, arises from local circuit currents, while the 349 

second phase (negative) is an outcome of the large rapid influx of Na+ ions leading to the 350 

peak of the AP. The third phase (positive) corresponds to the repolarization phase of the 351 

AP involving efflux of K+ ions (Sperelakis, 2012). At the site of stimulation, the AP is 352 

elicited not owing to local circuit currents (first phase above), but due to inward current 353 

from the synaptic input. This, in combination with the influx of Na+ ions (second phase 354 

above), is recorded extracellularly as a single negative going potential, followed by the 355 

efflux of K+ ions (third phase above), resulting in a biphasic waveform at the site of 356 

stimulation. 357 

3.4 Exploring Ephaptic Coupling 358 

To explore ephaptic coupling, we removed the gap junctions from our 3-D syncytium 359 

model having HH channels. The cells were now coupled merely by means of the 360 

continuous extracellular field. Supra-threshold stimulus, as before, was applied at the 361 

centroidal cell by means of synaptic input. In the absence of gap junctions, this elicited 362 

AP was unable to propagate to neighboring cells. Sub-threshold depolarizations could 363 

 

Figure 10: Simultaneous intracellular and extracellular recordings of APs at two 
different cells in a 3-D syncytial model of size 5-cube. Red trace in (a) shows the AP at 
the site of stimulus, while the blue trace shows propagated AP recorded at a distant 
cell. Panels (b) and (c) show the extracellular recordings of the APs at these cells. 
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be recorded at the immediately neighboring cells. We examined the peak 364 

depolarizations achieved at a neighboring cell with changes in Ra/Re. The results are 365 

summarized in Fig. 11. A non-monotonic trend was observed, with the transition 366 

occurring around Ra/Re = 0.01 for our model. The largest peak depolarization (7 mV) at 367 

the neighboring cell was recorded at this level. For ratios greater than 0.01, the peak 368 

depolarization at the centroid cell (AP height) gradually increased, whereas the peak 369 

sub-threshold depolarization in the neighboring cell correspondingly decreased. As in 370 

Fig. 8, it was found that the trends began to settle from Ra/Re = 2 onwards. 371 

Interestingly, for ratios smaller than 0.01, corresponding to progressively sparser 372 

interstitial space, the AP height at the centroidal cell was found to increase with a 373 

concomitant decrease in the peak depolarization at the neighboring cell.  374 

The above simulations indicated that ephaptic coupling independently would be unable 375 

to elicit APs in our model. We thus decided to explore whether they could potentially 376 

play a contributory role, in combination with gap junctional coupling. The default value 377 

 

Figure 11: Peak depolarizations at (a) the centroidal cell, and (b) a neighboring cell, 

following stimulation via synaptic input at the centroid cell in a 3-D syncytial model of 

size 5-cube. Data in panel (a) corresponds to action potentials, whereas that in (b) 

corresponds to sub-threshold potentials. Cells are not coupled intracellularly, but 

linked extracellularly. (c) shows the peak depolarizations of the two cells, following 

min-max normalization of the plots in (a) and (b), for small values of Ra/Re. 



24 
 

of gap junctional resistance (Rj) of 30.6 MΩ was known to elicit APs, even in the absence 378 

of ephaptic coupling (Appukuttan et al., 2015b). Therefore, we reduced the gap 379 

junctional coupling, by setting Rj = 330 MΩ, so that intercellular coupling by itself could 380 

not support propagating APs (Fig. 12a). The ratio Ra/Re was set to 0.01, corresponding 381 

to the largest peak depolarization in the neighboring cell, observed earlier. As seen in 382 

Fig. 12c, the combined effect of gap junctional and ephaptic coupling elicited APs in the 383 

neighboring cells, and these propagated through the entire syncytium. 384 

 385 

3.5 A Toy Neuron Model 386 

To demonstrate the generality of the technique presented here to couple extracellular 387 

fields of individual cells, we present, as an example, the implementation of the same to 388 

couple two neurons. The two neurons, as show in Fig. 13, have been considered to be 389 

identical and located in close spatial proximity, thereby introducing the possibility of 390 

ephaptic interactions. Each neuron consists of a soma, axon, and two proximal 391 

dendrites, each of which divides into two distal dendrites. The biophysical properties 392 

 

Figure 12: Response of centroidal cell (in red) and its immediate neighbor (in blue) in 
a 3-D syncytial model of size 5-cube. Stimulus was applied via synaptic input under (a) 
only gap junctional coupling, (b) only ephaptic coupling, (c) both gap junctional and 
ephaptic coupling 
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used for developing the neuron model are presented in section S1.1 (supplementary 393 

document), along with the NEURON code for constructing the model in section S1.2. The 394 

neurons have been considered to be oriented such that one primary dendrite of each 395 

neuron, along with the distal dendrites emerging from it, is considered to be at a 396 

sufficiently large distance from the other neuron to not have their extracellular spaces 397 

affected directly by it. Such a constraint has been imposed to introduce an element of 398 

heterogeneity in the coupling of the extracellular regions of the two neurons, and to 399 

show that it is possible to restrict the coupling to only certain regions of the neuron. 400 

This can be made furthermore complex, if required, as discussed in section S1.3. 401 

We performed some simulations using the dummy model to demonstrate its 402 

functionality. Fig. 14 shows results from a study to observe the ephaptic interactions 403 

between the two neurons. It was found that an AP elicited in one of the neurons, by 404 

means of current injection at the soma, is able to evoke an AP in the adjacent neuron 405 

only for a certain range of Ra/Re values. Fig. 15 provides a more detailed representation 406 

 

Figure 13: Two neurons positioned very close to each other. The arrows indicate 
sections where the extracellular fields of the two neurons are coupled. Only one of the 
primary dendrites, and its subtree, of each neuron is linked. This is to show that it is 
possible to restrict the coupling to only certain regions of the neuron. 

Axon Soma Proximal 
Dendrites

Distal
Dendrites
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of these test results. It shows the peak depolarizations attained by the non-stimulated 407 

neuron, following elicitation of AP at the soma of the other neuron. It can be observed 408 

that the non-stimulated neuron produces APs, at its soma and axon, only for a window 409 

of Ra/Re values. These results are essentially similar to those presented for the model 410 

of the smooth muscle syncytium presented in Fig. 11. 411 

 

Figure 15: Peak depolarization attained at different regions of the non-stimulated 
neuron, when an AP is elicited in the stimulated neuron, for different values of Ra/Re. 
It is seen that that the stimulated neuron can evoke an AP in the adjacent neuron, via 
ephaptic interactions, only for a window of Ra/Re values. 

 

Figure 14: Electrical activity recorded at the soma (red) and axon (blue) of the two 
neurons for different Ra/Re values. The stimulated neuron is plotted with solid lines, 
while the other adjacent neuron is plotted with dashed lines.  
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4. Discussion 412 

To our knowledge this is the first attempt to develop, on a compartmental modeling 413 

platform, a three-dimensional model of an electrical network of cells, where the cells are 414 

not just coupled intracellularly but extracellularly as well. The only other related 415 

modeling work in this domain is the NEURON implementation (ModelDB Accession: 416 

3676; Michael Hines, Yale University) of the analytical model by Bokil et al. (2001), 417 

which is restricted to the demonstration of ephaptic interactions between a pair of 418 

axons. LFPy (Lindén et al., 2013) and LFPsim (Parasuram et al., 2016) are examples of 419 

other tools that address the issue of simulating extracellular fields. An important 420 

distinction between these and the present work, however, is that the former specifically 421 

target the recording of local field potentials as population signals. But no provision 422 

exists for the extracellular potentials so evaluated, to influence the intracellular 423 

potentials. This is a prerequisite for studying ephaptic interactions, where cells interact 424 

via extracellular potentials influencing their intracellular activity. In the present work, 425 

we have demonstrated the coupling of the extracellular field of every cell in a three-426 

dimensional model to obtain a continuous uniform extracellular space, with each cell 427 

capable of contributing and being affected by the extracellular interactions. 428 

Through the evaluation of passive and active electrical properties under various extents 429 

of intracellular to extracellular resistance, we were able to demonstrate that the 430 

electrical response of cells is influenced by the extracellular field. These effects are 431 

particularly notable when the extracellular space is limited. Observations such as the 432 

decrease in conduction velocity with a reduction in the extracellular volume are in 433 

accord with previously reported studies (Roth, 1991).  434 



28 
 

The extracellular amplitudes of synaptic potentials, under a relatively large volume of 435 

extracellular space, were found to be on the order of µV. This is in agreement with 436 

previous experimental findings (Manchanda, 1995). In electrophysiology, recordings 437 

obtained using sharp microelectrodes usually measure the potential with respect to a 438 

reference electrode connected to ground. The recorded potential would, technically, be 439 

the intracellular potential, and not the true membrane potential. From Fig. 9, it can be 440 

seen that there exists a notable difference between the intracellular potential and the 441 

membrane potential when the extracellular space is constrained (Ra/Re = 0.01), but not 442 

so prominent when there is a large volume of extracellular space (Ra/Re = 4). This 443 

might have implications in the interpretation of electrophysiological data from tissues 444 

having tightly packed cells, and a computational model, such as the one presented here, 445 

could prove helpful in their analysis. Past studies have also shown that an AP, when 446 

recorded extracellularly at the site of stimulation, would exhibit a biphasic waveform, while 447 

those recorded distantly would be triphasic (Stys & Kocsis, 1995). We were able to confirm 448 

these trends in simulations using our model (Fig. 10). 449 

Our simulations exploring ephaptic coupling did not suggest a significant role for this 450 

form of coupling in syncytial interactions when acting by itself. But it showed potential 451 

to contribute towards AP propagation in poorly coupled networks of cells. This might be 452 

significant in the context of poorly coupled syncytial tissues, such as the mouse detrusor 453 

(Meng et al., 2008) or vas deferens (Holman et al., 1977). Our simulations also showed 454 

that the model was capable of exhibiting extracellular potentials of the order of 455 

millivolts for certain configurations of the extracellular space. This corresponds to the 456 

findings by Goldwyn & Rinzel (2016) where they demonstrated that a neuronal 457 

population could generate millivolt-scale extracellular potentials, and that this could 458 

induce millivolt-scale perturbations in the membrane potential of a neuron. The present 459 
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study is preliminary, and a more focused investigation is required to be undertaken for 460 

physiologically relevant interpretations. Our model enables such a study to be 461 

performed, with possible enhancements including increased density of ionic channels at 462 

regions of overlap, and dynamic changes of ionic concentration in the interstitial space. 463 

It is interesting to note that similar trends were observed for the syncytial smooth 464 

muscle model and the toy neuron model. Both models showed that the strength of 465 

ephaptic influences was significant only for a window of Ra/Re values, and diminished 466 

when the extracellular space was further limited. These models represent different 467 

cellular units and morphologies, and yet exhibit similar behavior. 468 

The results presented here provide confidence in our implementation of a continuous 469 

extracellular space for a three-dimensional network of cells. This provides a framework 470 

for further investigation of interactions in tightly packed networks of cells, such as the 471 

interaction between nerve fibers and cells in an electrical syncytium. 472 
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