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Abstract: 

Natural ventilation is a simple and energy-efficient method to adjust the indoor environment. This 

study aims to develop a model for predicting the total flow rate of single-sided natural ventilation. It is 

motivated by the fact that the wind-driven ventilation itself is commonly considered to consist two 

components – a mean component and a fluctuating component. Pulsating flow rate, mean and 

broadband ventilation rate are discussed and considered in the model due to fluctuating wind velocity 

driven by the fluctuating pressures and unsteady flows around the opening. The new model shows that 

the total flow rate is majorly caused by pulsating flow when the area of opening is small, but it is 

mainly caused by mean flow in the case of large opening. Opening ratio can be taken as a boundary to 

distinguish the small opening area and the larger one from the case analyses in this study. Reynolds 

Averaged Navier-Stoke model, large eddy simulation, and other correlations are utilized to validate the 

developed model. The results of current method agree reasonably well with those of transient 

simulation. Finally, a simplified version of the model is developed which is useful for predicting the 

total flow rate of natural ventilation in buildings. Practical application: The model can be applied to 

predict the total flow rate of single-sided natural ventilation in buildings due to wind pressure. The 

model shows that the total flow rate is majorly caused by the pulsating flow when the area of opening 

is small, but it is mainly caused by the mean flow in the case of large opening. An opening ratio of 3% 

can be taken as a boundary to distinguish the small opening area and the large one from the cases 

analysed in this study. 

Keywords: flow rate, single-sided ventilation; wind-driven, natural ventilation, numerical simulation;  
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Nomenclature 

 

A opening area , m
2
 C1、C2 

、 C3 
empirical coefficients depending  

on wind direction B  building width , m 

𝑓(𝛽𝑊), 

∆𝐶𝑃,𝑜𝑝𝑒𝑛𝑖𝑛𝑔 
function of wind direction c1 

dimensionless coefficient depending on 

the wind effect 

H building height, m c2 buoyancy constant 



 

 

  

h opening height, m c3 turbulence constant 

L building length, m Cd 
discharge coefficient 

l opening width, m Cp 
wind pressure coefficient 

𝑚 shape parameter 𝑄 total flow rate, m
3
/s 

𝑝(𝑈) 

probability density of mean wind 

velocity 𝑄𝐵 

mean plus broad banded ventilation rate , 

m
3
/s 

T time, s 

𝑄𝑖𝑛𝑠,𝑇 

flow rate calculated by integration 

method and transient simulation, m
3
/s 𝑈 wind velocity, m/s 

𝑈10 wind velocity at height 10m, m/s 

𝑄𝑚𝑒𝑎𝑛  

flow rate calculated by integration 

method and steady-state simulation, m
3
/s 𝑈𝑚𝑎𝑥  maximum wind velocity, m/s 

𝑈𝑚,𝑛 wind velocity of cell in flow field, m/s 𝑄𝑝 pulsating flow rate, m
3
/s 

𝑈 mean velocity, m/s �̅� mean flow rate , m
3
/s 

𝑢∗ 

the atmospheric boundary layer 

friction velocity, m/s   

𝑉𝑅 

mean wind velocity at reference 

height, m/s   

z0 height of neutral plane, m 

Greek 

symbols  

𝑧𝑟0  the roughness parameter, m 
T  temperature difference, K 

𝑧𝑟𝑒𝑓   reference height, m 𝜎 RMS value 

c scale parameter 𝜅 the Karman constant 



1 Introduction 

Natural ventilation is a simple method to improve indoor thermal comfort, maintain acceptable 

indoor air quality, and reduce energy consumption. Different types of natural ventilation strategies  

exist: single-sided ventilation, cross-flow ventilation and stack ventilation [1]. The cross ventilation is 

often favored for its larger air exchange rate than the single-sided ventilation. However, in most cases 

only few buildings can achieve cross-ventilation due to the interior partitions, obstacles, and 

thicknesses. Therefore, single-sided ventilation is still of great importance in building design [2].  

The wind-driven natural ventilation through a building consists of two components - a mean 

component driven by the mean pressure field at the ventilation openings, and a fluctuating component 

driven by the fluctuating pressures and unsteady flows around the openings [3]. Techniques to predict 

the fluctuating air infiltration have earlier been investigated and developed. The latest review about it 

was carried out by Fariborz Haghighat[4] in 2000. He summarized models to different group: Pulsation 

[5], Mechanical-system simulation [6], Correlation [7-9], Numerical simulation [10], Resonator [11] 

and Power spectrum analysis [12]. At the same year, D.W. Etheridge[13,14] studied the effects of 

unsteady wind pressures on the mean flow rates and the instantaneous flow rates in certain types of 

purposed-designed naturally ventilated buildings, and derived a procedure for calculating the mean 

flow rates when the unsteady effects are large. Wang and Chen [2] presented a new empirical model for 

predicting single-sided, wind-driven natural ventilation in buildings.  

H.K. Malinowski pointed out that the fluctuating component of ventilation can be considered to 

consist of a number of distinct phenomena [15]. The first mechanism is broad banded ventilation, the 

second is pulsating flow, and the third is known as eddy penetration, or shear layer ventilation.  Mp 

Straw [3] analyzed the relative magnitudes of the ventilation produced by the various fluctuating flow 

mechanisms (broad banded, resonant and shear layer) and discussed the methods of calculating the 

total ventilation rate from the mean and the fluctuating components.  

The objective of the current study is to analyze and discuss how to get total flow rate of single-

sided, wind-driven natural ventilation in buildings. The first section of this paper discussed the model 

of pulsating flow rate, which is followed by the possible method of calculating total flow rate. Finally, 

CFD studies and other models were utilized to verify the method.  

2 Model development 

The fluctuating flow is totally caused by three mechanisms: broad banded ventilation, pulsating 

flow and eddy penetration. Therefore, the model developed in this investigation consists of four parts: 



(1) mean flow rate, (2) Broad banded flow rate, (3) pulsating flow rate, and (4) eddy penetration flow 

rate. 

2.1 Pulsating flow 

Many researchers [3,5,12] pointed out that pulsating flow caused by a body of fluid being driven 

perpendicular to the opening by the difference between the external and internal pressures, and it are 

significantly affected by the geometry of the enclosure and by air compressibility. However, Wang and 

Chen [2] didn’t consider this flow mechanism. The governing equation in their studies was based on 

the non-uniform pressure distribution along the opening height. The fluctuating ventilation rate 

contributed by pulsating flow in their model only has relation with root mean square of fluctuating 

velocity, opening height and opening width. They just derived the correlation of pulsating flow rate 

from expression of the mean flow rate directly.  

In our early study [16], a simple model (hereafter Hu’s model) was proposed which can predict 

the pulsating flow rate of single-sided ventilation when wind direction is perpendicular to opening. 

When reference mean velocity, roughness parameter, area of opening and volume of room were given, 

the pulsating flow rate could be calculated out easily. That study also demonstrated that the ventilation 

rate of pulsating flow is inextricably bound up with some factors, for example, area of opening, volume 

of room, mean wind velocity and turbulence intensity. Here one case published by Haghighat [12] was 

calculated again by Hu’s model. The results were listed in Table1.  

Table 1 Case comparison of pulsating flow rate 

Main Parameters Haghighat’s model 

(m3/s) 

Hu’s model 

(m3/s) 
Volume Opening area Mean wind velocity 

1000 0.05 10 0.0606 0.0521 

 

Two results have the same order of magnitude, and the relative error between them is about 14%.  

Besides, similar expressions about effect of opening area and room volume on pulsating flow rate as 

Haghighat’s study were obtained [16]. In the later content of the paper, the results of pulsating flow 

rate would be verified by CFD results to a certain degree.  

2.2 Mean and broad banded ventilation 

The mean flow is driven by the mean pressure field at the ventilation openings. Wang and Chen’s 

expression [2] was adopted here. 



 

�̅� =
𝐶𝑑𝑙√𝐶𝑝 ∫ √𝑧2/7−𝑧0

2/7
𝑑𝑧

ℎ
𝑧0

𝑧
𝑟𝑒𝑓
1/7 𝑈                                                           (1) 

where �̅� is the mean flow rate, 𝐶𝑑 
is the discharge coefficient, 𝐶𝑝is the pressure coefficient, 𝑙 is the 

opening width,
 
𝑧0is the position of the neutral plane in the direction of z, and 𝑧𝑟𝑒𝑓  is reference height 

that is taken here to be 10m. 𝑈
 
is reference mean velocity.  

Considering the fluctuation of wind velocity and the time-distance of 10 minutes, the mean wind 

velocity also varies with time. Then, mean wind velocity can be described by the mean value 𝑈, and 

standard deviation 𝜎𝑈. As Straw [3] pointed out, broad banded ventilation represents surface pressure 

fluctuations at the opening across a wide range of frequencies, and it can effectively be regarded as a 

modification of the mean ventilation mechanism. For this reason, the broad banded ventilation, 𝜎𝑄, can 

be calculated by 

𝜎𝑄 =
𝐶𝑑𝑙√𝐶𝑝 ∫ √𝑧2/7−𝑧0

2/7
𝑑𝑧

ℎ

𝑧0

𝑧𝑟𝑒𝑓
1/7 𝜎𝑈                                                                 (2) 

 

Therefore, the mean plus broad banded ventilation, 𝑄𝐵, can be calculated from [3] 

𝑄𝐵 = �̅� + (
2√2

𝜋
) 𝜎𝑄√1 −

1

2
(

�̅�

𝜎𝑄
)2                                                          (3) 

Equation applies only for (𝑈 𝜎𝑈⁄ < √2). Above this value, the total ventialiton is equal to the 

mean ventilation. 

 
2.4 Eddy penetration flow 

 
Wang and Chen studied the effect of eddy penetration in the frequency domain based on fast Fourier 

transform [2]. Chu also proposed different methods for calculating the fluctuating ventilation rate due 

to eddy penetration [17]. Wang and Chen [2] found that the eddy penetration was zero, and the 

penetration was low when the angle was around 70
o
. Therefore, the flow rate due to eddy penetration 

was ignored here because that wind direction was assumed to be perpendicular to the opening in this 

study. 

2.5 Total flow rate 

The total flow rate is majorly caused by pulsating flow when the opening area is small in single-

sided natural ventilation. It could be assumed that the wind direction at the opening remains the same 

over a very short time in that condition.   

𝑄𝑝 = 𝜎𝑄𝑝
√2

𝜋
                                                                                      (4) 



𝜎𝑄𝑝 can be calculated out by Hu’s model [16]. 

When the opening area is large, the main driving force is pressure difference between upper zone 

and lower zone of the opening. Then the method introduced by Straw [3] also could be utilized here to 

calculate the total flow rate. The ventilation rate due to eddy penetration was ignored because that wind 

direction is perpendicular to the opening in this study, so following expressions could be wrote: 

𝑄 = {
�̅�             when   𝑈 𝜎𝑈⁄ ≥ √2  

𝑄𝐵            when    𝑈 𝜎𝑈⁄ < √2
                                                                 (5) 

3 Numerical simulation 

Computational fluid dynamics (CFD) is a useful tool for the prediction of air movement in 

ventilated spaces [18]. It was usually utilized to investigate ventilation flows and focused on the mean 

flow properties [19, 20] and fluctuating characteristics of flow [21-26]. This section of the paper aimed 

to verify the above method of getting total flow rate.  

There are two issues should be considered in numerical simulation of natural ventilation. The first 

one is turbulent models. Two models are regularly used: RANS（Reynolds Averaged Navier-Stoke）, 

and LES（Large Eddy Simulation）.  RANS models provide effective time-average solutions. LES 

model provide more realistic results and it is superior to others in calculation of single-sided ventilation 

under the condition of unsteady wind pressure [26,27]. Ai [28] compared the predictive methods of 

flow rate in single-sided ventilation based on both the RANS and LES turbulence models. It was found 

that  ACHRNG−mean  (the RNG model plus integration method) and  ACHLES−tracer (the LES model plus 

tracer gas decay method) values agree well with the measured data, ACHexp . However, the inflow 

condition of no perturbations was utilized in his study.  The second problem is the inflow turbulence 

boundary condition. The importance of defining proper inflow turbulence boundary condition while 

using LES was discussed by various researchers [29-33]. There are three types of inflow fluctuating 

algorithms, namely no perturbations, spectral synthesizer and vertex method in Fluent [34]. Spectral 

synthesizer is based on the random flow generation technique originally proposed by Kraichnan [35] 

and modified by Smirnov et al. [36]. In the following numerical simulation, the LES model and the 

fluctuating velocity algorithm of Spectral Synthesizer are used.  

3.1 Computational domain and building model 

The computational domain and building geometry were shown in Figure 1. The building dimension 

was L×B×H. The opening with dimension of l×h was in the center of upwind wall. The incident wind 

direction was perpendicular to the opening. 

app:lj:%E7%BB%8F%E5%B8%B8%E5%9C%B0?ljtype=blng&ljblngcont=0&ljtran=regular


 

  

Figure 1 The computational zone and building model. 

 

Figure 2 Computational grid of the zone. 

 

Table 2  Five cases of simulation 

Case 

Building’s dimension 

（L×B×H） 

(m×m×m) 

Opening’s dimension 

（l×h） 

(m×m) 

1 6×4×3 0.5×0.5 

2 6×4×3 0.5×1 

3 8×6×3 1×1 

4 8×8×4 1×1 

5 8×8×4 2×2 

 

 

Wind 



Five different cases were listed in table1.  Base on the guidelines [37], the lateral and the top boundary 

were set 5H away from the building, and the distance between the inlet boundary and the building was 

8H and the outflow boundary was 20H behind the building. The blockage ratio of all cases were below 

3% . Hexahedral structured gird was adopted as shown in Figure2. A number of grid refinements were 

made in opening area, and the building.             

3.2 Boundary condition 

The velocity inflow boundary condition was employed here. The vertical profiles for 𝑈, 𝜅 and 𝜀 in 

the atmospheric boundary layer [38] was as follows: 

𝑈 =
𝑢∗

𝜅
ln (

𝑧+𝑧𝑟0

𝑧𝑟0
)                                                                        (6) 

𝜅 =
𝑢∗2

√𝐶𝜇
                                                                                (7) 

𝜀 =
𝑢∗3

𝜅(𝑧+𝑧𝑟0)
                                                                             (8) 

Where 𝑧𝑟0 is the roughness parameter that was set to 0.01m,  𝜅 is the Karman constant ( =0.4) and the 

𝑢∗  the atmospheric boundary layer friction velocity. 𝑢∗  was calculated from a specified velocity at 

reference height 10m as 

𝑢∗ =
𝜅𝑈10

ln (
10+𝑧𝑟0

𝑧𝑟0
)
                                                                        (9) 

𝑈10 was set to 2.5m/s and 5m/s separately in our study. 

 The top and sides of the computational domain were given symmetry boundary conditions. All the 

walls and floor were set as no-slip wall condition. For the outlet of the flow, the convective boundary 

condition was utilized. 

3.3 Calculating method of the single-sided ventilation rate 

RNG 𝜅 − 𝜀 model was employed firstly to reduce time consume, then data of the velocity field after 

convergence was employed as initial value of LES model. The time step was set to 0.01s according to 

the reference velocity and cell characteristic [39]. 

The integration of opening velocities [28] was utilized to calculate the single-sided ventilation rate.  

𝑄𝑚𝑒𝑎𝑛 =
1

2
∑ ∑ |𝑈𝑚,𝑛|𝑁

𝑛=1
𝑀
𝑚=1 △ ym △ zn                                              (10) 

 

𝑄𝑖𝑛𝑠,𝑇 =
1

2
∑ (∑ ∑ |𝑈𝑚,𝑛|𝑁

𝑛=1
𝑀
𝑚=1 △ym△zn)△𝑡𝑖𝑙

𝑖=1

∑ △𝑡𝑖𝑙
𝑖=1

                                                     (11) 



Where 𝑄𝑚𝑒𝑎𝑛  was utilized to integrate velocities 𝑈𝑚,𝑛  extracted from a time-averaged flow filed 

generated by RNG 𝜅 − 𝜀  model, and 𝑄𝑖𝑛𝑠,𝑇  was utilized to average the sum of the instantaneous 

ventilation rates over a time period of ∑ △ 𝑡𝑖𝑙
𝑖=1 . 

4 Results and discussion 

The following figures and tables illustrate the results obtained from two models and highlight the 

differences between the two simulations. 

4.1 Comparison of steady-state simulation and transient simulation 

4.1.1 Characteristic of unsteady wind 

 

 
Figure 3 Stream wise component of velocity on the inlet. 

 

 
 

Figure 4 Profiles of Stream wise velocity at the central-line in the inlet surface. 

 
Figure 3 shows the stream wise component of incoming wind on the inlet and with the height of 10m. 

Different from constant velocity of 2.5 m/s in steady-state simulation, the inlet velocity of transient 

simulation is time-variant. The root mean square value of fluctuating velocity is about 𝜎𝑈 = 0.205m/s.  

Velocity profiles were taken along the central-line of the inlet surface as shown in Figure 4. The 

velocities are logarithmic grow with height in steady-state simulation, however, fluctuations occurs in 
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transient simulation. Two velocity profiles of different time were compared in Figure 4.  The 

fluctuation of velocity in lower area decrease but fluctuation of upper part increase over time. 

 4.1.2 Results of total flow rate of CFD  

 
Table 3. flow rate of the building. 

 

The calculating results of ventilation rate by numerical simulation were listed in Table 3.  It seemed 

that results of steady state are less than results of transient simulation generally.  The similar compared 

results could be found in Ai’s research [28].  Moreover, the steady state results exhibit smaller relative 

error with large opening area than small opening. The computational cost of LES is at least an order of 

magnitude higher than that of RANS [27]. Therefore, steady-state simulation can be adopted to analyze 

single-sided ventilation with large opening if other detailed flow-field information is need but time is 

limited. 

Table 3 also demonstrate that total flow rate increase with opening area and mean wind velocity, as 

many correlations [40-42] described.  Although case 3 and case 4 possess same opening area, their flow 

rates are distinct. It validate that, as Hu’s model indicated, flow rate of single-sided ventilation is 

related to room volume in a certain degree. 

4.2 Pulsating flow rate 

The pulsating flow rate calculated by Hu’s model was listed in the last column of table3. The pulsating 

flow rate increases with velocity of wind, and the volume of room respectively.  It does not increase 

with opening area because they cannot meet the condition of exponential growth [16]. For case1, the 

pulsating flow rate is approximate to CFD results. However, the flow rate calculated by equation (1) is 

Case 
𝑈10 

(m/s) 
𝑄𝑚𝑒𝑎𝑛  
(m

3
/s) 

𝑄𝑖𝑛𝑠,𝑇 

(m
3
/s) 

                𝑄𝑝 

 

(m
3
/s) 
 

1 2.5 0.007  0.015  0.005 

 5 0.013  0.020  0.013  

2 2.5 0.034  0.053  0.001 

 5 0.068  0.097  0.005  

3 2.5 0.055  0.089  0.015 

 5 0.144  0.148  0.044  

4 2.5 0.085  0.116  0.018  

 5 0.161  0.168  0.052  

5 2.5 0.490  0.504  0.007 

 5 0.949  1.010  0.037  



about three times CFD results, and is in relative error by as much as   100%~200%. Opening area ratios 

of five cases could be divided into 5 groups: 2.08%, 4.16%, 5.56%, 3.13% and 12.50%.  Further 

calculation of related error of pulsating flow rate from Table 3 demonstrated that it basically increase 

with the porosity. Based on above analysis, 3% was adopted here as a benchmark to discriminate 

whether the pulsating flow rate can represent the total flow rate.  

4.3 Total flow rate 

Therefore, the generally model of total flow rate could be predicted by 

𝜎𝑄𝑝
√2

𝜋
                                                  ( 𝛼 ≪ 3%) 

𝑄 =                                                                                                                                             (12) 

               {
�̅�                                                        when   𝑈 𝜎𝑢⁄ ≥ √2  

�̅� + (
2√2

𝜋
) 𝜎𝑄√1 −

1

2
(

�̅�

𝜎𝑄
)2           when    𝑈 𝜎𝑢⁄ < √2

   ( 𝛼 > 3%) 

  

Where 𝛼 is opening ratio and it represents the ratio of opening area to area of the wall with opening.𝜎𝑄𝑝 

can be calculated out by our pulsating flow rate model. �̅� , 𝜎𝑄 and 𝑄𝐵  can be calculated out by 

equations (1), (2) and (3).  

Results of CFD (transient), current model and other existed models listed in table 4 were 

compared and analyzed. The temperature of indoor was considered as the same as outdoor in the 

calculating. Furthermore, mixing coefficient 0.37, was employed to multiply CFD results and current 

model to get the effective ventilation rate [5]. 

Table 4 Model of  flow rate of single-sided natural ventilation 

 
Figure 5(a) shows that Warren’s model, Gid’s model and current model overestimated the flow 

rate, the Larsen’s model underestimate it on the condition of mean wind velocity 2.5m/s. Warren’s 

model and Gids’ model basically resulted in the same flow rate.  Figure 5(b) showed the comparing 

results on the condition of mean wind velocity 5m/s. It is the same as Figure 5(a) that Warren’s model, 

Model Correlation 

Warren[40] 𝑄 = 0.025𝐴𝑉𝑅 

De Gids and Phaff[41] 𝑄 =
1

2
𝐴√𝑐1𝑉𝑅

2 + 𝑐2ℎ|∆𝑇| + 𝑐3 

Larsen and Heiselberg[42] 𝑄 = 𝐴 ∙ √𝐶1 ∙ 𝑓(𝛽𝑊)2 ∙ |𝐶𝑃| ∙ 𝑉𝑅
2 + 𝐶2 ∙ ∆𝑇 ∙ ℎ + 𝐶3 ∙

∆𝐶𝑃,𝑜𝑝𝑒𝑛𝑖𝑛𝑔 ∙ ∆𝑇

𝑉𝑅
2  



Gid’s model and current model overestimated the flow rate, the Larsen’s model underestimate it.  Our 

model and Gid’s model almost resulted in the same flow rate and all of them were in coincidence with 

CFD results. Although the result of Gid’s model is more approximate to the CFD results in case 5, but 

current model met the results of CFD well in general.  

 

 

(a) U = 2.5m/s 

 

 

 

(b) U = 5m/s 

Figure 5 The total flow rate calculated by CFD method, current model and other models. 

5 Random mean wind velocity and model simplification 

A model for getting total flow rate was verified by above numerical simulation, the inlet velocity 

was simulated by Fluent among simulation. The wind velocity can also be very easily measured when 

the field study of natural wind is possible. If not, two-parameter Weibull distribution can be utilized to 

get the time series of it, then 𝜎𝑈 can be calculated out. 

5.1 Random mean wind velocity 

 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 2 3 4 5

To
ta

l f
lo

w
 r

at
e

 (
m

3 /
s)

 

Case 

CFD results

Current model

Warren's model

Gigs's model

Larsen's model

0.00

0.10

0.20

0.30

0.40

0.50

0.60

1 2 3 4 5

To
ta

l f
lo

w
 r

at
e

 (
m

3 /
s)

 

Case 

CFD results

Current model

Warren's model

Gids's model

Larsen's model



The value of mean wind velocity depends on measuring time interval and height which were usually set 

as 10 minutes and 10m. Constant mean wind velocity come from meteorological stations has 

traditionally been employed as input parameter under the condition of steady state ventilation, without 

regarding to the change of it with time. Although the mean wind velocity changes with time, it still has 

certain statistical regularity. By analysing wind velocity’s probability density, it has been found that 

they are in normal distribution deflecting to left and it conforms to Weibull distribution [43]. 

The probability density function of mean wind velocity can be described as [43]: 

𝑝(𝑈) =
𝑚

𝑐
(

�̅�

𝑐
)

𝑚−1

exp [− (
�̅�

𝑐
)

𝑚

]                                                   (13) 

where  𝑝(𝑈) represents probability density of mean wind velocity, 𝑚 is shape parameter and c  is scale 

parameter. As described in [21], the value of 𝑚  and 𝑐 can be estimated by: 

𝑚 =
ln(ln 𝑇)

ln
0.90𝑈𝑚𝑎𝑥

�̅�

                                                                              (14) 

and 

𝑐 =
𝑈

г(1+1/𝑚)
                                                                 (15) 

 

where T is observation time, 𝑈𝑚𝑎𝑥  is maximum wind velocity for time of T. 

On the basis of the above equations, the time series of mean wind velocity can be obtained when 

average of the mean wind velocity and the maximum wind velocity at the reference height is given.  

For example, Figure 6 shows the time series of mean wind velocity on condition that mean value is 

2.5m/s and the maximum velocity is 8m/s. Figure 7 demonstrates correspondingly probability density 

of the mean wind velocity. The flow rate changing with time also was shown in Figure 6. The total 

flow rate could be still calculated by �̅�  because of 𝑈 𝜎𝑢⁄ ≥ √2. 

 

Figure 6 Time series of mean wind velocity and flow rate. 
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Figure 7 Probability density of mean wind velocity. 

5.2 Further simplification of the model 
As shown in equations (1) and (2), the vertical position of the neutral plane and corresponding integral 

value should be calculated out in order to use Chen’s model. The following equation can be utilized to 

get it [2]: 

 

∫ √𝑧2/7 − 𝑧0
2/7

𝑑𝑧
ℎ

𝑧0
= ∫ √𝑧0

2/7
− 𝑧2/7𝑑𝑧

𝑧0

0
               (16) 

To solve it, mathematical tools should be utilized, so it was expected that simple correlation exist. 

Changing h from 0.5m to 3m, the integral values were calculated out by Matlab. As Figure 9 shows, the 

integral values grow linearly with opening height basically. Therefore, the integral value can be 

predicted directly by: 

∫ √𝑧2/7 − 𝑧0
2/7

𝑑𝑧
ℎ

𝑧0
= 0.213ℎ − 0.038                                                          (17) 

 

 

Figure 8. Integral value of different opening height 

Therefore, �̅� and 𝜎𝑄 can be calculated out by ∶ 
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�̅� = 𝐶𝑑𝑈𝑙√𝐶𝑝(0.213ℎ − 0.038) 𝑧𝑟𝑒𝑓
1/7

⁄                                                                           (18) 

𝜎𝑄 = 𝐶𝑑𝜎𝑢𝑙√𝐶𝑝(0.213ℎ − 0.038) 𝑧𝑟𝑒𝑓
1/7

⁄                                                                           (19) 

The value of wind pressure coefficient is related with wind angles of incidence, so above equation can 

also be applied in other cases that wind is not normal to opening. The value of wind pressure 

coefficient can be referred to the study of Larsen and Heiselberg [42].   

6 Conclusions 

Taking into account fluctuating wind velocity driven by the fluctuating pressures and unsteady flows 

around the opening, this paper proposed a method of predicting total flow rate of single-sided, wind-

driven natural ventilation in buildings. Several other correlations and CFD method were utilized to 

evaluate the performance of the developed model. The study led to the following conclusions: 

(1) The total flow rate is majorly caused by pulsating flow when the opening area is small in single-

sided natural ventilation. When the opening area is large, the main driving force is pressure 

difference between upper zone and lower zone of the opening. Then the ventilation rate due to 

mean airflow is dominant. Opening ratio 3% can be taken as a boundary to distinguish small 

opening and large opening.  

(2) In the case of large opening, mean and broad banded ventilation mechanisms should be counted 

together when the fluctuation component of mean wind velocity is large. On the contrary, only 

mean flow rate should be considered with small fluctuation of mean wind velocity. 

(3) Generally the mean wind velocity also varies with time. The two-parameter Weibull distribution 

can be utilized to get the time series of mean wind velocity. Then standard deviation value of 

fluctuating component of mean wind velocity can be calculated out. 

(4) A linear correlation can be utilized to calculate the integral value of mean flow rate. Use of the 

expression can greatly simplify calculation. 

In this study, the ventilation rate due to eddy penetration was ignored. When the incident angle of wind 

was larger than 70
o
, the shear layer ventilation should be considered. In addition, the time series of 

mean wind velocity might be simulated by other precisely method. These should be explored in future 

studies.  
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