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The characteristics of municipal incinerated bottom ash (MIBA) and its potential use as a cementitious component in
concrete applications are examined through an analysis and evaluation of global experimental data. As raw feed in
cement clinker production, MIBA can be incorporated at minor contents without compromising performance. To
avoid damaging hydrogen gas expansive reactions arising due to the metallic aluminium in the ash, treatment of
MIBA is required for use as cement components in cement, mortar and concrete. As such, thermal and chemical
treatments, as well as tailored slow and wet grinding treatments, have been effective in improving performance. The
hydrogen gas expansion associated with MIBA can beneficially contribute towards the lightweight properties
required for aerated concrete, with the ash serving as an alternative to aerating agents and also contributing to
strength development. Initial work on controlled low-strength materials has highlighted MIBA as a potential cement
replacement material that can meet the low-strength requirements.

Introduction
Incineration of municipal solid waste (MSW) is being
increasingly adopted as an alternative to landfilling, with
rising incineration rates of 20%, 23% and 27% reported in the
28 European countries in 2006, 2010 and 2014, respectively
(Eurostat, 2016). This waste management option results
in large reductions in the quantity of waste to be managed,
leaving behind residues approximately 30% by mass of the
original waste, of which 80–90% is municipal incinerated
bottom ash (MIBA). For every tonne of MSW incinerated,
approximately 0·25 t of MIBA is generated.

With the 27% incineration rate and a total of 64 Mt of MSW
incinerated in 2014 in the European Union (Eurostat, 2016), it
is estimated that approximately 16 Mt of MIBA may be gener-
ated annually in these EU countries. On a global scale, based
on data gathered for 97% of the world’s population, including
records from around 700 waste-to-energy treatment plants, the
Waste Atlas Partnership calculated that 1·84 billion tonnes of
MSW is produced worldwide per annum (WAP, 2013).

The quantity of MIBA produced presents a significant man-
agement challenge for governing bodies. Countries such as
Belgium, Denmark, Germany and The Netherlands lead the
way with extensive use of MIBA, primarily as fill and in road
pavement materials (An et al., 2014; ISWA, 2006; Qing and
Yu, 2013). The practical use of MIBA in concrete-related
applications is much less developed, particularly as a cementi-
tious component in ground form, which is the focus of this
paper. However, as the cement production process carries a
high carbon dioxide footprint and with increasing importance
placed on sustainability, there is significant incentive to

develop this higher value use of MIBA. Indeed, a number of
other additions, such as fly ash and ground granulated blast-
furnace slag (GGBS), have been successfully established as
concrete constituents.

The project
This paper presents a critical assessment of the characteristics
of MIBA and its use as a cementitious component in concrete-
related applications through an analysis and evaluation of
globally published experimental results on this subject. With
substantial work undertaken, the coherent and incisive dissemi-
nation of the combined resources aims to assist in progressing
the sustainable use of MIBA, covering its use as raw feed in
cement clinker production and cement components in pastes,
mortar, concrete, controlled low-strength materials (CLSMs),
self-compacting concrete and aerated concrete.

Significant work has been undertaken on the use of MIBA
as a cement component in concrete applications and, although
only starting quite recently in 1998, the interest has been trend-
ing upwards, with a particularly large number of publications
produced over the last three years (2014–2016). Research in
this area has been undertaken in 12 countries worldwide, with
the largest share of the work coming from Europe (59%), fol-
lowed by Asia (38%) and North America (3%). The largest
individual contributions have come from Italy, China and
Taiwan. An overwhelming quantity of data was obtained
on the characteristics of MIBA. To retain clarity in this text,
references containing solely numerical data on the material
properties are listed in Appendices in the Supplementary
Material.

512

Magazine of Concrete Research
Volume 69 Issue 10

Municipal incinerated bottom ash use as
a cement component in concrete
Lynn, Dhir and Ghataora

Magazine of Concrete Research, 2017, 69(10), 512–525
http://dx.doi.org/10.1680/jmacr.16.00432
Paper 1600432
Received 11/10/2016; revised 14/01/2017; accepted 10/02/2017
Published online ahead of print 15/03/2017
Keywords: aerated concrete/cement/cementitious materials/
mortar
ICE Publishing: All rights reserved

Downloaded by [ University of Birmingham] on [10/07/17]. Copyright © ICE Publishing, all rights reserved.

mailto:r.k.dhir@bham.ac.uk


Material characteristics

Oxide composition
The most abundant oxides found in MIBA are silicon dioxide
(SiO2), calcium oxide (CaO) and aluminium oxide (Al2O3),
with iron oxide (Fe2O3), sodium oxide (Na2O), sulfur trioxide
(SO3), phosphorus pentoxide (P2O5), magnesium oxide (MgO)
and potassium oxide (K2O) present in smaller quantities (refer-
ences given in Appendix 1 of the Supplementary Material).
These main oxides are similar to what is customarily found in
common cementitious materials and, as such, a ternary plot of
their contents in worldwide bottom ash samples is presented in
Figure 1 (based on data from the references in Appendix 1).

It is evident that the bulk of the samples fall close to latent
hydraulic and pozzolanic regions, with MIBA generally having
a calcium oxide content above the pozzolanic fly ash, but
below the latent hydraulic GGBS. Compared with fly ash in
concrete, ASTM C618 (ASTM, 2015) specifies that the silicon
dioxide+ aluminium oxide+ iron oxide content should be a
minimum of 70% and 50% for class F and class C fly ash, and
it was found that 16% and 66% of MIBA samples satisfied
these respective limits.

The MIBAwas found to have an average sulfur trioxide content
of 2·4%, which satisfies the maximum 3% and 5% limits speci-
fied in EN 450 (EN, 2012) and ASTM C618 (ASTM, 2015) for
fly ash in concrete. However, approximately one third of the
MIBA samples exceeded the more stringent EN 450 (EN, 2012)
limit and, as such, could require treatment if used in concrete.
Phosphate and magnesium can affect the setting behaviour
and soundness of cementitious products, though the contents

present in MIBA (average contents of 2·4% phosphorus pentox-
ide and 1·9% magnesium oxide) are well below the 5% and 4%
limits specified for fly ash in EN 450 (EN, 2012). Minor
amounts of alkalis (sodium oxide) are also present in the ash,
on average at contents of 2·9%. This is within the 5% limit out-
lined in EN 450 (EN, 2012) and, similarly to fly ash, MIBA
may have a net positive effect on alkali–silica behaviour as a
cement replacement, due to alkaline dilution.

Loss on ignition (LOI)
Values of LOI for the tested MIBA samples are presented in
Figure 2 in ascending order (references in Appendix 2 of the
Supplementary Material). The material was determined to
have an average LOI of 5·8%, though this is slightly distorted
by a number of very high values. LOI limits vary for additions,
though compared with fly ash requirements, 61% and 67% of
the MIBA samples satisfied the respective requirements of 6%
in the American standard ASTM C618 (ASTM, 2015) and
7% in the UK National Annex to EN 197 (EN, 2011). As
excessive organics can impair the strength and durability of
concrete, this parameter is important to monitor after the
incineration stage, in assessing the potential for use of MIBA
as a cementitious component.

Mineralogy
Amorphous contents of 15–70% have been reported for
quenched MIBA (Bayuseno and Schmahl, 2010; Dhir et al.,
2002; Inkaew et al., 2016; Paine et al., 2002; Rubner et al.,
2008; Wei et al., 2011), suggesting that the material may have
some degree of reactivity when ground to a cement fraction.
Quartz was the most abundant mineral found in the ash,
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Figure 1. Ternary plot of the composition of the main oxides in MIBA: PC= Portland cement, GGBS=ground granulated blast-furnace
slag, FA= fly ash, MK=metakaolin, SA= shale ash, NP = natural pozzolan, SF = silica fume and LS = limestone
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followed by calcite, hematite, magnetite and gehlenite (fre-
quently present) and then a wide range of other silicates, alu-
minates, aluminosilicates, sulfates, oxides and phosphates
appearing infrequently (references in Appendix 3 of the
Supplementary Material).

Element composition
Data on the element composition of the MIBA samples is
presented in Table 1, sorted from highest to lowest average
contents. For use as a cementitious component, the chloride
and metallic aluminium contents are particularly important.

Chloride limits of 0·1% are specified in EN 197 (EN, 2011)
for common cements and EN 450 (EN, 2012) for fly ash in
concrete and, as such, the average value of 0·9% in MIBA
indicates that further treatment would be required to reduce
this to the accepted level.

The issue of the metallic aluminium is a problem more specific
to MIBA use in concrete and has been highlighted as a key
concern by Tyrer (2013), Pecqueur et al. (2001), Müller and
Rubner (2006) and Weng et al. (2015). Aluminium reacts in
the alkaline environment in cement and is accompanied by the
formation of hydrogen gas bubbles, leading to expansive be-
haviour and spalling damage that can greatly compromise the
concrete performance. In aerated concrete, the expansive reac-
tion is advantageous but, in other applications, treatment is
suggested to either remove the metallic aluminium or dissipate
the expansive reactions before its use in concrete.

The presence of soluble lead, zinc, phosphates and copper in
MIBA may potentially affect the setting behaviour of concrete,
as these constituents are sometimes used in admixtures as set
retarders.

Density
Specific gravity results for MIBA are presented in Figure 3,
with the samples divided into (a) unspecified or screened to
remove oversized fraction or sieved as aggregate, (b) subjected
to metal recovery treatment and (c) ground as cementitious

ASTM C150 Cement, 3% 

EN 197 Cement, 5%
ASTM C618 Fly ash, 6%
UK NA to EN 197 Fly ash, 7% 
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Figure 2. Loss on ignition values of MIBA samples in
ascending order

Table 1. Element composition of MIBA (references in Appendix 4 of the Supplementary Material)

Number of samples Average: mg/kg Standard deviation: mg/kg Coefficient of variation: %

Silicon 13 210 893 64 046 30
Calcium 31 117 750 59 238 50
Iron 36 53 455 36 393 68
Aluminium 35 44 047 15 634 35
Sodium 24 22 812 16 526 72
Magnesium 29 14 967 8664 58
Chlorine 37 8944 9443 106
Potassium 29 8256 4716 57
Titanium 12 6632 5553 84
Sulfur 27 5184 2208 43
Phosphorus 10 4866 3987 82
Zinc 78 4044 2974 74
Copper 76 3071 2796 91
Lead 73 1641 1205 73
Barium 31 1312 910 69
Manganese 41 921 599 65
Chromium 77 398 325 82
Strontium 17 379 179 47
Antimony 18 253 714 282
Nickel 58 182 132 73
Vanadium 22 167 286 172
Cobalt 24 50 104 207
Arsenic 46 50 61 123
Molybdenum 19 28 27 99
Cadmium 50 14 23 159
Mercury 17 1·4 4·0 290
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components. Based on the total samples, the material had an
average specific gravity of 2·36 (references in Appendix 5 of the
Supplementary Material), however the process of recovering
the denser metal fractions led to a decrease, and the process of
grinding, which is a prerequisite for its use a cementitious com-
ponent, led to an increase due to the smaller, more compact
particles and lower porosity. In ground form (average specific
gravity of 2·63), the density of the material is significantly
lower than the typical value of 3·15 for Portland cement,
although above the 2·3 value of fly ash (Jackson and Dhir,
1996).

Grading
After incineration, the residual MIBA contains a mix of met-
allics, ceramics, stones, glass fragments and unburnt organic

matter and, despite the term ‘ash’, can contain large particles
up to 100 mm in size. The material typically then goes through
a screening process to remove the oversized fraction. For use as
a cementitious component, the material is subsequently ground
to powder size. Particle size distribution curves for screening
MIBA and samples ground for use in concrete are presented in
Figure 4 (references in Appendix 6 of the Supplementary
Material) and show that the ground ash achieved well-graded
distributions comparable to Portland cement and fly ash.

Grindability has not been a point of focus in the reported data
on the characterisation of MIBA. Metals tend to have a high
degree of hardness, and it is expected that these constituents
in MIBA would be more difficult to grind. However, with
common ferrous and non-ferrous metal recovery treatments of
the ash after incineration, combined with the previously

Specific gravity data

Overall (40 samples)

Average: 2·36, Range: 1·8–2·8

Unspecified/screen/sieve (26 samples)

Average: 2·37, Range: 1·9–2·7

Metal recovery (9 samples)

Average: 2·22, Range: 1·8–2·7

Ground (7 samples)

Average: 2·63, Range: 2·2–2·8
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Figure 3. Density results of MIBA for (a) unspecified treatment/screened/sieved samples (b) samples subjected to metal recovery
treatment and (c) samples ground to cement size fraction
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highlighted metallic aluminium expansion concerns that may
necessitate further treatment, the quantity of the metal con-
stituents may be notably reduced. It is interesting to note that,
in a study on alternative energy sources in cement manufactur-
ing, Albino et al. (2011) reported that the use of MSW would
lead to savings in coal grinding energy costs.

Morphology
The ash contains irregular, angular shaped particles with a
porous microstructure, arising from the heating and cooling
process during combustion (references in Appendix 7 of the
Supplementary Material). In this as-produced form, the higher
specific surface area, porosity and associated water absorption
properties suggest that the material would lead to an increase
in the water demand of the concrete.

Use as a cement component in
concrete-related applications

Raw feed in cement clinker production
The use of MIBA in cement clinker manufacture can reduce
carbon dioxide emissions and contribute to the clinker com-
pounds formation with its calcium, silicon, alumina and iron
oxide contents. A description of the work undertaken with
MIBA in this area is presented in Table 2, outlining its use as
a minor component, at contents from 2–10% of the cement
clinker feed.

To ensure the same main clinker phases are produced with
MIBA, the silicon dioxide, calcium oxide, aluminium oxide
and iron oxide contents and source materials were precisely
regulated. As such, MIBA clinkers had chemical compositions
comparable to the control (Table 2). However, at the upper end
of the tested MIBA contents, the concurrent build-up of minor
constituents such as phosphorus pentoxide and sulfur trioxide

led to the suppression of tricalcium silicate (C3S) formation,
which consequently affected strength and setting behaviour,
although it improved sulfate susceptibility. Chlorides in the ash
can also lead to corrosion of kiln equipment in the long term
and, as a result, the MIBA samples used by Pan et al. (2008)
were washed prior to their inclusion in the cement clinker feed.

Based on the above data, it is expected that MIBA could be
viably incorporated in cement clinker feed at low contents (up to
about 5% has been suggested) without compromising perform-
ance. There may also be scope for higher MIBA contents to be
incorporated if the phosphorus pentoxide, sulfur trioxide and
chloride contents of the material are particularly low. Given the
vast size of the cement manufacturing industry, with European
Union countries reported to have produced 250 Mt in 2015
(Cembureau, 2015), it is projected that around 80% of the ash
generated in these countries would be consumed through this
use alone, if the 5% MIBA content was adopted throughout.

Of further interest, a number of additional studies utilised
combined ash (MIBA and fly ash) as part of the raw feed for
cement clinker production (Kikuchi, 2001; Shih et al., 2003;
Torii et al., 2003; Wiles and Shepherd, 1999).

Cement component
This section examines the use of MIBA in ground form as a
binder component in cement pastes.

Despite serious concerns regarding potentially damaging
expansive reactions arising from the presence of metallic alu-
minium (covered in the section ‘Material characteristics’),
much of the work undertaken did not include additional treat-
ment of MIBA beyond standard grinding (Fernandez et al.,
1998; Filipponi et al., 2003; Giampaolo et al., 2002; Kim
et al., 2016; Kokalj et al., 2005; Polettini et al., 2000;

Table 2. Description of works undertaken and emerging findings on the use of MIBA as part of the raw feed for cement clinker
production

Work undertaken and findings

Krammart and Tangtermsirikul (2003, 2004)
Trials with cement clinkers containing 5% and 10% MIBA
MIBA clinkers had similar chemical compositions to the control. Lower compressive strengths were evident, although it had less
susceptibility to sulfate expansion

Lam et al. (2010, 2011)
MIBA at contents of 2, 4, 6 and 8% in cement raw feed
Clinker containing up to 6% MIBA showed phase composition similar to Portland cement clinker, although 8% led to suppression of the
main phases (decreased C3S) due to phosphorus pentoxide and sulfur trioxide contents

Li et al. (2016)
Two clinkers – control and clinker with 9% MIBA + lower limestone, sandstone, fly ash and slag
Major chemical components of the MIBA and control clinkers were similar, though the MIBA blend had higher alkalis (sodium oxide and
potassium oxide) and phosphorus pentoxide contents

Pan et al. (2008)
Cement clinker produced using 3·5% washed MIBA
Allowable MIBA was limited by its chloride content. Setting time increased with MIBA, while compressive strength was similar to the
control clinker when phosphorus pentoxide was limited
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Whittaker et al., 2009). Others researchers adopted chemical
activation or thermal treatments for general improvement of
the mechanical properties (Lin and Lin, 2006; Lin et al., 2008;
Onori et al., 2011; Polettini et al., 2005, 2009), while Tang
et al. (2014b, 2016) carried out a series of grinding plus
thermal treatments on MIBA, specifically aiming to reduce the
damaging expansive behaviour.

Compressive strength results are presented in Figure 5 for
cement pastes using MIBA after standard processing (typically
grinding) (Figure 5(a)) and chemical activation with calcium
chloride (CaCl2), calcium sulfate (CaSO4) or high-temperature
treatment (Figure 5(b)). The large strength losses evident with
only a standard grinding treatment can likely be attributed, for
the most part, to the detrimental expansion behaviour arising
due to the reactive metallic aluminium in MIBA. As such,
it is expected that additional treatment of the material would
be essential for its use in this application. One exception in
Figure 5(a) (Kokalj et al., 2005) did achieve good strength
performance, although this was because the ash sample used
in this work originated from a light fraction of MSW that con-
tained minimal metals.

Specific testing of hydrogen gas development confirmed an
increase in expansive gases with increasing MIBA content,
reaching 4% of the volume of the tested cylinder at the highest
tested MIBA content (30% ) (Kim et al., 2016). Thermal treat-
ment of MIBA to reduce the metallic aluminium was effective
when combined with a subsequent lower speed grinding tech-
nique that allowed the ductile metallic aluminium to form into

plate shapes to be subsequently removed during sieving, thus
greatly reducing the metallic aluminium (Tang et al., 2016).

Additional chemical or thermal treatments have been found to
be effective in improving the MIBA strength performance
(Figure 5(b)), though they were not specifically focused on
metallic aluminium reduction. Chemical activators alter the
mineralogical composition to promote greater formation of
hydration products, while thermal treatment converts the ash
into a highly glassy material with enhanced reactivity. Some of
the chemical activation processes involved a low heat treatment
(90°C for 3 h) of the slurry of ground MIBA with activator.
The best results were achieved with calcium chloride as the
activator, exceeding the control strength at times, followed
by calcium sulfate, while sodium metasilicate nonahydrate
(Na2SiO3.9H2O), sodium hydroxide (NaOH), sodium sulfate
(Na2SO4), potassium hydroxide (KOH) and potassium sulfate
(K2SO4) (results not shown) were not effective. Pastes using
melted MIBA slag achieved compressive strengths close to the
control at cement replacement levels up to 20%.

The large strength losses with the standard processed MIBA
were symptomatic of poor overall performance, with corre-
sponding reductions in density along with increases in porosity,
absorption and additional cracking problems also evident in
these pastes (Fernandez et al., 1998; Kim et al., 2016; Polettini
et al., 2000; Tang et al., 2014b, 2016).

Heat flow analyses showed that MIBA, at contents up to 40%,
led to a retardation of the hydration of the pastes and lower
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Figure 5. Effect on cement paste compressive strength with MIBA subjected to (a) standard processing and (b) additional chemical or
thermal treatments
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maximum heat releases (Onori et al., 2011; Tang et al., 2014b,
2016; Whittaker et al., 2009), attributed to the organic fraction
and the presence of zinc and phosphate. Increases of 7–57% in
initial and final setting times were also reported (Kim et al.,
2016; Whittaker et al., 2009), including samples with melted
MIBA slag (Lin and Lin, 2006; Lin et al., 2008).

As quantified from pozzolanic activity tests, MIBA did make
a tangible contribution to the hydration reactions. Frattini and
lime saturation tests, which directly measured the quantity
of calcium hydroxide (Ca(OH)2) in the presence of MIBA,
revealed that the material generally satisfied the pozzolanic
activity requirements and, when compared to established
materials, performed similarly to fly ash and natural pozzolan
(Fernandez et al., 1998; Filipponi et al., 2003; Giampaolo
et al., 2002; Polettini et al., 2005, 2009). Melting treatment
was found to be effective in increasing the amorphous phases
in MIBA (Lin and Lin, 2006; Lin et al., 2008), while chemical
activation was also found to further support the development
of pozzolanic reactions in the pastes (Onori et al., 2011).

Mortar
As a cementitious component in mortar mixes, MIBA has
been subjected to the prerequisite grinding processing, but
additional thermal treatments have also been applied to the
material. With the use of MIBA as cement replacement at con-
tents up to 50%, the effects on the mortar fresh properties
are presented in Table 3. The addition of MIBA generally led
to minor decreases in the mix flow values, which can be

attributed to the irregular particle shape and high porosity
of the material. Additional thermal treatment did not signifi-
cantly alter the effect of MIBA on mortar workability.
Moderate increases in setting times were evident, which is
expected when using pozzolanic materials as a replacement for
Portland cement. The lower specific gravity of MIBA led to a
slight reduction in fresh unit weight, whilst its higher water
retention resulted in lower bleeding.

Regarding hardened properties, the effect of MIBA as a binder
on the development of mortar compressive strength with age is
shown in Figure 6(a) for ash samples subjected to the standard
grinding treatment and in Figure 6(b) for samples with an
additional thermal treatment. The results are presented as a
percentage of the control at the same age and, as such, posi-
tively sloped lines imply that the pozzolanic activity of the
material contributes to greater later age strength development.

This greater rate of later strength development was evident in
most MIBA mixes. As is generally the case with pozzolanic
materials, due to the delayed pozzolanic reaction, lower early
age strengths were evident. However, thermal treatments
(Figure 6(b)) were noted to improve the material reactivity,
leading to both higher early strengths and long-term strengths
that exceeded the control mix. Additional work by Carsana
et al. (2016) and Tang et al. (2016), with treatments specifically
aimed at reducing the metallic aluminium, showed that the
associated expansive reaction can have a drastic impact on
strength performance. Reductions in metallic aluminium
contents and much improved mechanical performance were

Table 3. Fresh properties of mortars using MIBA as a cementitious component

Reference Mortar fresh properties

Consistency
Cheng et al. (2011) MIBA ground to <74 μm. Minor decreases in flow from 131 mm (0% MIBA) to 109–123 mm with

10–40% MIBA. All mixes deemed to have satisfactory workability
Saccani et al. (2005) MIBA thermally treated (1500°C, 4 h), quenched and ground. Increased flow table values of 75 mm (20% MIBA)

and 70 mm (30% MIBA) compared with the control 60 mm (0% MIBA)
Tang et al. (2014a, 2016) MIBA ground or MIBA ground + thermal treatment (550/700°C). Thermal treatment did not have a significant

effect on flow. All flows with 20% MIBA were within +5 mm to −10 mm of the control
Whittaker et al. (2009) MIBA ground to 2 μm. More sizeable reductions in flow table results from the control (190 mm), to 167 mm

for 10% MIBA and 136 mm for 40% MIBA
Zhang and Zhao (2014) MIBA ground to 40 μm. Slight increases in water demand with increasing MIBA content, rising from 26·1%

for 0% MIBA to 30·1% for 50% MIBA
Setting time
Cheng (2012) MIBA ground to < 74 μm or melted (1450°C) and ground. Initial and final setting times were increased

(up to 30% longer with 40% MIBA). Melting did not significantly alter the rate of delay
Saccani et al. (2005) MIBA vitrified (1500°C, 4 h) and quenched and ground. With 30% MIBA, initial setting time increased from

60 to 100 min and final setting time increased from 170 to 235 min
Zhang and Zhao (2014) MIBA ground to < 40 μm. Increases in initial and final setting times of approximately 40% for the highest tested

50% MIBA content
Fresh unit weight
Cheng (2012) MIBA ground to < 74 μm. Minor decrease in fresh unit weight with up to 40% MIBA, also accompanied by

minor increases in the mix air contents
Bleeding
Cheng (2012) MIBA ground to < 74 μm. Decrease in bleeding from 0·1988 ml/cm2 for control (0% MIBA) to 0·1395 ml/cm2 for

40% MIBA
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achieved using a combined metal separation plus wet grinding
treatment (Carsana et al., 2016) and a combined thermal plus
lower speed grinding treatment (Tang et al., 2016).

The wet grinding step is particularly effective because the alu-
minium fractions become more exposed as the particles frag-
ment during grinding (Carsana et al., 2016) and, in the
alkaline environment, the expansive reactions develop from the
formation of aluminium hydroxide and hydrogen gas and are
eventually depleted before the material is introduced into the
cement mixture. A slower grinding speed can also be beneficial
as it allows better removal of the dust-like particulates that
reside on MIBA particle surfaces (which are believed to be the
most reactive fractions) by means of inter-particle friction and,
as a result, the subsequent expansive reactions in the cement
environment are reduced (Tang et al., 2016).

In addition to hydrogen gas expansion, the effects of MIBA
on a number of other aspects of mortar durability have been
examined.

& Drying shrinkage. Using ground MIBA, the drying
shrinkage of mortar mixes increased with increasing MIBA
content, accompanied by increases in porosity. However,
after thermal treatment (maximum temperature of 1450°C
for 12 h), the opposite behaviour was evident: the MIBA
mixes had less drying shrinkage than the control, due to
the lower porosity and denser microstructure associated
with the greater pozzolanic reactions and filling effects
(Cheng, 2012; Cheng et al., 2011).

& Ingress of chlorides and sulfates. The use of thermally
treated (1500°C for 4 h) MIBA as a cement replacement in
mortar reduced the depth of penetration of chlorides and
sulfates (Saccani et al., 2005). Again, this can be linked to
the lower porosity of the MIBA mixes.

& Alkali–aggregate reaction. Accelerated tests on alkali–silica
reactivity showed that thermally treated MIBA as a
replacement of 20% or 30% of the cement led to a
significant reduction in the mortar expansion (Saccani
et al., 2005), as is typically expected with the use of
pozzolanic materials due to a dilution in alkalinity.

Concrete
The use of MIBA as a cement component in concrete mixes is
expected to show similar behaviour to its use in mortar, with
the potential hydrogen gas expansion likely to dictate that
additional treatment of the ash, after grinding, should be
undertaken. Concrete compressive strength results are pre-
sented in Figure 7, in the same manner as the mortar results
in Figure 6, using MIBA (as binder) subjected to standard pro-
cessing (Figure 7(a)) and an additional thermal treatment
(Figure 7(b)).

The concrete results appear to be more positive than the
mortar counterparts, achieving later age strengths comparable
to the control in some cases (Bertolini et al., 2004, 2005 (wet-
ground); Jaturapitakkul and Cheerarot, 2003; Jurič et al.,
2006). Hydrogen gas expansive reactions were surprisingly only
reported by Bertolini et al. (2004), with dry-ground MIBA.
The wet grinding process (slurry with a 1:1 solid/liquid ratio)
led to the dissipation of the expansive reactions (i.e. the for-
mation of visible gas bubbles). With a subsequent rest period
before use of the MIBA (2 d was sufficient in the studies of
Bertolini et al. (2004, 2005) though this may vary), the metallic
aluminium reactions can be depleted, thus leading to drastic
strength and density improvements. The additional thermal
treatment, although a more energy-intensive option (1450°C
for 1 h; Cheng et al., 2011), produced a more reactive MIBA
slag due to its higher amorphous fraction, which also led to
improvements in the compressive strength (Figure 7(b)).
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Zhang and Zhao (2014) 10–50% MIBA

Cheng et al. (2011)/Cheng (2012) 10–40% MIBA

Whittaker et al. (2009) 10, 40% MIBA

Saccani et al. (2005), 1500°C 4 h (20, 30% MIBA)

Ferraris et al. (2009), 1450°C 12 h (5, 10, 20% MIBA)

Figure 6. Compressive strength development of mortars using MIBA subjected to (a) standard processing and (b) additional thermal
treatment
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Mixed findings are reported regarding the effect of MIBA on
the concrete mix consistence. With 30% of the cement
replaced, the slump decreased from 60 mm to 0 mm with
the finer wet-ground MIBA (d50 = 3 μm), compared to an
increase to 110 mm with the dry-ground MIBA (d50 = 15 μm)
(Bertolini et al., 2004, 2005). Additional slump increases from
162 mm (control) to 167–187 mm for ground and thermally
treated MIBA (passing 74 μm) were reported by Cheng et al.
(2011), although a contrasting drop from 105 mm (control) to
44 mm with 15% MIBA (unspecified fineness) was reported by
Jurič et al. (2006). Differences in the ash fineness after grinding
contributed somewhat to variability in the workability, with
increased fineness found to lead to lower slumps. The moisture
content of MIBA prior to its use is another important variable
to consider. The irregular shape of the ash particles and the
porous microstructure of the material also point towards an
expected reduction in the mix consistency with MIBA, for a
given water content.

Regarding concrete permeation properties, the inclusion of
20% ground MIBA reduced the initial surface absorption test
value from 0·6 to 0·3 ml/m2s. Additional thermal treatment
was also beneficial in achieving a denser concrete microstruc-
ture due to the increased pozzolanic activity (Cheng et al.,
2011).

As a measure of the concrete corrosion resistance, open circuit
potential results matched up consistently with the compressive
strength performance (see Figure 7), with ground plus melted

MIBA mixes performing similarly to the control and mixes
with only ground MIBA showing greater susceptibility (Cheng
et al., 2011). This same behaviour with MIBA mixes was also
evident in rapid chloride penetration tests to measure the elec-
tric current passing through (Cheng et al., 2011). Results on
indirect electrical resistivity and direct chloride apparent diffu-
sion coefficients revealed that the higher strength wet-ground
MIBA mixes had greater resistance than the control, while the
lower strength dry-ground MIBA mixes were less resistant
(Bertolini et al., 2004, 2005). Overall, the initial testing
suggests that, for equivalent compressive strength, mixes with
MIBA as a binder will deliver resistance to chloride ingress on
a par with or greater than a control Portland cement mix.

Controlled low-strength materials (CLSMs)
Controlled low-strength materials are used as an alternative
to soils as backfill material, with their main characteristics
(including high flowability, self-compacting, self-curing pro-
perties and strengths) controlled to low levels to allow future
excavation. As outlined in the American Concrete Institute
guidance report on CLSM (ACI, 2005), these products typi-
cally contain fly ash as filler, low contents of cement, coarse
and fine aggregates and water.

Initial work undertaken with MIBA adopted a more uncon-
ventional approach, using a mix of dewatered sludge (DS) +
calcium sulfoaluminate cement (CSA) + water as the control,
with MIBA (ground to less than 4 mm) replacing up to 80%
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Figure 7. Compressive strength development of concrete using MIBA subjected to (a) standard processing and (b) additional
thermal treatment
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of the cement (Zhen et al., 2012, 2013). The focus of the
testing was on compressive strength development, and the
results are presented in Figure 8. CLSMs with mix proportions
of one or four units of CSA (or CSA+MIBA) per unit of DS
were produced. A few of the MIBA samples used were sub-
jected to an additional thermal treatment at 900°C for 1 h.
Other important properties, such as flowability and compact-
ability, have not been covered thus far.

These CLSMs produced using MIBA appear to be more
suited towards structural applications, as all the mixes greatly
exceeded the 0·3 MPa (50 psi) manual excavation guidance
limit and all but two (CLSMs with 80% MIBA and the lower
total CSA+MIBA proportion) exceeded the machine exca-
vation limit of 2·1 MPa (ACI, 2005). Accompanying analyses
of the microstructure and mineralogy (x-ray diffraction,
thermogravimetry/differential scanning calorimetry and scan-
ning electron microscopy/energy dispersive x-ray spectroscopy)
by Zhen et al. (2012, 2013) suggested that the MIBA did con-
tribute to the strength performance, despite the consistent
strength decreases with increasing MIBA contents in the 1 DS:
4 CSA+MIBA: 1·6 water mixes. However, the use of MIBA
or other pozzolanic material with CSA may not be an effective
combination, as this cement type is less alkaline and does not
produce the calcium hydroxide needed for pozzolanic reactions
(Pera and Ambroise, 2006). The increase in strength with low
MIBA contents in the lower CSA+MIBA mixes may be
partly due to improved mechanical filling. Thermal treatment
of MIBA for use in CLSMs did not have a favourable effect
on the mechanical performance.

Aerated concrete
Aerated concrete appears to be an ideal application for MIBA
as the hydrogen gas expansive reactions arising from metallic
aluminium in the material can make a positive contribution
towards the desired low-density properties. In the works under-
taken thus far, MIBA has served as a valuable aerating agent

whilst also making a useful contribution to the silica required
for strength development.

Prior to the implementation of MIBA in aerated mixes, the
response of the material to varying levels of alkaline solution
(0·0016–1 mol/l of sodium hydroxide or calcium hydroxide)
was examined by measuring hydrogen gas production at temp-
eratures from 40 to 70°C (Chen et al., 2014; Song et al., 2015,
2016; Wang et al., 2016, Yang et al., 2015). The results were
converted to a standard measure of volume of hydrogen gas
per gram of powder at 1 atm (pressure) and 23°C. The follow-
ing findings have been reported.

& The volume of hydrogen gas produced increased with
MIBA fineness. This can be attributed to the increased
specific surface area and greater exposure of the reactive
components associated with higher particle fineness. The
finest MIBA fraction (average particle size of 23·2 μm)
produced approximately 1% of the gas produced by
aluminium powder per gram in equivalent conditions.

& Hydrogen gas production increased both as the
temperature rose and conditions became more alkaline
(higher alkaline solution molarity). Comparable results
were achieved with either sodium hydroxide or calcium
hydroxide as the alkaline solution.

The mix designs for aerated concrete containing MIBA are
presented in Table 4, along with the density and compressive
strength results. Differing approaches have been adopted, using
MIBA as a replacement for cement, coal fly ash or circulating
fluidised bed combustion (CFBC) fly ash, along with vari-
ations in the other constituents, alkaline solutions and
molarity, and water content.

As a cement replacement, increasing MIBA and sodium
hydroxide molarity led to increasing porosity and associated
reductions in density and compressive strength (Chen et al.,
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2014; Song et al., 2016; Yang et al., 2015): the density was
affected more by the MIBA content, whilst the alkaline sol-
ution molarity had a greater influence on strength. The substi-
tution of MIBA for coal and CFBC fly ashes also resulted in
reductions in density and strength due to the increased expan-
sive reactions and porosity (Song et al., 2015; Yang et al.,
2015). The strength-to-density ratio for the mixes containing
MIBA was lower than that of the coal and CFBC fly ashes,
but was higher than the ratio when using aluminium powder
(1 g of MIBA for 0·01 g of aluminium powder based on the
previous hydrogen gas experiments). As such, the use of
MIBA and these fly ashes appears to be an ideal combination
that can produce the desired low density, with better strength
than the aluminium powder mixes and, at the same time, saves
the cost of expensive aluminium aerating agents.

The drying shrinkage of MIBA aerated concrete was found to
stabilise at around 15 and 20 d respectively for the CFBC fly
ash and coal fly ash mixes. Consistent increases in shrinkage
were evident with increasing MIBA content, due to the higher

porosity and associated increased ease of moisture loss and the
lower resistance to movement due to the lower strength.
Despite this increased susceptibility, the drying shrinkage
values of all the MIBA aerated concrete mixes were within the
targeted Chinese national standard limit of 0·50 mm/m (Song
et al., 2015; Wang et al., 2016).

Conclusions
The chemical composition of municipal incinerated bottom
ash (MIBA), with main oxides of silicon dioxide, calcium
oxide and aluminium oxide, combined with its amorphous
fraction, indicates that it may have pozzolanic properties in
ground form. The ash contains notable contents of sulfur tri-
oxide, chlorides and organic matter. These should be moni-
tored, and treatment may be required at times to limit the
negative impacts on concrete performance. Metallic aluminium
in MIBA is also a key concern that may demand treatment to
avoid damaging expansive reactions. In ground form, MIBA
was found to have an average specific gravity of 2·6, placing it

Table 4. Mix designs and density and compressive strength results for aerated concrete

Mix design
Density:
kg/m3

Compressive
strength: MPa

Cement replaced (Chen et al., 2014; Song et al., 2016; Yang et al., 2015)
Other variables: alkaline solution type and molarity, L/S ratio

Cement MIBA Sand Alkali solution Liquid/solid
(L/S) ratio

4 1 5 Water 0·175 1554 19·5
4 1 5 0·01 mol/l sodium hydroxide 0·175 1512 16·0
4 1 5 0·1 mol/l sodium hydroxide 0·175 1444 12·5
4 1 5 1 mol/l sodium hydroxide 0·175 1324 5·7
3 2 5 1 mol/l sodium hydroxide 0·35 1056 2·7
2 3 5 1 mol/l sodium hydroxide 0·35 932 1·5

Coal fly ash replaced (Song et al., 2015; Yang et al., 2015)
Other variables: comparison to aluminium powder

Cement MIBA Coal
fly ash

Aluminium
powder

Lime/
gypsum

Water

10 0 67 0 20/3 65 1074 13·9
10 5 62 0 20/3 65 846 (# 21%) 9·7 (# 30%)
10 10 57 0 20/3 65 728 (# 32%) 8·4 (# 40%)
10 20 47 0 20/3 65 673 (# 37%) 7·2 (# 49%)
10 30 37 0 20/3 65 637 (# 41%) 6·1 (# 56%)
10 0 67 0·05 20/3 65 831 (# 23%) 7·7 (# 45%)
10 0 67 0·1 20/3 65 673 (# 37%) 6·5 (# 53%)
10 0 67 0·2 20/3 65 603 (# 44%) 4·1 (# 71%)
10 0 67 0·3 20/3 65 511 (# 52%) 2·9 (# 79%)

CFBC fly ash replaced (Wang et al., 2016)
Other variables: none

Cement MIBA CFBC fly ash Lime Water

10 0 70 20 65 1116 18·1
10 5 65 20 65 868 (# 22%) 17·1 (# 5%)
10 10 60 20 65 799 (# 28%) 13·2 (# 27%)
10 20 50 20 65 656 (# 41%) 8·9 (# 51%)
10 30 40 20 65 613 (# 45%) 6·8 (# 63%)
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above fly ash and below Portland cement. Its irregularly
shaped particles, porous microstructure and higher absorption
properties indicate that MIBA may lead to a rise in the con-
crete water demand.

As raw feed in cement clinker production, MIBA can be viably
used at low contents (recommended up to 5%) to produce
cement clinker comparable to the control. At higher MIBA
contents, the build-up of phosphorus pentoxide and sulfur tri-
oxide affects the setting and strength development. Washing
treatment may also be implemented to reduce long-term cor-
rosion of kiln equipment due to the chlorides in MIBA.

As a cementitious component in paste, mortar and concrete
mixes, treatment of MIBA beyond standard grinding is needed
to avoid expansive reactions and the associated negative effects
on strength, density, absorption and cracking arising from the
metallic aluminium in the ash. Thermal and chemical acti-
vation treatments have been shown to be effective in improving
strength performance, while tailored slow and wet grinding
techniques targeting the removal of metallic aluminium have
also resulted in drastic increases in performance. MIBA con-
tributed to strength development as a partial cement replace-
ment, achieving long-term strengths greater than the control
mortar and concrete mixes, after suitable treatment. Increases
in the water demand and setting times were evident when
MIBA was used as a binder in mortar and concrete. With
regards to permeability, drying shrinkage, chloride and sulfate
ingress and alkali–aggregate reaction, products containing
appropriately treated ash performed comparably to or better
than control mixes at equivalent strengths.

MIBA appears suited for use in aerated concrete, as the hydro-
gen gas expansive reactions can contribute towards the desired
low-density properties, serving as an alternative to costly aerat-
ing agents such as aluminium powder and also as a source of
silica for strength development. MIBA has been incorporated
in varying mix designs as a replacement for cement, coal fly
ash or circulating fluidised bed combustion (CFBC) fly ash,
with large reductions in density achieved. The use of MIBA
in combination with coal fly ash also achieved a superior
strength-to-density ratio as compared with mixes with alu-
minium powder, in addition to saving the cost of the aerating
agent. Initial work on controlled low-strength materials has
also indicated MIBA as a potential cement replacement that
can meet the low-strength requirements of this application.
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