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Abstract

The characteristics of municipal incinerated bottom ash (MIBA) and its performance in road pavement applications is assessed
through systematic analysis and evaluation of the global experimental data. MIBA has been used in unbound, hydraulically and bitumen
bound forms. As unbound material, after processing, MIBA exhibits suitable mechanical properties for use as capping, fill and sub-base
material, which has been successfully demonstrated in field testing. In hydraulically bound form, MIBA can be a viable aggregate com-
ponent in subbase and roadbase layers at low to moderate contents, depending on the performance requirements and binder content. As
bituminous bound aggregate in roads, the material can be fit for use at low contents, which is reinforced by a number of completed case
studies, with the allowable MIBA fraction controlled by the voids contents, abrasion resistance and bitumen content requirements.
� 2016 Chinese Society of Pavement Engineering. Production and hosting by Elsevier B.V. This is an open access article under the CCBY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Sustainable waste management has become increasingly
important and is incorporated as a core principle in both
European [1] and worldwide legislation [2], where an eco-
friendly hierarchy of treatments is now prescribed by the
law, ranking recycling and incineration over landfilling.

Municipal incinerated bottom ash (MIBA) is the princi-
pal residue produced from the incineration of municipal
solid waste (MSW). Annual production rates of 241, 654
and 1840 million tonnes of MSW have been reported in
the 28 European Union countries [3], Organisation for
Economic Co-Operation and Development (OECD) coun-
tries [4] and worldwide [5], respectively. Treatment of the
http://dx.doi.org/10.1016/j.ijprt.2016.12.003
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material has been reported as follows in the 28 EU coun-
tries in 2013: 28% landfilling, 28% recycling, 27% incinera-
tion and 16% compositing/digestion [3], representing a
significant shift in favour of incineration and recycling
and away from landfilling, compared to past practices.

The incineration process reduces MSW by approxi-
mately 70% by mass and 90% by volume, making it an
appropriate treatment to deal with the large volumes pro-
duced and the potentially unsafe elements the MSW con-
tains. Of the residues produced, 80–90% is bottom ash
and remainder is fly ash and other air pollution control
residues. From the above figures, it is estimated that
approximately 16 million tonnes of MIBA are produced
per annum in the EU.

Given the great demand for construction materials,
(global aggregate demand is projected to exceed 50 billion
tonnes per annum by 2019 [6]), the finite nature of natural
resources and problems associated with landfilling, it is
becoming increasingly important and legally onerous to
hosting by Elsevier B.V.
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Fig. 1. Particle size distributions of MIBA samples for use in road
construction. Ref. [10–15].
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seek complete utilization of secondary materials. MIBA
use in road construction appears to be an appropriate out-
let, given the large quantity of aggregate used and the less
onerous material requirements.

In European countries such as The Netherlands and
Denmark, with limited space for landfilling, 80% and
98% respectively of MIBA is reused, predominantly as
embankment fill and in pavements [7]. With certain regions
using MIBA quite widely and with substantial research
available, analysis and coherent dissemination of these
resources can be useful and timely for enhancing confi-
dence with the material to further its practical application.

2. The project

This paper assesses the use of MIBA in road pavement
applications through the analysis, evaluation and synthesis
of the global data on this subject, to ascertain the current
status and advance the sustainable use of the material in
unbound, hydraulically and bitumen bound forms. The
characteristics of MIBA are dealt with firstly, covering
the physical, chemical and engineering properties, followed
by examination of the mechanical and durability perfor-
mance in the resultant road pavements. Though it is recog-
nized that the environmental assessment is an important
aspect of using MIBA in roads, this area is not included
within this paper, but instead, is dealt with specifically in
a separate publication [8].

A huge amount of research has been published on
MIBA and its use in this area. Literature on the character-
istics of MIBA has been limited to the last 10 years due to
the vast quantity of data available. Publications providing
solely numerical data on the physical and chemical charac-
teristics of MIBA have been listed in Appendices in the
Supplementary data instead of the main reference list, in
order to limit the overall length of the paper. Publications
relevant to the specific use of MIBA in road construction
have been cited in the main reference list. This work has
been published from 1976 onwards, originating in 19 coun-
tries across Europe (65 publications), North America (25),
Asia (15), Africa (6) and South America (1), with the lar-
gest contributions coming from UK (25 publications),
USA (21), Sweden (13) and Spain (8).

3. Properties of MIBA

3.1. Physical properties

3.1.1. Grading

In its as-produced form, MIBA contains particles up to
100 mm in size, though the standard screening process typ-
ically removes the oversized fraction greater. As unbound
granular material in road construction, these screened
MIBA samples, shown in Fig. 1, appear suited to meet
the grading limits for Type 1 unbound mixtures in Specifi-
cation for Highway Works Series 800 [9], subject to minor
modifications at times. MIBA typically undergoes further
sieving to meet selected base and surface course grading
requirements.

3.1.2. Classification

Using the Unified Soil Classification System (USCS),
MIBA has been categorised as SW (well graded sands)
[16], SM (silty sands) [17] or as SP-SM (poorly graded sand
with silt) [18]. With the Association of State Highway and
Transportation Officials (AASHTO) System, MIBA sam-
ples fall into the A-1 category [19,20], which is associated
with ‘‘excellent to good” subgrade rating. Non-plastic
behaviour has been reported for MIBA [21–23], which
may benefit the material’s shear strength properties.

3.1.3. Density

As presented in Table 1, the average specific gravity of
MIBA (2.3) (based on data from references listed in
Appendix A) is lower than typical values for natural sand
(approximately 2.65). The relationship between specific
gravity/particle density and bulk density is suggestive of a
porous material.

3.1.4. Absorption
Absorptive properties of MIBA (Table 1) (data from

references listed in Appendix B) are considerably higher
than typical natural aggregate values, e.g. 1–3% for sand.
This is again symptomatic of the porous nature of this
material. The absorption of MIBA also increased as fine-
ness increased, due to larger particle surface areas.

3.1.5. Morphology

Scanning electron microscope (SEM) analysis of MIBA
supported the previous density and absorption results,
revealing a material containing irregularly shaped particles
with rough surface texture and a porous microstructure
(Table 1) (data from references in Appendix C). Flaky par-
ticles generally have lower strength in their shorter dimen-
sion, though the irregular surface texture should be
beneficial to prevent slipping of the particles under load,
resulting in high friction angles and shear strength [13].



Table 1
Additional physical characteristics of MIBA.

Properties Results

Number of
Samples

Mean r, % Range

Density

Specific gravity 32 2.3 0.3 1.2–2.8
Bulk density, kg/m3 13 1387 413 510–2283

Absorptive properties

Absorption (coarse fraction), % 15 8.0 4.0 2.9–14.2
Absorption (fine fraction), % 12 11.3 5.1 1.0–17.1

Morphology

SEM analysis Angularly shaped porous particles
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Irregularly shaped particles may also hamper the com-
pactability of the material, though when used in the surface
layer of road pavements, the rough texture should benefit
skid resistance properties.
3.2. Chemical properties

3.2.1. Oxide composition

Based on the analysis of total MIBA samples (data from
references listed in Appendix D), the main oxides present in
MIBA are SiO2, CaO and Al2O3, with others such as
Fe2O3, Na2O, MgO, SO3, Cl

�, P2O5, ZnO and CuO pre-
sent in smaller amounts. The contents of the three main
oxides in these samples are plotted in Fig. 2 in the form
of a ternary diagram and mean, standard deviation (St
Dev) and coefficient of variation (CV) data are also given.

Large variability in the chemical compositions is appar-
ent from Fig. 2 which remained present to a great extent
CaO

SiO2

Alumina

LatenHydraulic

PC = Portland cement, GGBS = ground gra
fly ash, LS = limestone. 

Fig. 2. Ternary plot of SiO2, CaO
when only considering samples from within each continent,
incinerators within the same country and even the same
incinerator over a prolonged time period. This can be lar-
gely attributed to variations in the composition of the orig-
inal MSW that inevitably arises from differences in waste
management practices and other cultural and economic
disparities worldwide. The oxide composition of MIBA is
comparable to certain recognized pozzolanic and latent
hydraulic cementitious materials and as such, in soil stabi-
lization or cement bound mixtures, the potential poz-
zolanic properties of the material may be beneficial.
3.2.2. Mineralogy

The most abundant minerals reported in MIBA are
quartz, calcite, hematite, magnetite and gehlenite. There
are also more than 30 additional silicates, aluminates, alu-
minosilicates, sulfates, oxides and phosphates that have
been less commonly identified in the material (data from
references listed in Appendix E).

When exposed to environmental conditions and weath-
ering, the mineralogy of MIBA will undergo change. Age-
ing treatment in outdoor conditions can be adopted, for
varying time periods, to induce the carbonation, hydration
and organic biodegradation reactions in MIBA. The CO2

present in the air reacts with the alkaline MIBA forming
carbonates, mostly in the form of calcite. Together with
the hydration reactions, aged MIBA samples convert
towards a more stable form, which can improve the sound-
ness of the material for use in road pavements. Of addi-
tional interest, the ageing process also reduces the pH of
MIBA towards more neutral conditions, which results in
associated decreases in the mobility of certain heavy metal
 Al2O3

Pozzolanic

t Hydraulic

Average MIBA 
Composi�on

Al2O3

nulated blastfurnace slag, CFA = coal 

and Al2O3 contents of MIBA.
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constituents, thus improving its environmental
performance.

3.2.3. Organic content

Residual organic matter remaining in MIBA after the
combustion process can potentially lead to negative
impacts on density, stiffness and increased risk of degrada-
tion over time [24]. Loss on ignition (LOI) tests are used to
provide a measure of the organic fraction by comparing the
difference in mass of samples before and after ignition and
results for MIBA are presented in Fig. 3.

It should be noted that the ignition conditions adopted
by researchers can vary. Based on the test ignition temper-
ature, the LOI results can usually be divided into two
groups, the first with temperatures around 550–600 �C
and the second around 950–1100 �C. For the MIBA LOI
results, unfortunately the accompanying information on
the ignition temperature was only provided in a limited
number of cases (given next to the reference in Fig. 3 when
available), though it should be noted that for samples in
the latter higher ignition temperature group, the LOI value
may overestimate the organic fraction, due to additional
calcination of other inorganic components such as calcite
at these conditions.

LOI results ranged from 1% to 15% and a mean value of
5% has been calculated based on the mid-range values. The
data suggests that the organic content is very much depen-
dent on the specifics of the MSW combustion process in
each incineration plant, in particular the combustion tem-
perature, residence time and turbulence. Temperatures
for MSW incineration typically vary from 800 to 1200 �
0 2 4
[32]
[31]
[30]

[29] (Ignition Temp 1100°C)

[28] (Ignition Temp 550°C)
[27] (Ignition Temp 550°C)

[26] (Ignition Temp 775°C)
[19] (Ignition Temp 550°C)

[25] (Ignition Temp 1000°C)

[24]
[21]

LO

UK 
Incinerators

European 
Incinerators

Target maximum LO
use in Road Construc

Fig. 3. Loss on ignition (LOI) values reported in
C, though again, the specific details for MIBA samples
are rarely available. Variability in the MSW composition,
the processing of MIBA and the aforementioned discrep-
ancies in the ignition temperatures all contribute to the
variation in the MIBA LOI results. The French Ministry
for Environment [33] has set a LOI threshold of 5% for
MIBA use in construction. A thorough burn in a well-
regulated incineration plant should ensure that MIBA sat-
isfies this requirement. In the Netherlands, to promote full
utilization of the material, the Dutch Regulations [34] stip-
ulates a 5% LOI limit for MIBA at the point of
incineration.

3.3. Engineering properties

3.3.1. Compactability

MIBA samples have achieved a good degree of com-
pactability, reaching up to 90% [24]. The angular shaped
particles of MIBA make compaction beyond this point
difficult, although the angularity tends to result in a more
stable layer compared to spherical particles. Compaction
test results for MIBA, given in Fig. 4, show that the
majority of the material results are within the shaded
region, (optimum moisture contents from 12% to 18%
and maximum dry densities from 1200 to 1800 kg/m3).
Average maximum dry density and optimum moisture
content of 1600 kg/m3 and 15% have been calculated for
the total MIBA samples. The dry density of the material
is similar to typical values given for silty sands, heavy
clays and coal fly ash, though lower than natural sand
and gravel.
6 8 10 12 14 16
SS ON IGNITION (LOI), %

Processed 
MIBA

Unprocessed 
MIBA

Samples from 
4  incinerators

Samples from 
7  incinerators

1 plant, 72 samples, 
18 months

I limit for 
tion

the literature for MIBA, Refs. [19,21,24–32].
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The density of metallic constituents such as iron are sig-
nificantly higher than natural minerals and as such, the
variable heavy metal composition of MIBA contributes
to the variability in the dry densities. Minimizing the
organic content of MIBA also increases the maximum
dry density and benefits compactability.

Dynamic compaction tests revealed degradation of the
larger particles under compaction, with an 18% reduction
in fraction greater than 4.75 mm reported, though this
trend decreases as the sizes decreased, with only a 2.5%
reduction of fraction less than 0.075 mm [14]. These adjust-
ments should be taken into account when assessing the
grading of the material.
3.3.2. Permeability

There is quite a large variation in the reported perme-
ability results, almost 6 orders of magnitude, ranging from
2 � 10�9 to 6.8 � 10�4 m/s [14,16,21,35,37,41,43,44]. The
results are very sensitive to the moisture changes, the mate-
rial grading and related degree of compaction [16]. How-
ever, with the exception of very low results reported in
one study [35], MIBA is identified as a material with good
drainage characteristics that falls into the ‘‘medium” per-
meability category according to the classification of soil
types given by Head [45]. MIBA falls in the range expected
for comparably graded soils and its drainage characteristics
should support good overall stability in soil structures.

As a landfill liner, very low permeabilities are required,
i.e. 1 � 10�9 m/s (USEPA) [46]. MIBA can satisfy this cri-
terion by including small amounts (up to 10%) of low per-
meability materials such as kaolinite, bentonite, Portland
cement and coal fly ash [14,39,43].
3.3.3. Shear strength

Shear strength properties of MIBA, shown in Table 2,
have been assessed from unconfined compressive strength
(UCS), direct shear and triaxial shear tests. High friction
angles up to 59� have been reported, which is attributed
to the very angular glass particles present in MIBA. One
exceptionally low friction angle of 19.5� [21] had been
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Fig. 4. Optimum moisture contents and maximum dry densities of MIBA
samples. References: Standard proctor: [14,16,28,35–37] Modified proctor:
[22,28,35,38–42] Vibrating Hammer: [26] Unspecified: [1,25].
reported, though few details are provided in this particular
study, this result appears to be an anomaly.

An equation has been developed [17] for estimating the
friction angle (/ in degrees) of MIBA based on the chem-
ical composition, in particular the Al2O3 and Fe2O3 con-
tents and can serve as a useful tool in a design process.
Using the average values for Al2O3 and Fe2O3 calculated
from the literature, a friction angle of 46� has been deter-
mined, which matches up well with the experimental results
in Table 2.

Mean cohesion values up to 20 kPa have been reported,
though Lentz et al. [14] has identified MIBA as a cohesion-
less granular material. Two of these studies [21,37]
reported, though without numerical values, that shear
strength similar to natural sands and gravels can be
expected. The fact that MIBA is lighter than these materi-
als is an added benefit that may reduce settlement in use,
due to the lower normal stresses caused by the self-weight.

3.3.4. Elastic modulus

Elastic modulus results from triaxial tests are given in
Table 2 for MIBA. There are quite substantial differences
between the reported values, though this is partly attribu-
ted to differences in test conditions relating to the drainage
(undrained/drained) and load application (confining pres-
sures ranging from 35 to 500 kPa). Elastic modulus results
increased at greater confining pressures, and at a confining
pressure of 100 kPa, equivalent results of 60 MPa, 90 MPa
[10] and 35 MPa [19] have been reported in the two studies.
At lower confining pressures, MIBA achieved stiffness sim-
ilar to loose or silty sand (10–30 MPa) and at the upper end
of the tested pressures (100–200 MPa), has been compara-
ble to very dense sand.

Additional resilient modulus results ranging from 70 to
130 MPa have been reported [24], which is comparable to
natural sand. Permanent strains measured for MIBA of
0.5% were lower than sand (1–3%), leading to lower perma-
nent deformations. It was suggested that if MIBA was used
as a sand replacement in the capping layer, the same elastic
modulus could be used during the new design [24].

Processing and compacting of MIBA in its fresh state
before ageing has been found to significantly improve per-
formance in use. The elastic modulus of freshly processed
and compacted MIBA rose by over 600% (6–40 MPa after
20 days weathering), whereas the samples that were aged/
weathered and then subsequently processed did not show
any change compared to the elastic modulus measured ini-
tially (6 MPa) [36]. Lowering the organic content also
appears to improve the elastic modulus of MIBA [19].

3.3.5. Soundness

MIBA samples have shown good resistance to sulfate
attack, based on soundness test results (Table 2). All results
are within the limits outlined in the respective Chinese and
American standards referred to in these publications
[25,41]. Increasing the particle fineness has also increased
the soundness susceptibility [35], possible due to higher



Table 2
Shear strength, elastic modulus, soundness and freeze thaw properties of MIBA.

Parameter Test Results

Shear strength Cohesion, kPa Friction angle, �

[21] UCS Range 2.5–10.3, mean 6.0 16.2–22.3, mean 19.5
[38] CD triaxial shear – 53�–59�
[10] CD and CU triaxial shear – 55�–59� (CD), 53�–56� (CU)
[14] Direct shear 0 38�–55�, mean app. 45�
[17] Direct shear – 44�–53�
[37] Direct shear 8 50�
[44] CD triaxial shear Range 14–34, mean 20 24�–50�, mean 42�

Elastic modulus Applied stress, kPa Elastic Modulus, MPa

[10] CD and CU triaxial 100–600 (CD), 100–500 (CU) 60–177 (CD), 90–145 (CU)
[36] Cyclic load triaxial Traffic load simulations 6–46
[19] CD and CU triaxial 35, 70, 100 3.5–35.0

Soundness Soundness Loss, % Limit, %

[35] – 1.6–11.9 (fine), 2.6–2.9 (coarse) –
[25] CNS1167 2.3 12
[41] AASHTO T104 5.4 12

Freeze thaw Frost resistance results

[47] TRL frost test 2 mm frost heave after 250 h, which was <12 mm limit
[48] French methylene blue Samples passed frost resistance test with values <0.2 limit

Austria frost heave Samples passed test, but decreases in CBR were evident
Denmark frost heave Deformation of MIBA samples were <sand specimens

Note: UCS – unconfined compressive strength, CD – consolidated drained, CU – consolidated undrained.

70
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available surface areas, though the maximum result did not
exceed the outlined limit of 12%.
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3.3.6. Freeze thaw resistance

The frost resistance and frost heave tests undertaken in
accordance with Austrian, French and Danish and UK
(TRRL) specifications [47,48] have shown that all MIBA
samples were within the allowable limits. Strong perfor-
mance in this regard was attributed to the pores in the
material, which allows extra space for expansion to occur.
0
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MIBA SAMPLES

Fig. 5. Los Angeles abrasion coefficients for MIBA samples. References:
[7,10,12,22,23,25,30,35,41,44,48–52].
3.3.7. Abrasion resistance
Reported Los Angeles (LA) abrasion coefficients for

MIBA are given in Fig. 5. MIBA had an average LA abra-
sion value of 45, with a standard deviation of 6%. This type
of performance is typical of what is expected from light-
weight aggregates [35], though is below the level of natural
aggregates such as limestone and granite. The somewhat
susceptibility of MIBA to abrasion may be due to breaking
up of fragile ceramic and glass fractions present under
stress [23]. Abrasion resistance also decreased as the parti-
cle size decreased. Indeed, the first four MIBA samples [35]
in Fig. 5 were coarse fractions and had particularly high
LA abrasion values.

For use as sub-base in road pavements, most MIBA
specimens have satisfied the respective Chinese (CNS
14602) and Spanish (Spanish Ministerial Order, 1976)
[53] abrasion loss limits of 50% set out to ensure adequate
load transfer through the structure by particle frictional
contacts. As road base material, Spanish standards for
road construction [53] stipulate that LA coefficients less
than 35% are required for crushed aggregate under low
traffic conditions and less than 40% for rounded aggre-
gates. When required, the abrasion resistance of MIBA
can be improved to meet the requirements through the
use of a protective coating or by mixing the material with
a hard aggregate such as granite.
3.3.8. California Bearing Ratio

California Bearing Ratio (CBR) results from the litera-
ture are given in Fig. 6. The data are sensitive to many fac-
tors including moisture conditions, and density.
Comparing results unsoaked and soaked samples, CBRs
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from 50–73% and 25–40% have been reported respectively.
The trend of increasing CBR with increasing dry density is
evident from the reported CBR values of 20% and 100%
[22] and 110% [25] at dry densities of 1530 and 1810 kg/
m3 [22] and 1700 kg/m3 [25] respectively. The data also sug-
gest that processing of MIBA should be a necessity in high
bearing capacity applications, with drastic improvements
reported from 19–25% (before processing) to 113–114%
[26] following ageing, organics removal, size fraction sepa-
rations and ferrous and non-ferrous removal.

There is a need for more efficient use of construction
materials by matching the material quality to the perfor-
mance requirements and the bearing capacity of MIBA is
certainly sufficient for use in low strength applications such
as embankment and fill materials, while most MIBA sam-
ples exceeded the CBR requirements of greater than 20%
for sub-base use. Following processing to minimize organic
contents and a high degree of compaction to ensure high
dry densities, MIBA can also meet CBR requirements of
greater than 100% for use as road base material.

4. Road pavement applications of MIBA

MIBA has been assessed as embankment/fill, capping,
subbase, road-base and stabilizer materials. These applica-
tions have been categorized into three subheadings:
unbound, hydraulically bound and bitumen bound
materials.

Policies regarding the utilization of MIBA in road pave-
ment applications in many countries worldwide have been
examined [48,54–57,58,59]. MIBA is generally permitted
for use in road construction, albeit subject to processing
requirements and application restrictions. In the UK in
the Design Manual for Roads and Bridges HD 35/04
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[60], MIBA is permitted in all applications types listed in
its Table 2.1 including pipe bedding, embankment and fill,
capping, unbound mixtures for sub-base, hydraulically
bound mixtures for sub-base and base, bitumen bound lay-
ers and pavement quality concrete, provided the material
complies with the specifications. In countries such as The
Netherlands, Denmark and Canada over 90% of MIBA
is re-used, primarily in sub-base and fill applications, while
France, Germany, UK, Spain and Sweden, amongst other
countries, are also endeavouring to exploit MIBA as a con-
struction material [48,54,56,58].
4.1. Unbound material

In unbound form, both laboratory-based testing and full
scale projects have been undertaken with MIBA in fill, cap-
ping, subbase, roadbase and soil stabilization applications.
The characterization of the material, covered in Section 3,
shows that the material is suitable to meet the specifications
for use in fill and capping layers outlined in SHW Series
600 [61]. MIBA samples generally satisfy the fines, oversize
fraction contents and overall grading requirements (see
Fig. 1) as Type 1 unbound mixtures [9], though minor
adjustments would be required at times. Resistance to frag-
mentation requirements (LA abrasion coefficient < 50) can
be met (see Fig. 5) and MIBA also performed suitably in
soundness and freeze thaw resistance tests.

Shear strength, elastic modulus and bearing capacity
results for MIBA have been positive, performing similar
to natural sand. CBR values of MIBA, though strongly
affected by the organic matter and density, are predomi-
nantly above the recommended subbase values of 20%
and 30%.

Work on the use of MIBA for stabilization of dune
sands [18,62] and very initial stages with nonlateritic clay
[63], showed that the material has value as a soil stabilizer.
Significant increases in unconfined compressive strength
and shear strength parameters of sand dunes have been evi-
dent with MIBA additions, with most effective perfor-
mances achieved with MIBA at contents of 30–40% [18].

Field test projects involving the use of MIBA as fill, cap-
ping and subbase are detailed in Table 3. It appears that
European countries have been at the fore-front of develop-
ing MIBA as a sub-base material, whilst the case studies in
the USA have focused on its use as embankment/backfill
material. Much of the main focus has been on the leaching
and environmental performance of MIBA, though
mechanical properties such as the stiffness and deformation
behaviour have also been evaluated.

The case studies carried out, combined with the above
analysis of the characteristics of MIBA and the laboratory
testing, should help to strengthen confidence in the capabil-
ities of the material for use in unbound form in road appli-
cations. Continued development on the environmental
aspects would be beneficial to progressing the material
use, whilst there is also a need to move the research



Table 3
Field tests with unbound MIBA in road construction.

References Location Use Comments

[64–68] Umea
Swe

SB Dava road 2001. MIBA had 70% of the strength of crushed rock. Deemed suitable subbase material

[65,69–72] Malmo
Swe

SB Torringevagen road 1997. MIBA retained strength over years and was suitable as SB if it was sorted/stored
beforehand

[72–74] Linkoping
Swe

SB 1987. Stiffness was <crushed rock section, but MIBA section deemed suitable. Thicker roabbase sections
gave best results

[49] Brest
France

SB Brest road 1995. All environmental assessment

[19] Rochester
USA

SB Access road to RDF plant. Normal wear after 18 months of daily traffic

[75,76] Herouville
France

SB Low traffic road, 1997. All environmental monitoring

[26] Middlesboro
UK

SB 55% MIBA as subbase in various domestic housing redevelopments as unbound subbase

[77] Dagenham
UK

SB MIBA from Ballast Phoenix processing plant at Edmonton used in local construction projects

[11] Naestved
Denmark

SB In roads and parking lots. All on environmental performance

[48] Skaelskor
Denmark

SB Opened in 1976, heavy trafficked. Good structural condition, low rutting, though bearing capacity below
natural aggregates

[48] La Teste
France

SB Incinerator access lane 1976, heavy lorries traffic. Good deflection and bearing capacity properties after
20 years

[48] Le Mans
France

SB Urban road, 1978. Showed good deflection, compaction and grading properties

[78] Milan
Italy

C 20%MIBA in foundation. Test track specimens performed similar to lab specimens. Stabilized MIBA can be
used in roads

[79] France F, C, SB 12 MIBA case studies across France including motorways, trunk roads, departmental road, streets, private
lanes, trial sections

[56] Rotterdam
NL

F MIBA as embankment for Caland Wind Barrier 1985

[56] Rotterdam
NL

F MIBA as embankment for Highway A-15, 400000 tonnes of MIBA used

[14] Shelton
USA

F Landfill road. MIBA had good structural properties & minimal settlement. Ferrous metals should be
removed before use

[56] Essex
UK

F 40 mm MIBA agg. as bulk fill at Aveley landfill site

[19] Connecticut
USA

F Road to Shelton landfill. MIBA performed mechanically well as fill and comparable to standard construction
materials

[80] Newcastle
UK

LL MIBA as sand replacement protection liner at Burnhills landfill. Positive shear properties and stable
performance

SB – Subbase, C – capping, F – fill, LL – landfill liner.
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towards developing guides and specifications for use of
MIBA in roads.

4.2. Hydraulically bound material

The research undertaken on MIBA as an aggregate in
hydraulically bound subgrade, subbase and roadbase layers
is described in Table 4. Two approaches have been adopted,
MIBA used in cement bound mixtures (CBM) designed in
accordance with the relevant specifications [26,78,81–90,
91,92], and others simply using binder treatments to
improve the mechanical performance of MIBA [42,93–96].
With greater technical demands in applications such as in
roadbase, MIBA has often been used in combination with
natural aggregates as a partial aggregate component.

Grading adjustments are required to satisfy particle
size distribution limits as sub-base or roadbase material.
Compaction tests undertaken [26,82,85–87] showed that
MIBA mixtures have lower maximum dry densities and
higher moisture contents compared to natural aggregates,
which may be attributed to the porous and absorptive nat-
ure of MIBA and is consistent with the compaction results
in Fig. 4. Increasing cement content reportedly led to an
increase in dry density and had a minimal effect on the opti-
mum moisture content [26,86,87]. The inclusion of coal fly
ash with MIBA is alternative option of increasing the mix-
ture density, due to the filling effects of the fine fly ash
particles.

Optimum dry densities in MIBA mixtures were less sen-
sitive to moisture content changes (i.e. flatter compaction
curves) [26,86] due to the well graded particle size distribu-
tion of the material, which makes it more straightforward
to meet the requirement of SHW Series 800 [9] for cement
bound mixtures to be compacted to 95% of the maximum



Table 4
Work undertaken on MIBA in hydraulically bound mixtures.

Reference Binders Application Parameters studied Comments

[93] Cement, lime, silica fume Sub-base Deformation properties MIBA: 0, 80%
[94] Cement Sub-base Microstructure MIBA: 0, 80%
[95] Cement, lime, SF, SF + lime, SF

+ cement
Sub-base Deformation properties MIBA: 30–80%

[81] Cement Road-base Expansion, density MIBA: 60–80%
[82] Cement, lime, coal fly ash Sub-base, road-base Comp & tensile strength, bearing index, density,

deformation
MIBA: 82–93%

[83] Lime Sub-base, subgrade Comp strength MIBA: 50, 75%
[26] Cement, Cement + coal fly ash Sub-base, road-base OMC, comp and tensile strength MIBA: 0–100%
[96] Cement Sub-base, road-base Comp strength MIBA: 0–40%
[84] Cement + bio fuel and peat fly ash Bound material Comp strength, E-modulus MIBA: 1, 64%
[85] Cement Sub-base PSD, Comp strength MIBA: 0–100%
[86] Cement Sub-base, Road-

base
PSD, OMC, density, comp. and tensile strength MIBA: 0–100%

[42] Cement None Expansion MIBA: 100%
[78] Cement Sub-base Stiffness, tensile and UCS MIBA: 10%
[87] Cement Road-base Density, workability, UCS, tensile strength, elastic

mod
MIBA: 0–30%

[81] Cement Sub-base PSD, abrasion MIBA: 80%
[89] Cement Sub-base Expansion MIBA: 100%
[90] Cement Concrete Density, comp strength, absorption MIBA: 10–50%
[91] Cement Concrete Expansion, comp strength MIBA: 10–30%
[92] Cement Concrete Setting time, density, comp strength, voids, absorption MIBA: 10–30%
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dry density. At the Burntwood by-pass test road in the UK,
with subbase and roadbase layers produced with a mix of
82% MIBA and 15% coal fly ash and 3% lime as binder,
in-situ testing had been carried out over 15 months from
December 2000 to March 2001 [82]. The majority of dry
densities were above 95% of the laboratory maximum dry
density of 2000 kg/m3. Though a small proportion of tested
areas fell into the 90–95% compaction range, no evidence
of problems from visual inspections or from stiffness test-
ing had been determined in the areas with the lower density
mixes [82].

Compressive strength results for cement bound mixtures
are shown in Fig. 7 [26,78,82,85–87,96]. The shaded regions
of the columns illustrate the mixes that satisfied the respec-
tive target seven day strengths and it has been shown that
increasing MIBA contents led to lower strengths, though
higher cement contents can offset the losses. Requirements
for all categories of applications (subbase and roadbase)
are achievable with MIBA, though the cement demands
may realistically limit the MIBA content to moderate
amounts for road-base use, depending on the economic
and environmental benefits from saving on natural aggre-
gate use and MIBA landfilling costs versus increased
cement content demands.

Four factors can be considered in the results: the effect
of MIBA content, cement content, grading and processing.
Focusing on MIBA replacement level, independent of the
other factors, a strength reduction of 8% per 10% MIBA
addition has been determined. Though cement additions
increased the overall strengths, no consistent trend on the
effect of cement content on the rate of strength losses with
MIBA additions is evident. Comparing equivalent results
[26,85,86] between roadbase graded MIBA and subbase
graded MIBA, on average, the former mixes had strengths
approximately 40% higher across the range of MIBA and
cement contents. Comparing unprocessed versus processed
MIBA mixtures, the latter mixtures achieved strengths on
average 20% higher and in addition, the lower metallic con-
tent after processing also improves the performance by
lessening potential expansive processes.

Further testing incorporating coal fly ash with lime as an
alternative binder [82,83] and bio-fuel fly ash as aggregate
[84] along with MIBA, has shown that additional benefits
relating to greater long terms strengths and workability
improvements can be achieved in these mix designs. Slower
setting times were also evident.

Tensile strength results [26,78,85–87] mirrored the
equivalent compressive strength behaviour and are
typically one-tenth of the compressive strengths, which is
generally expected with natural aggregate mixes, suggesting
that the relationship between compressive and tensile
strength is no different with MIBA. The SHW Series 800
[9] does not directly specify a minimum tensile strength,
though the Italian Technical Specifications for road con-
struction [97], referred to by Toraldo and Saponaro [78],
outlines a minimum indirect tensile strength of 0.25 MPa.
Mixes with MIBA that satisfied the compressive strength
requirements should also meet the tensile strength
demands.

Testing of the deformation properties of MIBA mixes
has been undertaken [78,84,87,93–95,98] though was
focused more on the effect of different binder additions
such as cement, lime, silica fume (SF) and enzyme solution
on resilient modulus, initial Young’s modulus and
Poisson’s ratio [93–95,98]. In mixes containing up to of
80% MIBA as aggregate, cement was the most effective,
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resulting in almost a 300% increase in the initial Young’s
modulus. Lime has been less effective due to the lower
pH of MIBA [95], which lessens the pozzolanic reactions.
SF was effective when used in combination with the
hydraulic properties of cement or lime, leading to almost
a 300% improvement in the initial Young’s. Enzyme solu-
tion addition had little effect on resilient modulus of mix-
tures with MIBA. Models have been developed to predict
deformation responses for these MIBA + additive blends
[93,94,98] and indeed were found to match well with the
experimental data.

Elastic modulus of both laboratory and test track spec-
imens with 5% cement, showed approximately a 10%
decrease in the 28 day elastic stiffness with 10% MIBA as
aggregate replacement [78,87]. These losses are not restric-
tive at low MIBA contents and if required, can be compen-
sated using higher cement contents.

Results from the Burntwood by-pass case study in the
UK, using MIBA as hydraulically bound subbase and
roadbase materials, revealed large increases in the stiffness
of the layers, approximately 20 times greater, due to the
curing and ageing of MIBA [82]. This increase had been
expected in this particular case study based on laboratory
testing, which made it valid to accept lower density areas
found in the initial site monitoring.

Regarding durability, expansions due to oxidation and
carbonation reactions in MIBA, the presence of aluminium
in the material and the possible impacts of the alkalinity of
cement, have been investigated [42,81,89]. The major con-
cern is the reaction of the metallic aluminium in MIBA
in the alkaline cement environment to form aluminium
hydroxide and hydrogen gas, resulting in disruptive expan-
sion that can compromise the performance of the resultant
product. Other minor expansive processes connected with
reaction of calcium aluminates and calcium sulfates to
form of ettringite and monosulphates in aged MIBA and
the alkali-silica reaction and the associated gel formation
arising due to the glass fractions in MIBA, are also high-
lighted. Standard tests in road specifications are not suit-
able to fully assess these volume stability concerns with
MIBA, though a number of option to minimize expansion
have been outline.

Removal of non-ferrous metals during processing of
MIBA reduces the aluminium and other metallic contents,
which decreases the expansion potential. Lower contents of
CaO and SO3 are also beneficial, along with lower a fines
content for MIBA [89]. Storing and ageing the material
before use also allows the oxidation reactions to dissipate,
thus diminishing expansion when in use. Regarding the
time required, Van Beurden et al. [99] suggested that MIBA
should be aged for a minimum of six weeks before use,
whilst in Denmark, MIBA is usually stored for 2–3 months
in order to meet the technical and environmental require-
ments [100]. Volume stability also improves with increasing
hydraulic binder contents due to improved mechanical per-
formance. Binders with low C3A contents are preferable
[89]. Mixes with blast furnace slag as binder also exhibited
in the order of 50% less expansion compared to the cement
mix [81], while similarly strong performances are also
expected from pozzolanic materials such as fly ash as par-
tial binder components. Chemical treatment of MIBA with
NaOH solution also had success in converting the metallic
aluminium to a stable form so that the hydrogen formation
was restricted [91].

With the appropriate pre-treatment of MIBA, the
expansion behaviour associated with the hydrogen gas for-
mation, can detrimental effect many aspects of perfor-
mance, as has been seen with two studies using MIBA as
fine aggregate (up to 50% MIBA) [89] and cement replace-
ments (up to 30% MIBA) [92] which reported decreases in
density and compressive strength and increases in voids
content. Given the potential disruptive consequences of
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the expansive behaviour associated with MIBA use in
cement bound pavement layers, further research on opti-
mizing the above processes of treating the ash to avoid
these problems, including the complete assessment of the
resultant performance of the cement-bound road pavement
mixes, would be useful in the development of this use of
MIBA.

MIBA demonstrated encouraging crack resistance prop-
erties [84]. Under drying conditions (89% RH), a mixture
with a 2:1 ratio of MIBA and fly ash (bio fuel combus-
tion) + 5% cement, showed no signs of cracking, which
was not the case for the control bio fuel fly ash mix. The
abrasion resistance of a road-base cement bound mixture
containing 80% MIBA, along with 10% stabilized APC
fly ash, was comparable to natural granite or gneiss aggre-
gates [88].

Case studies using MIBA in hydraulically bound mix-
tures are outlined in Table 5. Though without the technical
details of the pavement performance in many cases, it is
promising to see a number of successful large scale projects
involving MIBA.
4.3. Bituminous bound material

The Marshall mix design method has been used to deter-
mine design bitumen contents from testing the voids con-
tent, voids in mineral aggregate (VMA) content, stability
and flow with 0–100%MIBA use as aggregate, with the fol-
lowing outcomes [7,30,41,78,87,90,105–112,113,114]:

� Increasing bitumen demands are required with increas-
ing MIBA contents to meet the Marshall Test limit of
3–5% voids.

� The minimum VMA limit of 13% set for 20 mm maxi-
mum size can be met with MIBA.

� Comparable or mostly small decreases in stability have
been evident with increasing MIBA contents and the
8 kN limits for highest traffic levels specified can be
met with up to 75% MIBA.

� Increasing flows have been evident with increasing
MIBA contents, 2–4% limits (Superpave Mix Design
SP-2) are met with moderate MIBA contents.

The bitumen contents needed to satisfy the require-
ments, with 4% voids content typically being the control-
ling factor, are given in Fig. 8(a). Exceptionally high
Table 5
Case studies with cement bound MIBA in road pavements.

Ref. Location

[101] Los Angeles, USA
[26] Dundee, UK
[59] Waltham Abbey, UK
[102] Bemersley, UK
[103] Road-rail facility, SE UK
[104] Burntwood by-pass, UK
bitumen contents have been reported in one case [106]
due to unusually high voids contents and for that reason
this data is not included in Fig. 8b on the rate of change
in bitumen content with increasing MIBA content. Based
on the linear trendline fitted, the change in bitumen is at
a rate of 1% for every 1% MIBA. For example, 20% MIBA
requires a 20% increase in the bitumen content from 5% to
6%, compared to what is required for natural aggregate
mixes.

Moisture susceptibility with MIBA has been assessed by
comparing the ratios of indirect tensile strengths before
and after cyclic wetting/drying [7,87,90,105,106,108] or
after freezing/thawing [111] and the results are presented
in Fig. 9. MIBA appears to have little overall effect, with
tensile strength ratios remaining close to equal, within the
0.6–1.0 range, suggesting that negative effects of higher
porosity and absorptive properties leading to the weaken-
ing of bitumen-aggregate bond are largely cancelled out
by strengthening from the rough surface texture of MIBA.
An additional moisture susceptibility test measuring
retained stiffness [109] rather than tensile strength ratios
supports the finding that MIBA has a minimal effect on
moisture susceptibility.

Accelerated ageing tests assessed mixture stiffness up to
a time equivalent to 1 year in service [108,109]. At the opti-
mum binder content, the indirect tensile stiffness modulus
(ITSM) increased by 5%, 30% and 8% respectively with
MIBA contents of 30%, 60% and 80%, compared to 15%
for the control mix. The large increase in the 60% MIBA
mix was attributed to sensitivities to the bitumen and voids
contents. It appears that in regulation mixes, the ageing
effects of MIBA does not cause excessive changes that
may lead to brittleness or fracture problems.

As expected due to the angular shape and rough surface
texture of MIBA particles, all mixes satisfied the skid resis-
tance requirements, achieving excellent resistance at times
[115–117].

On the resistance to fragmentation, the results presented
in Fig. 5 indicate that MIBA has similar resistance to light-
weight aggregates, with an average LA abrasion coefficient
of 45. The SHW Series 900 [118] stipulates a value less than
30 for natural aggregate and 50 for blast furnace slag for
bituminous pavement mixtures. MIBA should generally
satisfy the latter requirement, whilst performance in this
regard can be improved using MIBA as a partial aggregate
in combination with a hard natural aggregate.
Application

Cement treated ash in landfill road
100% MIBA as agg. 125, 200 and 300 kg/m3 cement contents
CBM3 with 100% MIBA as aggregate as base course
Cement bound roadbase with 100% MIBA as coarse agg.
CBM4 as base – 25% MIBA and 75% foundry waste as aggregate
82–93% MIBA, coal fly ash, CaO & cement as subbase and road base
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The deformation and rutting behaviour of bituminous
bound mixes containing MIBA has been assessed using
three approaches: wheel tracking rutting tests [105,110],
constant strain and stress rate tests as indicators of poten-
tial rutting resistance [107–109,111,112,119,120] and direct
measuring of stiffness parameters [7,87,108].

In wheel tracking tests on mixtures containing 0–75%
MIBA, rut depths increased as the MIBA fraction
Table 6
Effect of MIBA on the deformation parameters of bituminous bound mixture

References MIBA & tested parameter Deformat

[7] MIBA,% 0
ITSM, MPa 624

[108] MIBA, % 0
ITSM (at OBC), MPa 1210

[87] MIBA, % 0
ES, MPa (base) 7891
ES, MPa (binder) 7571

ITSM = indirect tensile stiffness modulus, ES = elastic stiffness, OBC = optim
increased, due to the porosity of the ash [105,110]. With
20% and 25% MIBA, rut depths were approximately twice
the natural aggregate mixes, 15 mm [105] and 19mm [110]
respectively, compared to 8 mm for the natural aggregate
mixes. The Design Manual for Roads and Bridges
(DMRB) HD 29/08 [121] outlines values of 6, 11 and
20 mm as very good, good and fair performance thresh-
olds, thus indicating that MIBA pavements would require
more frequent maintenance, which suggests that use of
the ash should be limited to contents below 20%.

Mixed results have been reported on the deformation
behaviour expressed as rutting resistance. Constant strain
and constant stress tests suggested improved rutting resis-
tance and cracking behaviour for MIBA replacement levels
up to 60% [107–109,111,119,120,122]. However, an alterna-
tive rutting parameter, creep stiffness rate, revealed mini-
mal differences between a control mix and one with
vitrified MIBA as a complete filler material [112]. A further
rutting performance indicator based on the dynamic mod-
ulus [107], suggested that MIBA contents should be limit-
ing to 20% to restrict rutting, which is consistent with the
findings from the wheel tracking tests.

Direct stiffness parameter results presented in Table 6
provide a useful measure of the performance of the MIBA
mixtures compared to the controls. MIBA at low to mod-
erate contents led to increased stiffness at times [7,108],
s.

ion results

10 20 30 40
719 768 604 531

30 60 80
1807 2129 1692

10 20 30
7048 6388 6027
7485 7078 6441

um binder content.



Table 7
Case studies with bituminous bound MIBA in road pavements.

References Location Applications

[101] Biddulph, UK Access road to Bemersley tip with 50% MIBA in surface course of asphalt
[35] Hartelkanaal, NL Hartel Canal with 30% MIBA in asphalt mix along the banks, length 50 m (1987)
[123] New Hampshire, USA 2 year study on MIBA as aggregate in asphaltic base course
[116] Lawrence Co, KY, USA 1 mile bituminous surface with 40% MIBA as aggregate. Deemed successful
[56] Netherend Lane, UK MIBA used as >50% of aggregate in base course in 1/2 mile road section

Rotterdam, NL 50% MIBA as agg in road base layer
[124] Houston, Texas, USA 3 year monitoring of tests section with MIBA in bituminous base on City street
[44] Houston Texas, USA Base course with 100% bound MIBA in 1974. Excellent condition in 1993

Philadelphia, USA 50% MIBA in 90 ft. road, surface course (1975). Acceptable condition in 1993
Delaware Co, PA, USA 50% MIBA in surface layer, 60 ft section built in 1975. Acceptable condition in 1993
Harrisburg, PA, USA 220 ft of roadway, 50% MIBA in surface course (1975). Poor condition in 1993
Harrisburg, PA, USA 100% vitrified ash in asphalt surface course (1976). Excellent condition in 1993
Washington DC, USA 70% and 100% MIBA used in surface course (1977). Good condition in 1993
Tampa, USA. 5–15% MIBA in surface course (1987). Road showing some wear in 1997
Rochester, MA, USA 30% MIBA in binder and surface course in asphalt access road (1992)
Laconia, USA 50% ash in binder course of US route 3 (1993)
New Jersey, USA MIBA asphalt mix in 750 ft road section (1996)
Baltimore, MD, USA Ash in road base of 400 ft road section
Honolulu, HA, USA Bituminous mix containing ash used for ramp (1998)

[125] Stansted airport, UK Bituminous bound base (ASH-phalt) with 30% MIBA in car parks
[126] A316 Resurfacing, UK Base course with 10% MIBA. Performance equivalent to virgin aggregate sections
[127] Winchester, UK MIBA as agg in base and binder layers using foamix (cold lay/foamed bitumen)
[105] Burntwood bypass, UK 82% MIBA as aggregate in subbase and base layers
[128] Rainham landfill, UK Foamed bitumen mixture with 50/50 blend of MIBA and recycled asphalt
[129] Heathrow terminal 5, UK 10% MIBA in bound layer with 10% glass and 30% recycled asphalt plannings
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though above certain thresholds (>20% MIBA for An et al.
[7] and Liu et al. [111] and >60% MIBA for Hassan and
Khalid [108], reductions became evident. Increasingly
lower stiffness with increasing MIBA content has also been
reported [87], attributed to the greater fragility of MIBA.

Overall, the data on the effects of MIBA on the defor-
mation properties and rutting of bituminous bound mix-
tures are mixed, though the material’s characteristics
suggest that deformation should increase compared to
harder natural aggregates, which matches with the beha-
viour in the direct measures of rutting. Further work to
strengthen the findings on the effect of MIBA on the defor-
mation properties in bituminous mixes would be useful.

As further support for the use of MIBA in bituminous
bound mixtures, a substantial number of full scale tests
using the material in this manner are outlined in Table 7,
showing successful practical use of the material.
5. Conclusions

The analysis and evaluation of the global experimental
data on the use of MIBA in road construction has yielded
the following specific findings.

MIBA has been identified as a granular material, typ-
ically suited to meet the grading requirements for
unbound materials after standard processing. The mate-
rial consists of irregularly shaped particles and a porous
microstructure, resulting in lower densities and higher
absorption properties, compared to natural aggregate.
A residual organic fraction remains in MIBA after com-
bustion, though thorough burning should ensure that the
content is below the desirable limits for use in road
construction.

In unbound form, after processing, good compaction of
MIBA is achievable, with optimum moisture contents and
maximum dry densities values comparable to sandy gravel.
Permeability, shear strength and elastic modulus results are
similar to comparably graded sands. The bearing capacity
of MIBA is reported to be sufficient for use in lower strength
applications such as embankment, fill and subbase materials.
The abrasion resistance of the material is typical for light-
weight aggregate and can satisfy the requirements as a sub-
base material. A number of case studies demonstrated suc-
cessful application of MIBA in practice and indeed, the
material is being widely used in unbound applications in
countries such as Denmark and The Netherlands.

As a hydraulically bound material, MIBA has been pre-
dominantly used with cement as binder in sub-base and
road-base applications. The dry density and compressive
strength of the mixtures decrease as MIBA content
increases, however the requirements for all subbase and
roadbase applications can be satisfied through adjustments
in the binder content. Large stiffness increases have been
reported in bound MIBA mixtures in full scale projects
and satisfactory deflection performance indicates that lower
elastic modulus and density measured in the laboratory
compared to natural aggregates should not prevent the
use of the material. With concerns regarding expansion
arising from the reaction of the metallic aluminium in
MIBA in the alkaline conditions in cement, processing
and storing of the material before use can assist in curtailing
this behaviour, thus limiting the disruptive effects on the
durability performance.
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MIBA can be used as a viable aggregate, at low con-
tents, in bituminous bound base and wearing course layers.
Higher bitumen contents are required with MIBA to satisfy
Marshall Mix design limits. MIBA appears to have no sig-
nificant negative effects on the susceptibility of the bitumi-
nous mixtures to moisture or ageing, whilst the skid
resistance performance has improved. The susceptibility
of MIBA to fragmentation is comparable to lightweight
aggregates and generally meets limits specified for blast fur-
nace slag in bituminous mixes. Rutting tests suggest that
MIBA increases the deformation susceptibility, though
the effects are limited at low MIBA contents. Numerous
full scale projects have been successfully completed using
MIBA in bituminous road pavement layers.
Appendix A. Supplementary data

Supplementary data associated with this article can be
found, in the online version, at http://dx.doi.org/10.1016/
j.ijprt.2016.12.003.
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Lyth, O. Wik, The Vändöra Test Road, Sweden: A Case Study of
Long-term Properties of a Road Constructed with MSWI Bottom
Ash, Report 964, Swedish Thermal Engineering Research Institute,
Stockholm, 2006.

[74] P. Flyhammar, D. Bendz, Leaching of different elements from
subbase layers of alternative aggregates in pavement constructions,
J. Hazard. Mater. 137 (1) (2006) 603–611.

[75] D. Dabo, B. Rabia, L. De Windt, I. Drouadaine, Ten-year chemical
evolution of leachate and municipal solid waste incineration bottom
ash used in a test road site, J. Hazard. Mater. 172 (2–3) (2009) 904–
913.

[76] L. De Windt, D. David, S. Lidelöw, R. Badreddine, A. Lagerkvist,
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