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ABSTRACT 

Previous observations on Ni-based superalloys, obtained through the use of focussed ion beam (FIB) 

sample preparation and imaging, have reported the presence of sub-surface voids after oxidation.  In 

this present study, oxidised specimens of the Ni-based superalloy, RR1000, were subjected to 

conventional sample preparation as well as both dual and single beam FIB preparation, with the aim 

of re-examining the previous observations of sub-surface void formation.  It is clear from FIB 

preparations that features previously interpreted as networks of voids have been demonstrated to be 

internal oxides by varying the sample tilt angles and imaging signal using either secondary electrons 

(SE) or secondary ions (SI).  Conventional preparation methods illustrate the presence of sub-surface 

alumina intrusions and the absence of voids, supporting previous evidence.  The positive 

identification of voids and oxides by FIB can be complex and prone to misinterpretation and thus the 

use of several imaging conditions and tilt angles must be used, along with conventional preparation 

methods, to confirm or refute the presence of ‘voids’ underneath oxides.   

 

INTRODUCTION 

It is well established that chromia-forming Ni-Cr-Al alloys can form sub-surface alumina intrusions 

during oxidation exposure. Such intrusions are features of pure ternary alloy systems [1] as well as 

advanced Ni-based superalloys [1-5].  Recently, however, it has been claimed [6-8] that sub-surface 

voids occur as a consequence of oxidation and these may or may not be associated with alumina 

intrusions (Figure 1).  These observations were made using single-beam focussed ion beam (FIB) 

http://www.tandfonline.com/doi/abs/10.1179/0960340913Z.0000000004


techniques [6-8] and conflict with observations of simple alumina intrusions, obtained using 

conventional preparation techniques [2-3, 5].  FIB sample preparation is now commonly used to 

examine cross-sections to establish the near-surface microstructure, without time-consuming 

metallographic procedures and is particularly advantageous for samples with brittle surface layers 

such as oxides.   

 

Figure 1. Image taken from Encinas-Oropesa et al. showing possible grain boundary voids underneath the oxide 

scale in RR1000. FIB section on a sample from an isothermal oxidation exposure at 775ºC for 200 hours [7]. 

 

 

The formation of voids under a growing oxide layer is an established phenomenon in metallic alloys 

and has been variously attributed to vacancy injection [9], dissociation of Cr-rich carbides [10], 

differing diffusion rates of elements within the alloy [11] or the internal oxidation of carbides or 

carbon in solution to form CO2/CO gas bubbles [12].  Thermodynamic calculations [13, 14] show that 

this last mechanism will not occur under a chromia or alumina layer and, thus, would not be expected 

for most high-temperature alloys and particularly for the chromia-forming Ni-based superalloy 

(RR1000) to be considered here.  The first two mechanisms, of vacancy injection and particle 

dissociation, are feasible in principle.  The purpose of this note is to re-examine previous observations 

of sub-surface void formation in this alloy through a comparison of FIB and conventional preparation 

techniques to assess whether voids can be produced as an artefact of sample preparation, sample 

oxidation and image interpretation.  

 

 

 

void-like structures 



EXPERIMENTAL APPROACH AND RESULTS 

Materials 

The nominal compositions of two batches of the Ni-based superalloy, RR1000, (with and without Si) 

are given in Table I.  The alloy was available in four conditions: CG RR1000, FG RR1000, FG 

RR1000 + 0.5 wt.% Si and shot-peened (SP) CG RR1000.  The coarse-grained (CG) and fine-grained 

(FG) variant of the alloy had grain sizes of 30-50 m and 4-6 m, respectively.  Shot-peening was 

performed using the following parameters of shot type, intensity and coverage: 110H, 6-8A and 

200%, respectively.  

Table 1: Nominal composition of RR1000, with and without Si, in both atomic and weight %. 

Alloy  Ni Co Cr Mo Ti Al Ta Hf Zr C B Si 

RR1000 Wt. % bal. 18.5 15.0 5.0 3.6 3.0 2.0 0.50 0.06 0.02 0.03 -- 

At. % bal. 17.9 16.5 3.0 4.3 6.4 0.63 0.16 0.04 0.14 0.10 -- 

RR1000 + Si Wt. % bal. 18.5 15.0 5.0 3.6 3.0 2.0 0.50 0.06 0.02 0.03 0.5 

At. % bal. 17.8 16.4 3.0 4.3 6.3 0.63 0.16 0.04 0.14 0.11 1.0 

 

Isothermal Oxidation Testing 

Isothermal oxidation testing conducted at the University of Birmingham was performed on samples of 

FG RR1000, CG RR100 and shot-peened CG RR1000 in laboratory air at 800°C for a period of 200 

hours. Prior to testing, samples were ground to remove any residual surface damage before being 

polished to a 6 µm surface finish.  A second batch of specimens was ground to a 1200 grit finish prior 

to shot-peening. Samples were placed into open alumina boats and inserted into single zone tube 

furnaces at temperature.  The furnaces had been calibrated to +/- 1°C using an N-type thermocouple.  

Samples were removed from the furnace after 200 hours and allowed to air cool to room temperature.  

Isothermal oxidation testing conducted at Cranfield University was performed on samples of FG 

RR1000 + 0.5 wt.% Si.  Samples were machined into ca. 10 mm diameter discs (2 mm thick) and 

oxidised in laboratory air in open alumina boats at 700°C for 1000 hours.  The furnaces had been 

calibrated to +/- 5°C.  Samples were slow-cooled inside the furnace.   

Conventional Preparation 

Method 

Conventional preparation of oxidised specimens for cross-sectional examination is both difficult and 

time consuming due to the brittle nature of the oxides formed and the potential for introducing 



mechanical damage.  In order to prevent spallation or cracking of the external oxide layer one of two 

preparation techniques was used.  

1. The sample was mounted in a low shrinkage, low viscosity epoxy resin (Struers Epofix), 

using a Struers Epovac vacuum impregnator at a pressure of 400 mbar. 

2. The sample was first sputtered with gold, to produce an electrically conductive layer (~20 nm 

thick), then electroplated with Ni (~5 m layer) using a “Watt’s bath” electrolyte 

(NiSO4·6H2O, NiCl2·6H2O and H3BO3).  Ni plating was intended to prevent oxide spallation 

or damage to the oxide during sectioning. The thin Au layer was used in energy dispersive X-

ray (EDX) mapping to delineate the surface of the oxide layer.  The specimen was then 

mounted as in 1 above.  

Once mounted as above, normal grinding was undertaken with SiC papers from 240 grit to 4000 grit 

with water as a lubricant, followed by diamond polishing with final polishing being performed using a 

Struers MD–Chem cloth with colloidal silica solution.  Mounted and polished specimens were 

cleaned ultrasonically in ethanol before being sputtered with gold to allow scanning electron 

microscopy (SEM) examination.  SEM analysis was performed using a JEOL 7000F FEG SEM with 

Oxford Instruments EDX software to characterise the oxides formed.  The samples prepared for SEM 

analysis had been previously examined using dual-beam FIB sectioning (see Dual-beam FIB section).  

This allowed direct comparison of the techniques.  

Results 

Figure 2 (left-hand column) shows back-scattered electron (BSE) images of three microstructural 

variants (FG RR1000, CG RR1000 and shot-peened CG RR1000), all without Si, tested and prepared 

using conventional preparation techniques.  It illustrates that there is no evidence for the presence of 

large voids previously reported [6-8] on sections produced and examined using single-beam FIB.  The 

images in Figure 2 are consistent with previous reports [2-5] of alumina intrusions in the sub-surface 

zone adjacent to the surface oxide.  RR1000 is a complex alloy with a large number of alloying 

additions which produces a complex oxide scale.  EDX analysis (Figure 3) was performed on the 

conventionally prepared samples and confirmed that the external layer was duplex and rich in Ti, Cr 

and O with a sub-surface internal network rich in Al and O.  These observations correspond well with 

previous observations that the external oxide is TiO2 and Cr2O3 with an Al2O3 internal oxide [2, 3].   

At no stage during the preparation method was any colloidal alumina solution used which may have 

in-filled voids.  No polishing media contamination was observed in any of these samples.  

 

 



 

 

Figure 2. A comparison between a backscattered SEM image of cross-sections prepared using conventional 

preparation techniques (images on left-hand side) and SEM images, produced using an electron beam (SEelectron) 

during FIB sectioning (images on right-hand side) on a) and d) CG RR1000, b) and e) FG RR1000, c) and f) 

shot-peened CG RR1000. 

 

 

 

 

 



 

Figure 3. A secondary electron image produced using an electron beam, of a section through a CG RR1000 

sample oxidised in laboratory air at 800C for 200 hours with energy dispersive X-ray analysis maps. White 

dashed line indicates the interface between the external oxide scale and the alloy. 

 

Dual-Beam FIB Sectioning 

FIB Sectioning 

Samples of CG RR1000, FG RR1000 and shot-peened CG RR1000 (all without Si), oxidised at 800ºC 

for 200 hours in laboratory air, underwent dual-beam FIB sectioning at the University of Birmingham 

using a Quanta 3D dual beam FEG FIB, with a 30 keV gallium ion source, under the conditions listed 

below. 

 The sample was placed on a five-axis motorised stage and tilted to 52 to position the surface 

perpendicular to the ion beam for milling.  

 A protective tungsten layer (~35 x 3 x 2 µm) was deposited on top of the area of interest. 

 A trench was milled by a series of gallium ion beams at various currents. 

o First a regular cross section was milled using a 65 nA current. 

o A rectangle was then milled using a 30 nA current. 

o Two clean cross sections were milled using first 7 nA and finally a 1 nA current.    

o This process was repeated with 1 nA (and/or 0.5 nA) current to clean the cross 

section until the required finish was achieved. 



The dual-beam capability allowed the cross-section to be imaged at every stage using the secondary 

electrons produced by an electron beam (SEelectron)1, without moving the sample (Figure 4a).   

 

Figure 4. Schematic diagrams of how the sectioning was achieved by a) dual-beam (adapted from [15] and b) 

single-beam FIB microscopy. 

Results 

The SEM images of the FIB sections (right hand side, Figure 2) clearly show similar sub-surface 

structures found in conventional preparation (left hand side).  The appearance of these structures is 

essentially identical to those shown earlier, Figure 1, but in that case they were incorrectly interpreted 

as voids [6-8].  EDX mapping, Figure 3, identifies these intrusions as alumina, in agreement with 

earlier work on similar and related alloys [2-3, 5].   

                                                           
1 SEelectron – Secondary electrons produced by the impact of electrons from FEG 



It is also worth noting that the interface between the oxide scale and the underlying alloy is similar 

between the two preparation and imaging methods and shows no evidence of cracking.  In both 

preparation techniques, small voids were present in the outer oxide.  The only significant difference 

between samples produced by the two sectioning techniques is the presence of small void-like 

features associated with the alumina internal oxide in the FIB specimens (Figure 2(d)).  These voids 

are not the features discussed above, since they are associated with alumina internal oxide and do not 

change contrast with sample tilt angle.  

Returning to Figure 2(a) it was found using EDX that small regions (circled), rich in Co and Ni 

existed within some of the alumina regions.  These had probably formed from small volumes of alloy 

that had been selectively oxidised to form alumina and had then become entrapped within the alumina 

intrusion.  It appears that the small voids observed after dual-beam FIB sectioning were associated 

with these metallic regions.  The origin of these voids is unclear but may be associated with 

differential sputtering rates between the metallic and adjacent oxide phases.  

Single-Beam FIB Sectioning and Imaging  

FIB Sectioning    

In addition to the FIB investigations undertaken at the University of Birmingham, samples of FG 

RR1000 + 0.5 wt.% Si oxidised in laboratory air at 700°C for 1000 hours underwent examination 

using a FEI FIB 200-SIMS focussed ion beam (FIB) instrument with a single (Ga+) beam at Imperial 

College.  A trench, ca. 12 µm wide and with a slope of ca. 60° (Figure 4b), was milled then polished 

under beam currents falling to 3 nA.  Both secondary electron (SEion)2 images and positive secondary 

ion (SI)3 were collected following excitation by the 30 kV, 50 pA Ga+ primary beam using a 

channeltron detector.  Secondary ion (SI) images and secondary ion mass spectroscopy (SIMS) data 

were also generated with a separate quadrupole-based SIMS detector set to filter only 16O negative 

ions.  Sample tilt angles are given in the text where relevant. 

Results 

Making use of the bevelled slope of the trench, a cross-section was obtained through the external 

oxide, sub-surface layer, and into the bulk FG RR1000 + 0.5 wt.% Si alloy.  This slope was imaged 

using SEion, SI and SIMS modes of the single-beam FIB (Figure 5).  One side of the trench can be 

seen to the right of the images, while the upper sections of each image show the un-milled surface 

oxide.  Material, re-deposited deeper into the trench after polishing the slope prior to imaging, can be 

seen to the bottom of the images. 

                                                           
2 SEion – Secondary electrons produced using an ion beam 

3 SI – Positive secondary ion images produced using the un-filtered total positive ion yield from the impact of the gallium 

ions.  



 

 

Figure 5.  Fine-grained RR1000 + 0.5 wt.% Si sample oxidised for 1000 hours at 700 °C in laboratory air.  

Ramp milled at ca. 30° to the sample surface.  Secondary electron (SE) images, produced using the FIB ion 

beam, with the sample surface tilted at a) -15°, b) +5° and c) -5°.  Note the change in SE contrast with tilt at the 

black arrows and the constant contrast with tilt at the white arrows.  d) Shows a secondary ion (SI) image with 

the sample surface tilted at +5°.  e) 16O negative ions SIMS data.  Note that, due to sample tilt, scale is not 

representative perpendicular to the micron bar. f) Systematic diagram of the trench. 

 

Beneath the surface oxide, there is a region consisting of small grains showing evidence of twinning 

(Figure 5a) and a network of features can be observed which, under the initial imaging conditions (-

15° tilt, SEion mode, Figure 5(a) are dark contrast (shown by the black arrow).  Each of these features 

is surrounded by a bright ring that may be attributed to edge effects from enhanced secondary electron 

emission.  In Figure 5(a) there are features which strongly resemble voids which have previously been 

postulated as such [7].  However, as can be seen in Figures 5(b) and 5(c), most of these features 

change contrast when the sample is tilted relative to the ion beam, black arrow for example, thus 

showing that these are not voids. This is more obvious in Figure 6 which shows an expanded section 



around the black arrow in Figure 5. The intrusion that strongly resembles a void in Figure 6(a) 

changes contrast with tilt angle (Figure 6(b & c)). In Figure 6(d), the SI image clearly shows it is not a 

void as does Figure 6(e) that confirms it to be an oxide.  The use of tilt when examining samples 

produced in this way is highly recommended, as demonstrated, as a key technique in identifying 

features.   

 

 

 

Figure 6. Expanded section of Figure 5(a-e), illustrating more clearly the area highlighted by the black arrow 

showing the contrast changes with tilt angle and imaging signal. The SE images produced using the FIB ion 

beam with the sample surface tilted at a) -15º, b) +5º and c) -5º. An SI image of the sample surface tilted at +5º 

shown in d), with e) 16O negative ions SIMS data. 

 

FIB ion beam sputtered positive secondary ions have a significantly enhanced yield in the presence of 

oxygen [15] by a factor of approximately 100, which together with the SIMS oxygen negative ion 

map data, confirm the presence of sub-surface oxides, Figures 5(d) and (e).  Not all of the dark 

features observed in Figure 5(a) change contrast with changing tilt angle or give detectable signals in 

SI or SIMS mode (white arrow in Figure 5, expanded in Figure 7).  Despite this, it has been 

demonstrated that what was previously termed a network of voids is in fact a network of internal 

oxides.  

 

 

 

 



 

 

Figure 7. Expanded section of Figure 5(a-e), illustrating more clearly the area highlighted by the white arrow 

showing the contrast changes with tilt angle and imaging signal. The SE images produced using the FIB ion 

beam with the sample surface tilted at a) -15º, b) +5º and c) -5º. An SI image of the sample surface tilted at +5º 

shown in d), with e) 16O negative ions SIMS data. 

 

 

The examination of a bevelled slope of the trench gives a perspective of the sub-surface structure that 

shows that the oxide intrusions encircle grains.  This is by no means unique to FIB and has been 

demonstrated also using conventional preparation [3]. 

 

Concluding Summary 

Conventional sample preparation has shown in the present RR1000 alloys that a solid internal 

network of alumina is present underneath the external scale rather than a network of voids as 

suggested elsewhere [6-8].  Features that appear as voids when using SEion imaging can be established 

as containing solid matter when a range of tilt angles is used.  Detailed explanations as to the 

mechanisms of channelling contrast can be found in review articles [15, 16] and standard texts [18, 

19].   

 

Occasional sub-surface void-type damage can still arise only in the FIB sectioned specimens.  Voids 

of similar size and morphology were absent from the specimen prepared by conventional sectioning 

methods.  The inference is that even well-controlled FIB milling can produce void-like artefacts. In 



addition, voids were found in the surface oxide in samples produced by both FIB and conventional 

preparation techniques.   

 

Nevertheless, FIB sectioning offers significant advantages over conventional techniques.  These 

include the ability to section surface features, e.g. oxides, as well as its usefulness in examining 

samples from interrupted testing where a surface feature can be sectioned before the sample is 

returned for further testing.  Careful preparation and expertise will always be required however 

regardless of the preparation and imaging method. 
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