

University of Birmingham

DG2: A Faster and More Accurate Differential
Grouping for Large-Scale Black-Box Optimization
Omidvar, Mohammad Nabi; Yang, Ming; Mei, Yi; Li, Xiaodong; Yao, Xin

DOI:
10.1109/TEVC.2017.2694221

License:
Creative Commons: Attribution (CC BY)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Omidvar, MN, Yang, M, Mei, Y, Li, X & Yao, X 2017, 'DG2: A Faster and More Accurate Differential Grouping for
Large-Scale Black-Box Optimization', IEEE Transactions on Evolutionary Computation.
https://doi.org/10.1109/TEVC.2017.2694221

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 10. Apr. 2024

https://doi.org/10.1109/TEVC.2017.2694221
https://doi.org/10.1109/TEVC.2017.2694221
https://birmingham.elsevierpure.com/en/publications/d255af61-1059-421e-b692-9d12fe550171

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2694221, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1

DG2: A Faster and More Accurate Differential

Grouping for Large-Scale Black-Box Optimization
Mohammad Nabi Omidvar, Member, IEEE, Ming Yang, Yi Mei, Member, IEEE, Xiaodong Li, Senior

Member, IEEE, and Xin Yao, Fellow, IEEE

Abstract—Identification of variable interaction is essential for
an efficient implementation of a divide-and-conquer algorithm
for large-scale black-box optimization. In this paper, we propose
an improved variant of the differential grouping algorithm, which
has a better efficiency and grouping accuracy. The proposed
algorithm, DG2, finds a reliable threshold value by estimating
the magnitude of roundoff errors. With respect to efficiency,
DG2 reuses the sample points that are generated for detecting
interactions and saves up to half of the computational resources
on fully separable functions. We mathematically show that the
new sampling technique achieves the lower bound with respect
to the number of function evaluations. Unlike its predecessor,
DG2 checks all possible pairs of variables for interactions and
has the capacity to identify overlapping components of an
objective function. On the accuracy aspect, DG2 outperforms the
state-of-the-art decomposition methods on the latest large-scale
continuous optimization benchmark suites. DG2 also performs
reliably in the presence of imbalance among contribution of
components in an objective function. Another major advantage
of DG2 is the automatic calculation of its threshold parameter (ǫ),
which makes it parameter-free. Finally, the experimental results
show that when DG2 is used within a cooperative co-evolutionary
framework, it can generate competitive results as compared to
several state-of-the-art algorithms.

Index Terms—large-scale global optimization, problem decom-
position, differential grouping, cooperative co-evolution.

I. INTRODUCTION

Large-scale global optimization has become an active field

of research in the past decade due to the growing num-

ber of large-scale optimization problems in engineering and

sciences [1, 2]. Most engineering problems have shown an

exponential increase in the number decision variables they

entail [3]. Advances in machine learning and the rise of deep

artificial neural networks has resulted in optimization problems

with over a billion variables [4, 5]. Ubiquity of data has also

M. N. Omidvar is with the Centre of Excellence for Research in
Computational Intelligence and Applications, School of Computer Sci-
ence, University of Birmingham, Birmingham B15 2TT, U.K. (e-mail:
m.omidvar@cs.bham.ac).

M. Yang is with the School of Computer Science, China University of
Geosciences, Wuhan, 430074, China (e-mail: yangming0702@gmail.com).

Y. Mei is with the School of Engineering and Computer Science, Vic-
toria University of Wellington, Wellington 6012, New Zealand. e-mail:
yi.mei@ecs.vuw.ac.nz.

X. Li is with the School of Computer Science and Information
Technology, RMIT University, Melbourne, VIC 3001, Australia (e-mail:
xiaodong.li@rmit.edu.au.

X. Yao (the corresponding author) is with the Department of Computer Sci-
ence and Engineering, Southern University of Science and Technology, Shen-
zhen, 518055, China, and the Centre of Excellence for Research in Computa-
tional Intelligence and Applications, School of Computer Science, University
of Birmingham, Birmingham B15 2TT, U.K. (emall: x.yao@cs.bham.ac.uk)

caused the emergence of large-scale optimization problems at

the heart of many data analytics and learning problems [6].

Target shape design optimization for aircraft wings and turbine

blades [7], satellite layout design [8], parameter estimation

in large scale systems biology models [9], seismic waveform

inversion [10], and parameter calibration of water distribution

system [11] are just a few examples from a wide array of

large-scale optimization problems.

A major challenge of large-scale optimization is the expo-

nential growth in the size of the search space with respect

to the number of decision variables. It is this “curse-of-

dimensionality” that has made large-scale optimization an

exceedingly difficult task. This motivated the development of a

wide range of scalable algorithms in the classic mathematical

programming domain [12, 13] as well as metaheuristics [14,

15]. Evolutionary algorithms, in particular, have shown su-

perior performance as compared to other classic methods on

problems with millions or even billions of variables [16, 17].

Other methods such as swarm intelligence [18–20], memetic

algorithms [21–23], differential evolution [24, 25], evolution

strategies [26], and estimation of distribution algorithms [27,

28] have also gained popularity for large-scale optimization

because of their ability to deal with black-box problems. It

should be noted that the notation of large-scale changes over

time and varies from problem to problem. In a broad sense, a

problem is considered large-scale if it causes scalability issues

on the state-of-the-art algorithms. For the current study, which

focuses on real-parameter optimization, the existing algorithms

exhibit scalability issues on problems having more than about

a hundred decision variables.

A number of approaches such as dimensionality reduc-

tion [29], surrogate modelling [30], local search [21, 22], and

divide-and-conquer (a.k.a decomposition) methods [31] can be

used for large-scale optimization, among which decomposition

methods have gained popularity in recent years [18, 31–47].

Decomposition methods break a large-scale problem into a

set of smaller and simpler subproblems each of which is

optimized in an iterative manner. In the context of evolutionary

algorithms, cooperative co-evolution [48] is a popular means

of exploiting the modular nature of many complex large-

scale problems and has been used in a wide range of areas

beyond optimization such as the study of evolutionary game

theory [49]. A major challenge of using a cooperative co-

evolutionary framework for large-scale optimization is the

right choice of problem decomposition. Ideally, a given objec-

tive function should be decomposed such that the interaction

between the resultant components is minimized. For a black-

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2694221, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 2

box optimization problem, the variable interaction information

are not available. Therefore, specific algorithms are required

to identify the underlying interaction structure of the decision

variables.

Differential Grouping (DG) [32] is a competitive decom-

position algorithm that can identify the nonseparable com-

ponents of a continuous objective function and has shown

superior performance as compared to other decomposition

algorithms such as variable interaction learning [33] on the

CEC’2010 [50] large-scale benchmark suite [32]. Despite its

success on the CEC’2010 benchmark problems, it has been

shown that differential grouping has some difficulty with the

CEC’2013 large-scale benchmark functions [51]. In particular,

differential grouping has the following major shortcomings:

• High computational cost on fully separable functions.

• Inability to detect objective functions with overlapping

components, i.e., components that share decision vari-

ables [51].

• Sensitivity to computational roundoff errors [37].

• Requiring the user to specify a threshold parameter (ǫ).

In this paper, we propose an improved version of differential

grouping that addresses the above issues. In particular, this

improved version, DG2, reduces the total number of objective

function evaluations by half for fully separable functions

which require the most function evaluations. This allows the

algorithm to check all pairs of variables for interaction at

a much lower cost as compared to its predecessor. Testing

all pairs of variables for interaction is essential to identify

functions with overlapping components. The reduction in the

total number of objective function evaluations is achieved

through systematic generation of sample points to maximize

point reuse in the process of applying the differential grouping

theorem (see Section II). We mathematically show that this

new method achieves the lower bound when the differential

grouping theorem is used to detect the interactions.

In addition to improving the efficiency, DG2 significantly

improves the grouping accuracy of differential grouping on

the existing large-scale benchmark suites. A major advantage

of DG2 is its parameter-free property. DG2 takes the compu-

tational rounding errors into account in estimating a proper

threshold value (ǫ) which determines its sensitivity to weak

interactions. In particular, DG2 has the following advantages

over the static method used in differential grouping:

• Unlike DG that uses a single global ǫ value to detect all

the interactions, DG2 dynamically calculates an ǫ value

to detect the interaction between each pair of variables.

For each interaction, DG2 approximates the magnitude

of roundoff errors and calculates the threshold value

accordingly. This is particularly useful when dealing with

imbalanced functions, in which the magnitude of roundoff

error may be different from component to component.

• Unlike DG, the new method does not require the user to

specify any external parameter. In other words, DG2 is

parameter-free.

The organization of the rest of this paper is as follows.

Section II contains the details of the differential grouping

theorem and algorithm. Section III gives an outline of the

proposed improvements. Section III-A contains the details on

how to reduce the total required objective function evaluations

as well as a proof of the lower bound for the total required

evaluations. Section III-B focuses on improving the accuracy

of differential grouping and making it parameter-free. The ex-

perimental results about the grouping accuracy of DG2 and its

performance within a cooperative co-evolutionary framework

are presented in Section IV. Finally, Section V concludes the

paper.

II. BACKGROUND AND RELATED WORK

Problem decomposition is an integral part of using cooper-

ative co-evolution for function optimization. A good problem

decomposition is one that has minimal dependence among

its components. This is often characterized by separability

structure of the objective function, which is defined as follows:

Definition 1 ([51]). A function f(x) is partially separable

with m independent components iff:

arg min
x

f(x) =
(

arg min
x1

f(x1, ...), ..., arg min
xm

f(...,xm)
)

,

where x = (x1, ..., xn)
⊤ is a decision vector of n dimensions,

x1, ...,xm are disjoint sub-vectors of x, and 2 ≤ m ≤ n.

Additive separability is a special type of partial separability,

which is defined as follows:

Definition 2 ([51]). A function is partially additively separable

if it has the following general form:

f(x) =

m
∑

i=1

fi(xi), m > 1,

where fi(·) is a non-separable subfunction, and m is the

number of non-separable components of f . The definition of

x and xi is identical to what was given in Definition 1.

Many decomposition algorithms have been proposed to

decompose a black-box optimization problems into smaller

subproblems. Static grouping is the simplest decomposition

strategy in which the decision variables are grouped into arbi-

trary groups. In its simplest form, an n-dimensional problem

is broken down into s k-dimensional problems. Examples of

such methods are the divide-in-half method by Shi et al. [52],

and the method employed by van den Bergh and Engelbrecht

[53]. These methods are oblivious of variable interactions

which may have a significant impact on the optimization

performance [31]. Some other decomposition algorithms such

as random grouping [31], adaptive variable partitioning [39],

delta grouping [54], and min/max variance decomposition [55]

use various heuristics in order to form the groups based on

variable interaction characteristics of the objective function.

The drawback of these methods is their low grouping accuracy,

and the fact that they presuppose the number and/or the size

of components. These algorithms also divide the decision

variables into s k-dimensional components. Improved versions

of random grouping and delta grouping use a so-called multi-

level strategy [54, 56] in which multiple fixed decompositions

are used over the course of optimization. More sophisti-

cated decomposition methods such as variable interaction

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2694221, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 3

learning [33], meta-modelling decomposition [40], statistical

learning decomposition [38], and differential grouping [32] do

not presuppose the number and/or size of components. Among

these algorithms, differential grouping has shown superior

performance with respect to grouping accuracy [33, 40]. The

following theorem is at the heart of interaction detection of

differential grouping:

Theorem 1 ([32]). Let f(x) be an additively separable

function. ∀a, b1 6= b2, δ ∈ R
1, δ 6= 0, variables xp and xq

interact if the following condition holds

∆δ,xp
[f](x)|xp=a,xq=b1 6= ∆δ,xp

[f](x)|xp=a,xq=b2 , (1)

where

∆δ,xp
[f](x) = f(..., xp + δ, ...)− f(..., xp, ...), (2)

refers to the forward difference of f with respect to variable

xp with interval δ.

Theorem 1 states that two variables xp and xq interact if

Equation (2) evaluated with any two different values of xq

gives different results [32]. A proof of this theorem can be

found in [32]. For the sake of brevity the left hand side of

Equation (1) is denoted by ∆(1) and its right hand side by

∆(2). It is clear that ∆(1) 6= ∆(2) ⇐⇒ |∆(1) −∆(2)| 6= 0.

It is also clear that this equality check is not practical on

computing devices due to limited precision of floating-point

numbers. For this reason, the equality check can be converted

into an inequality check of the form λ = |∆(1) − ∆(2)| >
ǫ by introducing the control parameter ǫ that determines the

sensitivity of differential grouping to interactions.

Two major drawbacks of differential grouping are its sen-

sitivity to the parameter ǫ and its poor accuracy in de-

tecting interacting variables on functions with overlapping

components. As reported in [32], the grouping accuracy of

differential grouping is low on the Rosenbrock function [57]

which has overlapping components with overlap size of one.

Also, if differential grouping is used to find the interaction

structure of functions with overlapping variables, the shared

decision variables between two components will be placed

in one group and will be excluded from other groups. It is

not yet clear what an optimal decomposition may be for an

overlapping function; nevertheless, an accurate identification

of the underlying structure is essential to propose a meaningful

decomposition.

Global Differential Grouping (GDG) [37] and eXtended

Differential Grouping (XDG) [58] are two variants of differen-

tial grouping, which aim at addressing the above shortcomings.

XDG focuses on identifying indirect interactions in order to

deal with the Rosenbrock function. The issue with XDG is

that it inherits the sensitivity issue of differential grouping and

also its method of inferring variable interaction may consider

separable variables as nonseparable. This issue is discussed

further in Section IV-A. GDG addresses the sensitivity issue

of differential grouping by taking computational errors into

account. However, the use of a global parameter to detect all

1Values of a, b1, b2 and δ are chosen such that f is evaluated within its
domain.

Algorithm 1: (g,x1, ...,xg,xsep,Γ) = DG2(f, n,x,x)

1 (Λ,F, f̌ , fbase,Γ) = ISM(f, n,x,x);
2 Θ = DSM(Λ,F, f̌ , fbase, n);
3 (k,y1, ...,yk) = ConnComp(Θ) ;
4 xsep = {}, g = 0;
5 for i = 1 → k do
6 if |yi| = 1 then

7 xsep = xsep ∪ yi;
8 else
9 g = g + 1, xg = yi;

interactions makes it unsuitable for imbalanced functions. This

issue is discussed further in Section IV-B. GDG also addresses

the problem of identifying overlapping functions by examining

all pairs of variables for interaction. However, we will show

in Section IV that DG2 can achieve the same goal with fewer

objective function evaluations.

III. IMPROVED DIFFERENTIAL GROUPING

In this section, we describe the details of improving the

grouping accuracy and efficiency of differential grouping.

Algorithm 1 shows the high-level structure of DG2 that

incorporates these improvements. DG2 has three major parts.

The first part is forming what we call a raw interaction

structure matrix (Λ) that contains the quantity |∆(1) −∆(2)|
for all pairs of variables. This is done by the ISM function.

The second part of the algorithm is finding a suitable threshold

parameter (ǫ) in order to convert the raw interaction structure

matrix Λ to a design structure matrix Θ. The entry Θij

takes 1 if Λij > ǫ, and 0 otherwise. It should be noted

that unlike differential grouping and GDG, DG2 obtains a

threshold based on information such as magnitude of function

values and the values of the raw interaction structure matrix

that are calculated by the ISM function (Algorithm 1). Finally,

the last part of the algorithm deals with the decomposition of

the variables into nonseparable groups, which is performed

by identifying the connected components of the graph with

the node adjacency matrix Θ. This can be efficiently done in

linear time in n [59].

It should be noted that a complete design structure matrix is

necessary to detect overlapping functions, in which different

components share common variables. This type of functions is

more general in practice, and is more challenging. Given the

design structure matrix, various decompositions can be devised

in order to deal with overlapping components. However, the

study of an optimal decomposition for overlapping functions

is beyond the scope of this study.

In the remainder of this paper, we focus on two major issues:

• Finding an efficient implementation for the ISM function

in order to form the interaction structure matrix using the

minimum possible function evaluations (Section III-A).

• Finding an effective thresholding method that results in

an accurate decomposition of a function into its com-

ponents that generalizes over a wide range of functions

(Section III-B).

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2694221, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 4

A. Improving the Efficiency of Differential Grouping

As mentioned earlier, in order to detect the overlapping

functions, it is essential to examine all pairs of variables for

interaction. It is clear that for an n-dimensional function, the

total number interactions is
(

n
2

)

. According to Theorem 1 each

comparison requires four fitness evaluations which results in

a total of 4 ·
(

n
2

)

= 2n(n− 1) evaluations.

In this section, we show that by systematic selection of

sample points for calculating the difference equation (2),

the total number of fitness evaluations can be significantly

reduced. In order to show this, we assume a simple function

with only three decision variables, i.e., f(x1, x2, x3). The total

number of function evaluations according to Theorem 1 is as

follows:

x1↔x2:∆(1)
=f(a′, b, c)−f(a, b, c),∆(2)

=f(a′, b′, c)−f(a, b′, c)

x1↔x3:∆(1)
=f(a′, b, c)−f(a, b, c),∆(2)

=f(a′, b, c′)−f(a, b, c′)

x2↔x3:∆(1)
=f(a, b′, c)−f(a, b, c),∆(2)

=f(a, b′, c′)−f(a, b, c′),

where a, b, and c are the values taken by x1, x2, and x3

respectively, and a′ = x1 + δ, b′ = x2 + δ, and c′ = x3 + δ.

For a clearer illustration, the points that are evaluated with

function f are color-coded and are shown geometrically in

Figure 1. From previous calculations we know that the total

number of function evaluations for a 3-dimensional function

is 2n(n−1)|n=3 = 12. However, it is clear from Figure 1 that

only 7 unique points are required.

x1

x2

x3

1

3
2

(a, b, c) (a, b′, c)

(a′, b′, c)(a′, b, c)

(a, b, c′)

(a′, b, c′)

(a, b′, c′)

Fig. 1: Geometric representation of point generation in DG2

for a 3D function.

In order to calculate ∆(1) and ∆(2), four points are required.

According to Theorem 1 these points are chosen such that they

form a rectangle. To calculate ∆(1) a base point is required

which, in this example, is (a, b, c). Then, in order to find

interactions with x1, the first variable should be varied in order

to calculate ∆(1). Therefore, the second point will be (a′, b, c).
To find the interaction between x1 and x2, the same difference

equation as ∆(1) should be evaluated for a different value of

x2. Therefore, we get (a′, b′, c) and (a, b′, c). If we follow

this pattern to find all interactions, we can see that the base

point (a, b, c) is repeated exactly three times, the cases where

only one dimension is varied with respect to the base point

such as (a′, b, c), (a, b′, c), and (a, b, c′) are repeated exactly

two times, and the cases where two dimensions are varied

with respect to the base point such as (a′, b′, c), (a′, b, c′), and

(a, b′, c′) are evaluated only once.

Algorithm 2: (Λ,F, f̌ , fbase,Γ) = ISM(f, n,x,x)

1 Λ = 0n×n;
2 Fn×n = NaNn×n ; // matrix of all NaNs

3 f̌n×1 = NaNn×1 ; // vector of all NaNs

4 x(1) = x, fbase = f(x(1)), Γ = 1;

5 m = 1
2
(x+ x);

6 for i = 1 → n− 1 do

7 if ¬isnan(̌fi) then

8 x(2) = x(1) , x
(2)
i = mi;

9 f̌i = f(x(2)), Γ = Γ + 1;

10 for j = i+ 1 → n do

11 if ¬isnan(̌fi) then

12 x(3) = x(1), x
(3)
j = mj ;

13 f̌j = f(x(3)), Γ = Γ + 1;

14 x(4) = x(1) , x
(4)
i = mi, x

(4)
j = mj ;

15 Fij = f(x(4)), Γ = Γ + 1;

16 ∆(1) = f̌i − f(x(1));
17 ∆(2) = Fij − f̌j ;

18 Λij = |∆(1) −∆(2)|;

This process can be generalized for an arbitrary number of

decision variables. For a general case, we need the following

evaluations in order to detect the interaction between the ith
and the jth dimensions.

xi-xj interaction:

{

∆(1) = f(..., x′
i, ...)− f(x1, ..., xn)

∆(2) = f(..., x′
i, ..., x

′
j , ...)− f(..., x′

j , ...)

Based on this pattern we see that the total number of evalua-

tions is 2n(n−1). It should be noted that the number of unique

evaluations is much less than this quantity due to redundant

evaluations caused by the assumptions made previously.

n(n− 1)

2
− 1 :redundant evaluations of (x1, ..., xn)

n(n− 2) :redundant evaluations of (..., x′
i, ...)

Therefore, to calculate the total number of unique evaluations,

the number of redundant evaluations should be subtracted from

the total, which yields the following2:

n(n+ 1)

2
+ 1.

In Theorem S.1, we show that this is the minimum number

of objective function evaluations needed to form the interaction

structure matrix. Theorem S.1 and its proof can be found in the

supplementary document accompanying this paper (Section S-

I). Algorithm 2 is an implementation of the process that was

described above and achieves the lower bound according to

Theorem S.1. The ISM function, generates the interaction

structure matrix (Λ) which is used by the DSM function to

find a reliable ǫ to establish the separability or nonseparability

of all pairs of variables.

B. Improving the Grouping Accuracy of Differential Grouping

It was mentioned in Section II that the grouping accuracy of

differential grouping depends on ǫ. Theoretically, the value of

2A more detailed derivation is provided in Section S-I of the supplementary
document accompanying this paper.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2694221, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 5

ǫ can be set to zero, since any positive difference between ∆(1)

and ∆(2) implies an interaction between the variables in exam-

ination. However, in practice, the floating-point operations in-

cur computational roundoff errors and cause nonzero λ values

even for separable variables. A major challenge for differential

grouping is to distinguish between a genuine nonzero λ due

to variable interaction, and a nonzero λ due to computational

errors. In this section, we show that the magnitude of roundoff

errors is a function of the magnitude of the quantities used in

a calculation. This makes a static threshold, such as the one

used in differential grouping, an ineffective method. Omidvar

et al. [51] have shown that the nonuniform contribution of

components in an objective function significantly affects the

accuracy of differential grouping with a static threshold. The

functions in the CEC’2013 large-scale benchmark suite have

such an imbalance property.

The new method of calculating a threshold value estimates

the greatest lower bound (einf) and the least upper bound (esup)

for the roundoff error by a mechanism which will be explained

later. These values are calculated separately for each pair of

variables based on the available information such as function

values and the quantity λ = |∆(1) − ∆(2)| to maximize the

detection accuracy. Once the bounds are found, two variables

are considered to interact if λ > esup, and separable if λ <
einf . In order words, this interval defines a safe region that

determines genuine zero and nonzero λ values. The λ values

that fall outside this region may or may not be genuine nonzero

values. To overcome this, we calculate the relative proportion

of genuine zero and nonzero values and use it to bias the

threshold towards either einf or esup. The details of this process

is given next.

Based on the IEEE 754 standard [60], the mapping of a

real number x to a floating-point number (detonated by fl(x))
may impose a rounding to the nearest representable number.

According to the IEEE 754 standard, the representation error

for a number x is a function of itself because: fl(x) = x(1 +
δ) = x + δx, where the bounds for δ is determined by a

machine dependent constant called the machine epsilon (µM)

such that |δ| < µM (see Theorem S.2 in Section S-II of the

supplementary document). Therefore, the error term δx will

grow with x. Since differential grouping may deal with large

numbers, it is essential to take the magnitude of the function

values into account when estimating the threshold value (ǫ).

In addition to the representational rounding error that was

explained above, the floating-point arithmetic also incurs com-

putational rounding error. The IEEE standard guarantees that

x⊕ y = fl(x+ y), where ⊕ represents floating-point summa-

tion operator3. In other words, the floating-point sum of two

numbers is guaranteed to be equal to the floating-point number

closest to the real sum of the two numbers. In most models of

error analysis, this is generalized to other operations such as

subtraction, multiplication, division, and sometimes the square

root function. This statement does not hold for a sequence of

floating-point operations such as x1 ⊕ x2 ⊕+ · · · ⊕ xn due to

the accumulation of errors.

3All other basic floating-point operations are shown in a circle in a similar
way.

Theorem S.3 [61] can be used to find an upper bound for the

accumulated arithmetic error in any calculation. An example

of applying Theorem S.3 to calculate an upper bound for a

dot-product example is given in Section S-II-A. In this paper,

we use Theorem S.3 to find a reasonable upper and lower

bounds for the error involved in calculating Λ. To estimate

the greatest lower bound (infimum) for the magnitude of the

roundoff error, we assume that the calculation of f(x) is error

free, and the only source of error is in the application of

differential grouping, i.e., the calculation of λ = |∆(1)−∆(2)|.
Thus,

∆̂1=f(x)⊖ f(x′)=(f(x) − f(x′))(1 + δ1)=∆(1)(1 + δ1),

∆̂2=f(y)⊖ f(y′)=(f(y) − f(y′))(1 + δ2)=∆(2)(1 + δ2),

λ̂ = |∆̂1 ⊖ ∆̂2| = |∆̂1 − ∆̂2|(1 + δ3)

= |f(x)(1 + δ1)(1 + δ3)− f(x′)(1 + δ1)(1 + δ3)

− f(y)(1 + δ2)(1 + δ3) + f(y′)(1 + δ2)(1 + δ3)| .

We can see that the maximum number of products of the form

(1+ δi) is 2 (k = 2). Therefore, by applying Theorem S.3 we

have:

|λ− λ̂| ≤ γ2

∣

∣

∣
(f(x)− f(x′))− (f(y)− f(y′))

∣

∣

∣
(3)

= γ2

∣

∣

∣
(f(x) + f(y′))− (f(y) + f(x′))

∣

∣

∣

≤ γ2 ·max
{

(f(x) + f(y′)) , (f(y) + f(x′))
}

:=einf .

Equation (3) is based on the assumption that the codomain of

f is non-negative, i.e., f : R → R
+
0 . A more general form for

f : R → R is as follows:

einf = γ2
(

|f(x)|+ |f(y′)|+ |f(y)| + |f(x′)|
)

. (4)

In this paper, the calculation of einf is based on Equation (3).

To estimate an upper bound for the roundoff error, we can-

not assume that function evaluations are error free. However,

the difficulty here is that the functions are black-box; therefore,

we do not know the exact number of error terms (1 + δi) in

the calculation of f(·). As a rule of thumb in the field of error

analysis, it is customary to assume that the error grows with

the square root of the number of floating-point operations (φ)

involved in a calculation [62]. In other words, to calculate an

upper bound for the error based on Theorem S.3, we assume

that k ≈ √
φ. We also assume that the error in calculating

|λ−λ̂| is negligible with respect to the error in f(·). Therefore,

an estimate of the least upper bound can be calculated as

follows:

|f(·)− f̂(·)| ≤ γ√φf(·) := esup. (5)

The problem with Equation (5) is that in black-box op-

timization, we do not know the number of floating-point

operations involved in calculating the objective function f(·).
To overcome this difficulty, instead of finding the exact number

of floating-point operations, we make some assumptions about

the relationship between the dimensionality of the problem (n)

and the number of floating-point operations (φ) that it may

require. The simplest mapping of n variables into a scalar by

a series of floating-point operations can be done by a simple

summation, i.e., f(x) =
∑n

i=1 xi. In this example, the total

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2694221, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 6

number of floating-point operations is φ(n) = n − 1. The

dot-product of two n-dimensional vectors is another common

example, i.e., x · y =
∑n

i=1 xiyi. This calculation requires n
multiplications and n−1 additions. Therefore, the total number

of operations required to calculate the dot-product of two n-

dimensional vectors is φ(n) = 2n − 1. At a higher level of

abstraction, we can say that the number of operations involved

in the calculation of these functions is of order O(n). An

example of a function with floating-point complexity of order

O(n2) is
∑n

i=1 x
n
i . It turns out that these complexity classes

constitute a large body of numerical operations. Matrix oper-

ations are among the most computationally expensive, whose

complexity does not exceed O(n3). Table S-I contains a short

list of common numerical operations and their complexity

classes [62] (supplementary document Section S-III).

In an ideal situation, we need to find the least upper bound

(esup) of the roundoff errors. If such a bound is available,

any λ larger than esup can be treated as a genuine nonzero

value. Generally speaking, the bounds calculated based on

Theorem S.3 are very conservative, and the actual round-

off errors are much smaller in practice [61]. For example,

Sterbenz’s Theorem [63] states that x ⊖ y = x − y if

y/2 ≤ x ≤ 2y. In other words, if two floating-point numbers

are sufficiently close, their floating-pint subtraction is exact.

Additionally, modern computers have a fused multiply-add

(FMA) instruction that involves a floating-point multiplica-

tion followed by an addition. Although FMA involves three

floating-point operations, it commits only one rounding error

in the worst case. We will also show in Section IV-D that

underestimation of esup is not detrimental to detection of in-

teracting variables. In general, underestimation of esup results

in accurate detection of interacting variables at the expense of

missing some separable variables. Conversely, overestimation

of esup results in high detection accuracy of separable variables

at the expense of missing interacting variables. It is clear

that the latter case is more detrimental to the optimization

performance. Therefore, to get a tighter bound, we assume a

linear complexity and define esup as follows:

esup = γ√n max{f(x), f(x′), f(y), f(y′)} (6)

By estimating the least upper bound (esup) and the greatest

lower bound (einf), we can identify reliable λ values. More

specifically, all the λ values greater than esup will be treated

as genuine nonzero (interacting variables), and all the values

smaller than einf are treated as genuine zeros (separable

variables). Finally, for the values in the range (einf , esup), the

following weighted average of the bounds is used to set the

threshold:

ǫ =
η0

η0 + η1
einf +

η1
η0 + η1

esup, (7)

where η0 is the number of entries in Λ which are less

than einf , and η1 is the number of entries in Λ which are

greater than einf . Equation (7) is a natural choice for setting

a threshold for non-reliable λ values. If η0 = η1, then

Equation 7 reduces to the arithmetic mean of einf and esup.

This is intuitive, because when the number of reliably detected

separable and nonseparable variables is equal, the middle point

of the interval between einf and esup is the least biased choice

Algorithm 3: Θ = DSM(Λ,F, f̌ , fbase,n)

1 Θ = NaNn×n;
2 η1 = η2 = 0;
3 for i = 1 → n− 1 do
4 for j = i+ 1 → n do

5 fmax = max{fbase,Fij , f̌i, f̌j};

6 einf = γ2 ·max{fbase +Fij , f̌i + f̌j};
7 esup = γ√n · fmax;

8 if Λij < einf then
9 Θi,j = 0; η0 = η0 + 1;

10 else if Λij > esup then

11 Θi,j = 1; η1 = η1 + 1;

12 for i = 1 → n− 1 do

13 for j = i+ 1 → n do

14 fmax = max{fbase,Fij , f̌i, f̌j};

15 einf = γ2 ·max{fmathrmbase + Fij , f̌i + f̌j};
16 esup = γ√n · fmax;

17 if Θi,j 6= NaN then
18 ǫ = η0

η0+η1
· einf +

η1
η0+η1

· esup;

19 if Λij > ǫ then

20 Θi,j = 1;

21 else

22 Θi,j = 0;

of ǫ. Conversely, if the number of reliable calculations is

skewed to one side, the threshold value should be biased to

the same side. In the extreme case, if η0 = 0, then ǫ = esup.

Similarly, if η1 = 0, then ǫ = einf .
Algorithm 3 contains the details of the DSM algorithm, in

which the threshold on Λ is calculated by considering roundoff

errors. The goal of Algorithm 3 is to convert the interaction

structure matrix Λ, which is calculated by ISM, into a binary

design structure matrix (Θ) that represent variable interactions.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we briefly compare the efficiency of DG2

with several state-of-the-art decomposition algorithms, namely

Differential Grouping (DG) [32], GDG [37], XDG [58], and

CCVIL [33]. Next, we assess the grouping accuracy of DG2

on the CEC’2010 and the CEC’2013 large-scale benchmark

suites, and compare it with several other state-of-the-art de-

composition algorithms. Next, we use DG2 in a cooperative

co-evolutionary framework to test its efficiency on the final

optimization performance. Finally, we assess the sensitivity of

DG2 to the imbalance level between the components of an

objective function, and the assumptions about complexity of

floating-point operation in black-box functions.

A. Comparative Analysis of Grouping Efficiency

According to Theorem S.1, DG2 requires the least number

of function evaluations to detect all interactions as compared

to other decomposition algorithms. The total number of func-

tion evaluations needed by DG2 is constant and is equal to
n2+n+2

2 for an n-dimensional problem (Theorem S.1). The

GDG algorithm requires n2+3n+2
2 evaluations [37], which is

larger than what is needed by DG2 to construct the entire

interaction structure matrix. Unlike DG2 and GDG, XDG

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2694221, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 7

TABLE I: Grouping accuracy of DG2, XDG, GDG, DG, and CCVIL on the CEC’2010 and 2013 large-scale benchmarks. ρ1
measures the accuracy of detecting interactions, ρ2 measures the accuracy of detecting separable variables, and ρ3 measures the

overall accuracy. DG2 generalizes better on the CEC’2013 benchmarks and outperforms other algorithms by a wide margin.

CCVIL DG GDG XDG DG2

ǫ = 10−3 ǫ = 10−3 ǫ = 10−6 α = 10−8 α = 10−9 α = 10−10 ǫ = 10−3 parameter-free

Benchmarks Statistics ρ1 ρ2 ρ3 ρ1 ρ2 ρ3 ρ1 ρ2 ρ3 ρ1 ρ2 ρ3 ρ1 ρ2 ρ3 ρ1 ρ2 ρ3 ρ1 ρ2 ρ3 ρ1 ρ2 ρ3 ρ1 ρ2 ρ3

CEC’2010

Median 3.5 100 99.7 100 100 100 100 100 100 100 91.6 92.8 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Mean 2.6 99.9 93.4 95.5 97.5 97.5 99.9 93.4 93.7 100 87.7 88.4 100 98.5 98.5 100 95.0 95.2 100 93.7 94.1 99.9 77.0 78.2 100 90.2 90.7

Std. 1.6 0.05 22.0 12.6 7.5 7.2 0.2 10.9 10.7 0.0 12.9 12.8 0.1 6.3 6.1 0.0 18.4 17.9 0.0 22.3 21.7 0.03 37.7 37.0 0.0 26.3 25.7

Success rate 4 17 13 7 15 17 17 14 16

CEC’2013

Median 2.60 100 98.3 100 100 99.0 100 99.5 98.8 100 89.7 91.0 82.1 100 99.5 93.9 100 99.8 95.5 100 99.8 100 85.1 98.8 100 100 100

Mean 2.25 100 90.0 87.1 94.4 94.6 93.3 93.7 94.2 98.5 87.4 88.5 71.6 95.3 94.4 79.5 93.4 92.9 85.2 93.0 92.8 97.8 56.5 61.4 97.5 89.3 90.0

Std. 1.08 0 25.1 20.8 9.4 8.6 11.7 9.3 8.6 4.6 11.0 10.8 30.5 17.5 16.7 27.6 24.7 23.7 23.1 26.4 25.3 4.9 48.2 45.0 8.4 28.9 27.9

Success rate 4 4 5 4 4 5 5 6 9

1 2

3

45

6

(a)

1

2

3

4

5

6

(b)

Fig. 2: The interaction structures represented by (a) and (b)

cannot be distinguished by XDG.

does not construct a full interaction structure matrix and

cannot identify the overlapping functions. If XDG detects that

variables xi and xj both interact with a common variable xk,

it does not check the interaction between xi and xj explicitly.

Therefore, XDG fails to distinguish between the interaction

structures represented by the graphs shown in Figure 2. For

example, if XDG learns that variables x2-x4 all interact with

x1, it will assume that the following pairs also interact:

(x2, x3), (x3, x4), and (x2, x4). This can have implications

on decomposition of overlapping functions. XDG uses this

strategy to reduce the number of function evaluations in the

detection phase; however, it still requires slightly less than

n2 + n function evaluations, which is significantly more than

what is needed by DG2 [58]. DG also does not have the ability

of detecting overlapping functions. Even if the algorithm is

modified to check all pairs of variables, it would require n2+n
function evaluations.

B. Comparative Analysis of Grouping Accuracy

Table I contains the summary statistics for the grouping

accuracy of CCVIL, DG, GDG, XDG, and DG2 on the

CEC’2010 and the CEC’2013 large-scale benchmark suites.

In this paper, we use the metric proposed by Mei et al.

[37], which consists of three measures: ρ1 (interaction), ρ2
(independence), and ρ3 (interaction and independence). The

statistics are taken over all the functions in each benchmark

suite. The detailed results for individual functions can be found

in Tables S-II and S-III (supplementary document, Section S-

IV). The success rate indicates the number of functions for

which the correct decomposition is identified. The overlapping

functions are not counted since their optimal decomposition

is unknown. It should be noted that XDG and CCVIL start

with an interaction structure matrix of all zeros (Θ = 0; full

separability assumption). Therefore, if a pair of variables are

not checked for interaction, the relevant entry of Θ assumes

its default value for the calculations of the ρ-metrics.

Table I shows that DG2 outperforms all other decomposition

algorithms on the CEC’2010 and CEC’2013 suites. It is

notable that the difference is more pronounced on the more

difficult CEC’2013 benchmark suite. The performance of DG2

appears to be slightly lower than some variants of GDG

according to ρ2 (measure of independence). However, this

is caused by three instances of the Ackley function, which

affects the mean values in Table I. This behavior can be seen

in Tables S-II and S-III. It should be noted that the Ackley

function is not additively separable [64], which is correctly

identified by DG2. However, in the benchmark suites these

functions are reported as separable according to Definition 1.

Overall, DG2 shows better generalizability over a wider

range of functions than all other decomposition algorithms.

CCVIL shows the worst performance, while DG shows the

strongest sensitivity to its control parameter (ǫ), especially

on the CEC’2010 benchmarks. This can be attributed to its

static choice of ǫ. The problem with this approach is that it

ignores the fact that the magnitude of the computational error

in λ = |∆(1) −∆(2)| is correlated with the magnitude of the

objective function. Therefore, on some functions, when ǫ is

smaller than the inherent computational errors, some separable

variables will be considered as nonseparable. This is why

increasing ǫ generally results in a lower ρ1 and a higher ρ2
for DG. Unlike DG, GDG sets ǫ proportional to the magnitude

of the objective function. This is based on the rationale that a

higher objective function value results in a high computational

error in λ. Equation (8) is a very simple way of choosing ǫ
proportional to the computational error.

ǫ = α ·min{f(x1), ..., f(xk)}, (8)

where x1, ...,xk are k random sample points.

Table I clearly shows that the method used by GDG is ef-

fective on the CEC’2010 benchmarks, but does not generalize

well on the CEC’2013 benchmarks. To understand the reason

for this behavior, the ǫ values calculated by GDG and DG2 for

selected functions are reported in Table II4. Since DG2 uses a

4Also see Table S-VI of the supplementary document.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2694221, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 8

TABLE II: ǫ values of GDG and DG2 on selected functions.

GDG systematically overestimates the computational error

which results in large ǫ values as compared to DG2.

GDG DG2

Function α = 10−8 α = 10−9 α = 10−10 min median max

f1 8.93e+03 8.93e+02 8.93e+01 4.06e-04 4.16e-04 4.18e-04

f4 2.75e+06 2.75e+05 2.75e+04 2.34e-01 3.14e-01 3.78e-01

f8 1.94e+11 1.94e+10 1.94e+09 1.76e+04 2.37e+04 3.48e+04

f13 8.11e+12 8.11e+11 8.11e+10 1.64e+06 2.72e+06 1.20e+07

f15 1.19e+04 1.19e+03 1.19e+02 1.25e-02 1.25e-02 1.27e-01

TABLE III: Performance comparison of DG2 against DG,

XDG, CCVIL, and ideal grouping on the canonical cooper-

ative co-evolution and a contribution-based cooperative co-

evolutionary framework. DG2’s number of wins, ties, and

losses against other decomposition methods is reported. DG2

outperforms other decomposition methods and can perform as

well as the ideal decomposition on most functions.

Canonical CC Contribution-based CC

DG XDG CCVIL Ideal DG XDG CCVIL Ideal

w/t/l w/t/l w/t/l w/t/l w/t/l w/t/l w/t/l w/t/l

C1: f1-f3 1/2/0 2/1/0 0/1/2 0/1/2 1/2/0 3/0/0 2/0/1 0/1/2

C2: f4-f7 3/1/0 2/1/1 3/0/1 0/3/1 3/1/0 1/2/1 4/0/0 0/3/1

C3: f8-f11 2/1/1 2/0/2 3/0/1 0/4/0 2/1/1 1/2/1 3/1/0 0/0/4

C4: f12-f15 2/0/2 1/0/3 2/0/2 0/1/3 2/0/2 1/0/3 2/0/2 0/0/4

Total 8/4/3 7/2/6 8/1/6 0/9/6 8/4/3 6/4/5 11/1/3 0/4/11

different ǫ to detect interaction between each pair of variables,

we report the overall mean and the median of all ǫ values

as indicators. Table II clearly shows that GDG systematically

overestimates the computational error which results in large ǫ
values. By comparing Equations (3) and (6) with (8), we can

see that the calculation of ǫ in both DG2 and GDG is a function

of the objective function value. However, GDG differs in two

major ways. Firstly, the constant α = {10−8, 10−9, 10−10} is

significantly larger than both γ2 (≈ 2.2204× 10−16) and γ√n

(≈ 3.5108× 10−15 for n = 1000), which results in overesti-

mation of ǫ by GDG. Secondly, k sample objective function

values used by GDG to detect all interactions, whereas in DG2

the quantities used in Equations (3) and (6) are only those

which are involved in the calculation of λ for a particular pair

of variables. These differences contribute to the overestimation

of ǫ by GDG which explains its high accuracy of detecting

separable variables (ρ2) at the expense of a low interaction

detection accuracy (p1). When ǫ is set to a large number, the

algorithm has a tendency to classify most variables as fully

separable. Conversely, a high value for ǫ makes the algorithm

insensitive to weak interactions. Therefore, the algorithm may

treat many weakly interacting variables as fully separable. This

behavior is magnified on the CEC’2013 benchmarks due to the

imbalance in the contribution of each component to the overall

objective value.

C. Optimization Results

In this section, we investigate the effectiveness DG2 when

it is used as a decomposition algorithm within a cooperative

co-evolutionary framework. The empirical results are based on

the CEC’2013 benchmark suite [65]. Finally, we show that in

conjunction with an accurate decomposition, a contribution-

based cooperative co-evolutionary algorithm shows compara-

ble results to the state-of-the-art algorithms.

a) Performance comparison of decomposition methods:

Table III contains the summary of the experimental results

to compare the performance of DG2, DG, XDG, CCVIL,

and ideal grouping, within a co-evolutionary framework5. We

use two different co-evolutionary frameworks: the canonical

cooperative co-evolution framework in which all components

are optimized in a round-robin fashion, and a contribution-

based framework in which components with higher contribu-

tion to the overall solution quality are given more resources

(based on the CBCC3 algorithm [66]). In this work, the pt
parameter of CBCC3 is set to zero. The component optimizer

of both frameworks is SaNSDE [67], and the population size

of all algorithms is set to 50 as suggested by Yang et al.

[67]. The maximum number of fitness evaluations is set to

3 × 106 as suggested by Li et al. [65]. Except for ideal

grouping, the number of objective function evaluations used

in the decomposition stage is deducted from the maximum

available evaluations (a complete table is included in the

supplementary document). All experimental results are based

on 25 independent runs. To test the statistical significance of

the results, DG and ideal grouping are compared with the

baseline (DG2) using a two-tailed Wilcoxon rank-sum test

with α = 0.05.

Table III clearly shows that DG2 has an overall better

performance than the other decomposition methods when it

is used in a cooperative co-evolutionary framework. This is

the case on both the canonical cooperative co-evolution and

the contribution-based cooperative co-evolution frameworks.

When comparing DG2 with ideal grouping, we can see that

ideal grouping performs better on 6 functions and performs

statistically similar on 9 functions, when the canonical co-

operative co-evolution is used. It should be noted that the

comparison between the ideal grouping and DG2 is unfair

because the ideal grouping is manually given to optimization

algorithm, which results in it having access to 500501 extra

function evaluations. In spite of this difference, Table III shows

that DG2 managed to perform as well as the ideal case on

9 functions (60% of the functions). This difference is even

tighter on partially separable functions (f4-f11) where DG2

performs worse than the ideal case on only one function.

This clearly shows the benefit of first using some portion of

the available computational resources to find an accurate de-

composition of the problem before carrying out optimization.

Unlike the canonical cooperative co-evolution, the difference

of DG2 and the ideal grouping is wider on a contribution-

based framework. Table III shows that DG2 is outperformed

by the ideal grouping on 11 out of 15 functions. Since the

final grouping of DG2 and the ideal grouping is identical for

most of the functions, the difference can be attributed to the

extra function evaluations which is available to the ideal case.

b) How the grouping accuracy affects the contribution-

based cooperative co-evolution: To investigate the effect of an

accurate decomposition on the performance of contribution-

5Also see Table S-VIII of the supplementary document.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2694221, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 9

TABLE IV: Performance of contribution-based and canonical

cooperative co-evolution using different decomposition meth-

ods. The number of wins, ties, and losses of the contribution-

based framework against canonical cooperative co-evolution

is reported. DG2 has the best improving effect on the

contribution-based framework (as well as ideal grouping),

especially on the partially separable functions (C2 and C3).

Categories CCVIL DG DG2 XDG Ideal

w/t/l w/t/l w/t/l w/t/l w/t/l

C1: f1-f3 1/1/1 0/3/0 0/3/0 0/3/0 0/3/0

C2: f4-f7 1/0/3 1/1/2 4/0/0 2/0/2 4/0/0

C3: f8-f11 3/1/0 2/1/1 4/0/0 3/0/1 4/0/0

C4: f12-f15 2/2/0 2/2/0 0/4/0 0/4/0 0/4/0

Total 7/4/4 5/7/3 8/7/0 5/7/3 8/7/0

based cooperative co-evolution, we compare the standard

round-robin cooperative co-evolution with its contribution-

based counterpart across different grouping algorithms. The

results of pair-wise Wilcoxon rank-sum tests are summarized

in Table IV. We can see that the contribution-based framework

generally performs better than the canonical cooperative co-

evolution; however, there is a performance loss when DG is

used as the decomposition algorithm. When DG2 and ideal

grouping are used, the contribution-based framework outper-

forms the canonical cooperative co-evolution on 8 functions

and performs statistically similar on 7 functions, whereas with

DG the number of wins is reduced to 5 and the number of

losses is increased to 3. It is notable that the overall behavior

of XDG is similar to that of DG. It is also interesting to note

that despite its low grouping accuracy, CCVIL benefited from

the use a contribution-framework.

A closer look at Table IV shows that DG2 achieves most

of the ties on fully separable functions (C1) and overlapping

and nonseparable functions (C4) for which no decomposi-

tion is done. Although DG2 can find the entire interaction

structure matrix, no decomposition is performed because un-

like partially separable functions, the decomposition of these

functions is not unique. Therefore, both the contribution-

based and the canonical cooperative co-evolution frameworks

reduce to SaNSDE which is the component optimizer of both

frameworks. An interesting exception is the behavior of DG

and CCVIL on C4 where the contribution-based framework

outperforms the canonical cooperative co-evolution framework

on two cases. This is not the case for DG2, XDG, and the ideal

grouping. It should be noted that DG and CCVIL decompose

some functions in that category into smaller components,

all of which are overlapping functions. This shows that de-

composition of overlapping functions can be beneficial. This

observation suggests that, by using DG2 we can learn the exact

interaction pattern of the variables and identify the shared de-

cision variables between the components in order to devise an

effective decomposition for overlapping functions. However,

with DG and CCVIL this is done arbitrarily depending on the

order in which the variables are visited and their interaction

pattern.

On the partially separable functions (C2 and C3), the

contribution-based framework outperforms the canonical co-

TABLE V: Experimental Results of the contribution-based

framework with DG2 (CBCC3-DG2), MOS, and CMA-ES

on the CEC’2013 large-scale benchmark suite using 25 in-

dependent runs. The highlighted entries are significantly bet-

ter (Wilcoxon rank-sum test with Holm p-value correction,

α = 0.05). DG2 allows the contribution-based framework to

perform as well as the state-of-the-art even using a mediocre

component optimizer.

stats. CBCC3-DG2 MOS [21] CMA-ES [68] MA-SW-Chains [22]

f4

Median 2.77e+07 1.56e+08 4.10e+08 4.27e+09

Mean 3.39e+07 1.74e+08 4.30e+08 4.58e+09

StDev 1.77e+07 8.02e+07 1.17e+08 2.51e+09

f5

Median 2.11e+06 6.79e+06 2.06e+06 1.81e+06

Mean 2.14e+06 6.94e+06 2.04e+06 1.87e+06

StDev 4.24e+05 9.03e+05 2.64e+05 3.13e+05

f6

Median 1.05e+06 1.39e+05 6.09e+05 1.01e+06

Mean 1.05e+06 1.48e+05 6.01e+05 1.01e+06

StDev 3.37e+03 6.56e+04 1.28e+05 1.56e+04

f7

Median 2.94e+07 1.62e+04 6.83e+02 3.92e+06

Mean 2.95e+07 1.62e+04 3.00e+03 3.45e+06

StDev 2.78e+07 9.29e+03 5.23e+03 1.29e+06

f8

Median 1.41e+10 8.08e+12 1.00e+13 4.90e+13

Mean 4.28e+10 8.00e+12 1.13e+13 4.85e+13

StDev 8.86e+10 3.13e+12 6.08e+12 1.04e+13

f9

Median 1.68e+08 3.87e+08 1.74e+08 1.08e+08

Mean 1.70e+08 3.83e+08 1.80e+08 1.07e+08

StDev 3.16e+07 6.42e+07 2.28e+07 1.71e+07

f10

Median 9.30e+07 1.18e+06 1.42e+07 9.18e+07

Mean 9.28e+07 9.01e+05 1.64e+07 9.18e+07

StDev 7.16e+05 5.17e+05 1.44e+07 1.08e+06

f11

Median 5.83e+08 4.48e+07 7.72e+06 2.15e+08

Mean 6.59e+08 5.22e+07 9.37e+06 2.19e+08

StDev 2.80e+08 2.10e+07 6.53e+06 3.04e+07

operative co-evolution when DG2 and the ideal grouping

were used. This is not the case with other decomposition

algorithms. Overall, the results in Table IV show that de-

composition accuracy can affect the optimization performance.

The experimental results suggest that the contribution-based

framework requires relatively accurate decomposition in order

to estimate the contribution of each component. This obser-

vation is consistent with the sensitivity analysis conducted

by Kazimipour et al. [69]. In general, the contribution-based

family of algorithms are sensitive to grouping noise, but

in the worst case they preform as well as the canonical

cooperative co-evolution which makes them a safe choice for

black-box problems [69]. It should be noted that, Kazimipour

et al. [69] used uniform grouping noise in their study, which

equally affects both strong and weak interactions. However,

we learned in Section IV-B that DG2’s grouping error is

mostly attributed to detecting weakly interacting variables.

This suggests that 100% accuracy is not essential in order to

benefit from a divide-and-conquer scheme, but it is important

on which variables does the decomposition algorithm commits

the errors. An example of such a case is f8 for which DG2

treated two components with weakly interacting variables as

fully separable (Table S-V). However, this did not affect the

overall optimization performance as reflected in Table III.

Further analysis of this case is given in the supplementary

document (Section S-V).

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2694221, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 10

TABLE VI: Sensitivity analysis of DG2 on various complex-

ity classes on the CEC’2013 large-scale benchmark suite.

DG2 behaves similarly when growth rate of floating-point

operations is not overestimated (linear and quadratic cases).

However, DG2 starts to overestimate the roundoff errors when

a cubic growth is assumed, which causes it to treat weakly

interacting variables as separable.

O(n) O(n2) O(n3)

Fun. ρ1 ρ2 ρ3 ρ1 ρ2 ρ3 ρ1 ρ2 ρ3

f1 — 100 100 ✓ — 100 100 ✓ — 100 100 ✓

f2 — 100 100 ✓ — 100 100 ✓ — 100 100 ✓

f3 — 0 0 ✕ — 0.0016 0.0016 ✕ — 0.08 0.08 ✕

f4 100 100 100 ✓ 100 100 100 ✓ 100 100 100 ✓

f5 99.97 100 100 ✓ 99.93 100 99.99 ✓ 98.69 100 99.97 ✓

f6 99.98 50.45 51.30 ✕ 99.97 54.56 55.35 ✕ 99.77 68.86 69.40 ✕

f7 100 100 100 ✓ 100 100 100 ✓ 100 100 100 ✓

f8 70.72 100 98.01 ✕ 70.07 100 97.97 ✕ 63.58 100 97.53 ✕

f9 99.99 100 100 ✓ 99.99 100 100 ✓ 99.78 100 99.98 ✓

f10 99.93 100 99.99 ✓ 99.07 100 99.93 ✓ 85.56 100 99.02 ✕

f11 99.95 100 99.99 ✓ 99.47 100 99.96 ✓ 97.72 100 99.84 ✕

f12 100 100 100 – 100 100 100 – 100 100 100 –

f13 100 100 100 – 100 100 100 — 99.99 100 100 –

f14 99.97 100 99.99 – 99.75 100 99.98 — 99.12 100 99.92 –

f15 100 — 100 ✓ 100 — 100 ✓ 100 — 100 ✓

Success rate 9 9 7

Median 100 100 100 100 100 100 99.8 100 100

Mean 97.5 89.3 90.0 97.4 89.6 90.2 95.4 90.6 91.0

Std. 8.4 28.9 27.9 8.6 28.5 27.5 10.8 27.4 26.4

c) Comparison with the state-of-the-art: Finally, we

compare the performance of the contribution-based cooper-

ative co-evolution that uses DG2 as its decomposition method

with some well-known algorithms such as Multiple Offspring

Framework (MOS) [21], MA-SW-Chains [22] and CMA-

ES [68]. The parameter settings of these algorithms match

the reported values in the original papers. MOS and MA-SW-

Chains ranked first in the CEC’2013 and CEC’2010 competi-

tion on large-scale optimization respectively. Table V contains

the experimental results using 25 independent runs on f4-

f11 from the CEC’2013 large-scale benchmark suite [65]. For

this comparison, we have focused on the partially separable

functions. This is because no decomposition is done for f1-

f3 (fully separable) and f12-f15 (overlapping), in which case

CBCC3-DG2 reduces to SaNSDE. It should be noted that DG2

managed to discover the underlying variable interaction struc-

ture of these functions. Although some preliminary studies

focused on the effect of decomposition on fully separable and

nonseparable functions [34, 70], the optimal decomposition of

these categories of functions is an open question beyond the

scope of this work.

Table V shows that no single algorithm outperforms other

algorithms. It is notable that on f8, on which two of the weakly

interacting variables were grouped as separable, CBCC3-

DG2 performs the best. The results indicated that although

CBCC3-DG2 uses SaNSDE which is not a competitive opti-

mizer as compared to MOS, MA-SW-Chains, or CMA-ES, a

contribution-based framework with an accurate decomposition

can make it comparable with the state-of-the-art. It has been

shown that a cooperative co-evolutionary framework can scale

up the performance of many optimizers, such as particle swarm

optimization, evolution strategies, differential evolution, and

TABLE VII: Detailed grouping matrix of DG2 on f10 based

on O(n3) for estimating esup. The rows indicate the groups

formed by DG2 and the columns represent the permutation

groups from which the variables in each group were extracted.

P13 is a component with weakly interacting variables that is

not identified by DG2 properly due to the cubic assumption.

Group P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20

Groups Size 50 50 25 25 100 100 25 25 50 25 100 25 100 50 25 25 25 100 50 25

G01 50 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G02 100 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G03 25 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G04 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0

G05 100 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0

G06 25 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G07 100 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G08 55 0 0 0 0 0 0 0 0 0 0 0 0 55 0 0 0 0 0 0 0

G09 50 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G10 25 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0

G11 25 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0

G12 50 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0

G13 25 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0

G14 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0

G15 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0

G16 50 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0

G17 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0

G18 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25

G19 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0

G20 6 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0

G21 25 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0

G22 2 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0

G23 2 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0

Total 965 # separable variables = 1000 - 965 = 35

evolution programs [31, 37, 53, 55, 71]. In this paper, we have

also established the efficacy of DG2 against other decompo-

sition algorithms. We believe that as a general and effective

decomposition method, DG2 can be used with other promising

large-scale optimization algorithms such as MOS and MA-

SW-Chains, to further boost their performance. This will be

the subject of our future work.

D. Sensitivity Analysis of DG2

It was mentioned in Section III-B that the exact calculation

of the least upper bound (esup) is not possible due to the

black-box nature of the objective function. To alleviate this

problem, we proposed to estimate the number of floating-point

operations based on assumptions about the complexity class of

the objective function. We argued that most of the numerical

calculations that do not involve complex matrix operations are

of order O(n2). Additionally, error cancellations, subtraction

of close numbers (Sterbenz’s Theorem [63]), and the fused

multiply-add operation make the actual computational error

much lower than the worst case scenario. In the previous

section, we assumed a linear complexity. Here, we provide

empirical results based on quadratic and cubic complexity

classes to investigate the robustness of DG2 with respect to

deviations from our initial assumption.

a) sensitivity to complexity of the objective function:

Table VI shows the grouping accuracy of DG2 based on

different complexity classes. We can see that DG2 behaves

similarly when linear and quadratic complexity classes are

assumed for the number of floating-point operations. However,

when a cubic complexity class is assumed, the grouping accu-

racy drops. From Section III-B, we know that the assumption

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2694221, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 11

TABLE VIII: Sensitivity analysis of DG2 to various imbalance levels (CEC’2013). DG2 tolerates low, medium, and high

imbalance levels; however, its grouping accuracy drops when the imbalance level is extreme (104N (0,1)).

wi = 1 wi = 10N (0,1) wi = 102N (0,1) wi = 103N (0,1) wi = 104N (0,1)

Fun. ρ1 ρ2 ρ3 ρ1 ρ2 ρ3 ρ1 ρ2 ρ3 ρ1 ρ2 ρ3 ρ1 ρ2 ρ3

f4 100 100 100 ✓ 100 100 100 ✓ 100 100 100 ✓ 100 100 100 ✓ 100 100 100 ✓

f5 100 100 100 ✓ 100 100 100 ✓ 100 100 100 ✓ 99.97 100 99.99 ✓ 100 100 100 ✓

f6 100 50.16 51.02 ✕ 100 50.16 51.02 ✕ 100 50.22 51.08 ✕ 99.98 50.45 51.30 ✕ 99.98 50.30 51.15 ✕

f7 100 100 100 ✓ 100 100 100 ✓ 100 100 100 ✓ 100 100 100 ✓ 96.64 100 99.94 ✕

f8 100 100 100 ✓ 100 100 100 ✓ 99.99 100 99.99 ✓ 70.72 100 98.01 ✕ 95.85 100 99.71 ✕

f9 100 100 100 ✓ 100 100 100 ✓ 100 100 100 ✓ 99.99 100 99.99 ✓ 78.43 100 98.53 ✕

f10 100 100 100 ✓ 100 100 100 ✓ 100 100 100 ✓ 99.93 100 99.99 ✓ 80.28 100 98.66 ✕

f11 100 100 100 ✓ 100* 100 100* ✕* 100 100 100 ✓ 99.95 100 99.99 ✓ 80.34 100 98.66 ✕

f13 100 100 100 – 100 100 100 – 100 100 100 – 100 100 100 — 97.94 100 99.83 –
f14 100 100 100 – 100 100 100 – 100 99.99 99.99 – 99.97 100 99.99 — 99.85 100 99.98 –

Success rate 7 6 7 6 2

Mean 100 95.0 95.1 100 95.0 95.1 100.0 95.0 95.1 97.1 95.0 94.9 92.9 95.0 94.6
Median 100 100 100 100 100 100 100 100 100 100 100 100 97.3 100 99.8
Std. 0.0 15.8 15.5 0.0 15.8 15.5 0.0 15.7 15.5 9.3 15.7 15.3 9.3 15.7 15.3

* The values are not exact due to rounding. Two interactions are miscalculated which cause a small error. Hence, the final grouping does not match the ideal case.

about floating-point complexity class of the function affects

the least upper bound (esup). Table VI shows that the cubic

complexity class causes overestimation of esup, which affected

the grouping accuracy of DG2 on f10 and f11. Overestimation

of roundoff errors will cause DG2 to treat weakly interacting

variables as separable. The detailed grouping matrix of f10, as

shown in Table VII, reveals that DG2 detected 35 separable

variables which mostly belong to P13. Table VII shows that

P13 contains 100 variables 55 of which are detected in G08,

35 of which are considered to be fully separable, and the

remaining 10 variables are grouped into three smaller groups

(G20, G22, and G23). It is interesting to note that P13 has

the lowest weight (6.81× 10−5) among all other components

in the CEC’2013 large-scale benchmark suite. The function

f11 behaves in a similar way, but we do not include the

details for the sake of brevity. Overall, Table VI shows that

DG2 is not susceptible to moderate overestimation of esup, but

underestimation of esup is less detrimental to its performance.

b) Sensitivity to the imbalance level: Next, we ana-

lyze the sensitivity of DG2 with respect to imbalance level

among the components of the benchmark functions. The

functions f4-f11 and f13-f14 have the following general form:
∑m

i=1 wifi(xi), where wi = 10cN (0,1). The parameter c is

a constant that determines the variance among the weights.

In the CEC’2013 large-scale benchmark suite, c is set to 3.

For our sensitivity analysis, we tested the performance of

DG2 with c ∈ {0, 1, 2, 3, 4}, the result of which is reported

in Table VIII. The table shows that the overall grouping

accuracy of DG2 is stable with various imbalance levels,

except when c = 4. It is notable that the detection accuracy

of separable variables (ρ2) is very high and stable across

various imbalance levels. However, the detection accuracy

of interacting variables (ρ1) drops when the imbalance level

increases. Our detailed analysis on f4-f11 for c = 4 showed

that the nonseparable components which are missed by DG2

are always among the components with the smallest weight.

For example, the detailed grouping matrix of f9 with c = 4
(Table IX) shows that the missing components (P3, P4, P13,

P19, and P20) are the top five components with the smallest

TABLE IX: Detailed grouping matrix of DG2 on f9 for wi =
104N (0,1). The rows indicate the groups formed by DG2 and

the columns represent the permutation groups from which the

variables in each group were extracted. When the imbalance

level is extreme, DG2 only misses components with weakly

interacting variables (P3, P4, P13, P19, and P20).

Group P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20

Groups Size 50 50 25 25 100 100 25 25 50 25 100 25 100 50 25 25 25 100 50 25

⌊logwi⌋ 1 -3 -6 -7 -1 -1 -2 7 2 -3 1 0 -6 3 10 3 -1 4 -5 -7

G01 50 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G02 100 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G03 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0

G04 50 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0

G05 100 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0

G06 50 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G07 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0

G08 100 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G09 25 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0

G10 25 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0

G11 25 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0

G12 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0

G13 50 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0

G14 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0

G15 25 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0

G16 4 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0

Total 779 # separable variables = 1000 - 779 = 221

weights. For simplicity, the log of the weights associated to

each component is shown at the top of each column. Other

functions have a similar behavior, but we do not include them

in the analysis for the sake of brevity. Overall, this analysis

shows that DG2 is not sensitive to moderate imbalance levels.

When the imbalance level is very high, the inaccuracy of DG2

comes from considering very weakly interacting variables as

fully separable. It should be noted that the generated weights

when c = 4 are very extreme and rarely occur in real-world

scenarios. Nonetheless, if this happens, treating very weakly

interacting variables as fully separable is not detrimental to the

optimization performance as we saw in the previous section.

V. CONCLUSION

In this paper, we proposed an improved version of the

differential grouping algorithm. This new algorithm, DG2, has

the following major advantages over its predecessor:

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2694221, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 12

• Efficiency: lower computational cost, especially on fully

separable functions;

• Accuracy: higher interaction detection accuracy;

• Robustness: lower sensitivity to computational roundoff

errors;

• Applicability: the ability to detect objective functions

with overlapping components, i.e., components that share

decision variables. This makes it applicable to a wide

array of continuous functions; and

• Practicality: no need for the user to specify a threshold

parameter (ǫ); in other words, DG2 is parameter-free.

With respect to efficiency, we have shown mathematically

that DG2 achieves the lower bound on the total number of

function evaluations needed to test all pairs of variables for in-

teraction. This effectively reduces the total number of required

function evaluations by half. In addition to the improvements

on efficiency, DG2 uses the information that is calculated

in the process of applying the DG theorem to estimate a

reliable threshold value (ǫ) that takes the computational error

into account. The experimental results showed that DG2

significantly outperforms its predecessor on the CEC’2010 and

the CEC’2013 large-scale benchmark suites.

Finally, we have shown empirically that in conjunction

with DG2, the contribution-based cooperative co-evolution

performs as well as the top performers of the CEC’2010 and

CEC’2013 competition on large-scale optimization, as well as

the well-known CMA-ES, on partially separable function.

DG2 can also detect overlapping functions and can return

a complete interaction structure matrix. However, due to the

use of the connected components algorithm, it returns a single

group containing all the decision variables. This limits the

optimizer from exploiting the structural information that is

found by DG2. Potential future research can focus on finding

an effective decomposition for overlapping functions. Lack

of a unique optimal decomposition for overlapping functions

makes this a challenging task.

ACKNOWLEDGMENT

This work was partially supported by EPSRC (grant nos.

EP/K001523/1 and EP/J017515/1), ARC Discovery grant no.

DP120102205, National Natural Science Foundation of China

(grant nos. 61305086 and 61329302), and Open Research

Project of the Hubei Key Laboratory of Intelligent Geo-

Information Processing grant no. KLIGIP201602. Xin Yao was

supported by a Royal Society Wolfson Research Merit Award.

The authors would like to thank Mr. Keyhan Kouhkiloui for

implementing the C++ version of the DG2 algorithm.

SOFTWARE IMPLEMENTATION

The MATLAB/Octave and C++ implementations of the

DG2 algorithm can be accessed from the following link:

https://bitbucket.org/mno/differential-grouping2

REFERENCES

[1] M. Lozano, D. Molina, and F. Herrera, “Editorial scalability of evolu-
tionary algorithms and other metaheuristics for large-scale continuous
optimization problems,” Soft Computing, vol. 15, no. 11, pp. 2085–2087,
Nov. 2011.

[2] X. Li, K. Tang, P. Suganthan, and Z. Yang, “Editorial for the special
issue of information sciences journal (ISJ) on nature-inspired algorithms
for large scale global optimization,” Information Sciences, vol. 316, pp.
437–439, Sep. 2015.

[3] G. N. Vanderplaats, “Very large scale optimization,” National Aero-
nautics and Space Administration (NASA), Langley Research Center,
Colorado, US, Tech. Rep. NASA/CR-2002-211768, 2002.

[4] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
Jul. 2006.

[5] J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, Q. V. Le, and A. Y. Ng,
“On optimization methods for deep learning,” in Proc. 28th Int. Conf.

Machine Learning, 2011, pp. 265–272.
[6] Z.-H. Zhou, N. V. Chawla, Y. Jin, and G. J. Williams, “Big data oppor-

tunities and challenges: Discussions from data analytics perspectives,”
IEEE Computational intelligence magazine, vol. 9, no. 4, pp. 62–74,
Nov. 2014.

[7] Z. Yang, B. Sendhoff, K. Tang, and X. Yao, “Target shape design op-
timization by evolving b-splines with cooperative coevolution,” Applied

Soft Computing, vol. 48, pp. 672–682, Nov. 2016.
[8] H.-F. Teng, Y. Chen, W. Zeng, Y.-J. Shi, and Q.-H. Hu, “A dual-

system variable-grain cooperative coevolutionary algorithm: satellite-
module layout design,” IEEE transactions on evolutionary computation,
vol. 14, no. 3, pp. 438–455, Dec. 2010.

[9] S. Kimura, K. Ide, A. Kashihara, M. Kano, M. Hatakeyama, R. Masui,
N. Nakagawa, S. Yokoyama, S. Kuramitsu, and A. Konagaya, “Inference
of s-system models of genetic networks using a cooperative coevolu-
tionary algorithm,” Bioinformatics, vol. 21, no. 7, pp. 1154–1163, Apr.
2005.

[10] C. Wang and J. Gao, “High-dimensional waveform inversion with
cooperative coevolutionary differential evolution algorithm,” IEEE Geo-

science and Remote Sensing Letters, vol. 9, no. 2, pp. 297–301, Mar.
2012.

[11] Y. Wang, J. Huang, W. S. Dong, J. C. Yan, C. H. Tian, M. Li, and W. T.
Mo, “Two-stage based ensemble optimization framework for large-scale
global optimization,” European Journal of Operational Research, vol.
228, no. 2, pp. 308–320, Jul. 2013.

[12] H. Y. Benson, D. F. Shanno, and R. J. Vanderbei, “A comparative study
of large-scale nonlinear optimization algorithms,” in High performance

algorithms and software for nonlinear optimization. Springer, 2003,
pp. 95–127.

[13] W. W. Hager, D. W. Hearn, and P. M. Pardalos, Large scale optimization:

state of the art. Springer US, 2013.
[14] S. Mahdavi, M. E. Shiri, and S. Rahnamayan, “Metaheuristics in large-

scale global continues optimization: A survey,” Information Sciences,
vol. 295, pp. 407–428, Feb. 2015.

[15] A. LaTorre, S. Muelas, and J.-M. Peña, “A comprehensive comparison
of large scale global optimizers,” Information Sciences, vol. 316, pp.
517–549, Sep. 2015.

[16] K. Deb, A. R. Reddy, and G. Singh, “Optimal scheduling of casting
sequence using genetic algorithms,” Materials and Manufacturing Pro-

cesses, vol. 18, no. 3, pp. 409–432, 2003.
[17] K. Deb and C. Myburgh, “Breaking the billion-variable barrier in real-

world optimization using a customized evolutionary algorithm,” in Proc.
Genetic and Evolutionary Computation Conf., 2016, pp. 653–660.

[18] X. Li and X. Yao, “Cooperatively coevolving particle swarms for large
scale optimization,” IEEE Transactions on Evolutionary Computation,
vol. 16, no. 2, pp. 210–224, Apr. 2012.

[19] S.-Z. Zhao, J. J. Liang, P. N. Suganthan, and M. F. Tasgetiren, “Dynamic
multi-swarm particle swarm optimizer with local search for large scale
global optimization,” in Proc. IEEE Congr. Evolutionary Computation,
2008, pp. 3845–3852.

[20] R. Cheng and Y. Jin, “A competitive swarm optimizer for large scale
optimization,” IEEE Transactions on Cybernetics, vol. 45, no. 2, pp.
191–204, May. 2015.

[21] A. LaTorre, S. Muelas, and J.-M. Peña, “Large scale global optimization:
Experimental results with MOS-based hybrid algorithms,” in Proc. IEEE

Congr. Evolutionary Computation, 2013, pp. 2742–2749.
[22] D. Molina, M. Lozano, and F. Herrera, “MA-SW-Chains: Memetic

algorithm based on local search chains for large scale continuous global
optimization,” in Proc. IEEE Congr. Evolutionary Computation, 2010,
pp. 3153–3160.

[23] L.-Y. Tseng and C. Chen, “Multiple trajectory search for large scale
global optimization,” in Proc. IEEE Congr. Evolutionary Computation,
2008, pp. 3052–3059.

[24] J. Brest, A. Zamuda, B. Bošković, M. S. Maučec, and V. Žumer, “High-
dimensional real-parameter optimization using self-adaptive differential

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2694221, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 13

evolution algorithm with population size reduction,” in Proc. IEEE

Congr. Evolutionary Computation, 2008, pp. 2032–2039.
[25] J. Zhang and A. C. Sanderson, “JADE: adaptive differential evolution

with optional external archive,” IEEE Transactions on Evolutionary
Computation, vol. 13, no. 5, pp. 945–958, Oct. 2009.

[26] I. Loshchilov, “LM-CMA: An alternative to L-BFGS for large-scale
black box optimization,” Evolutionary computation, 2015, to be pub-
lished.

[27] W. Dong, T. Chen, P. Tino, and X. Yao, “Scaling up estimation of
distribution algorithms for continuous optimization,” IEEE Transactions

on Evolutionary Computation, vol. 17, no. 6, pp. 797–822, Dec. 2013.
[28] A. Kabán, J. Bootkrajang, and R. J. Durrant, “Towards large scale

continuous EDA: A random matrix theory perspective,” Evolutionary

Computation, vol. 24, no. 2, pp. 255–291, Jun. 2015.
[29] T. Bhowmik, H. Liu, Z. Ye, and S. Oraintara, “Dimensionality reduction

based optimization algorithm for sparse 3-d image reconstruction in
diffuse optical tomography,” Scientific reports, vol. 6, Mar. 2016.

[30] R. G. Regis and C. A. Shoemaker, “Local function approximation in
evolutionary algorithms for the optimization of costly functions,” IEEE

Transactions on Evolutionary Computation, vol. 8, no. 5, pp. 490–505,
Oct. 2004.

[31] Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary optimization
using cooperative coevolution,” Information Sciences, vol. 178, pp.
2985–2999, Aug. 2008.

[32] M. N. Omidvar, X. Li, Y. Mei, and X. Yao, “Cooperative co-evolution
with differential grouping for large scale optimization,” IEEE Transac-

tions on Evolutionary Computation, vol. 18, no. 3, pp. 378–393, Jun.
2014.

[33] W. Chen, T. Weise, Z. Yang, and K. Tang, “Large-scale global optimiza-
tion using cooperative coevolution with variable interaction learning,”
in Proc. Int. Conf. Parallel Problem Solving from Nature, vol. 6239.
Springer, 2011, pp. 300–309.

[34] M. N. Omidvar, Y. Mei, and X. Li, “Effective decomposition of large-
scale separable continuous functions for cooperative co-evolutionary
algorithms,” in Proc. IEEE Congr. Evolutionary Computation, 2014, pp.
1305–1312.

[35] B. Kazimipour, M. N. Omidvar, X. Li, and A. Qin, “A novel hybridiza-
tion of opposition-based learning and cooperative co-evolutionary for
large-scale optimization,” in Proc. IEEE Congr. Evolutionary Computa-

tion, 2014, pp. 2833–2840.
[36] M. N. Omidvar, X. Li, and X. Yao, “Smart use of computational

resources based on contribution for cooperative co-evolutionary algo-
rithms,” in Proc. Genetic and Evolutionary Computation Conference,
2011, pp. 1115–1122.

[37] Y. Mei, M. N. Omidvar, X. Li, and X. Yao, “Competitive divide-and-
conquer algorithm for unconstrained large scale black-box optimization,”
ACM Transaction on Mathematical Software, vol. 42, no. 2, p. 13, Jun.
2015.

[38] L. Sun, S. Yoshida, X. Cheng, and Y. Liang, “A cooperative particle
swarm optimizer with statistical variable interdependence learning,”
Information Sciences, vol. 186, no. 1, pp. 20–39, Mar. 2012.

[39] T. Ray and X. Yao, “A cooperative coevolutionary algorithm with
correlation based adaptive variable partitioning,” in Proc. IEEE Congr.

Evolutionary Computation, May. 2009, pp. 983–989.
[40] S. Mahdavi, M. E. Shiri, and S. Rahnamayan, “Cooperative co-evolution

with a new decomposition method for large-scale optimization,” in Proc.

IEEE Congr. Evolutionary Computation, 2014, pp. 1285–1292.
[41] F. Wei, Y. Wang, and T. Zong, “A novel cooperative coevolution for

large scale global optimization,” in Proc. IEEE Int. Conf. Systems, Man

and Cybernetics, 2014, pp. 738–741.
[42] K. Zhang and B. Li, “Cooperative coevolution with global search for

large scale global optimization,” in Proc. IEEE Congr. Evolutionary

Computation, 2012, pp. 1–7.
[43] E. Sayed, D. Essam, and R. Sarker, “Dependency identification tech-

nique for large scale optimization problems,” in Proc. IEEE Congr.
Evolutionary Computation, 2012, pp. 1–8.

[44] Y. Wang, B. Li, and X. Lai, “Variance priority based cooperative co-
evolution differential evolution for large scale global optimization,” in
Proc. IEEE Congr. Evolutionary Computation. IEEE, 2009, pp. 1232–
1239.

[45] J. Fan, J. Wang, and M. Han, “Cooperative coevolution for large-scale
optimization based on kernel fuzzy clustering and variable trust region
methods,” IEEE Transactions on Fuzzy Systems, vol. 22, no. 4, pp. 829–
839, Aug. 2014.

[46] A. Zamuda, J. Brest, B. Bošković, and V. Žumer, “Large scale global
optimization using differential evolution with self-adaptation and coop-
erative co-evolution,” in Proc. IEEE Congr. Evolutionary Computation,

2008, pp. 3718–3725.
[47] L. M. Antonio and C. A. C. Coello, “Use of cooperative coevolution

for solving large scale multiobjective optimization problems,” in Proc.

IEEE Congr. Evolutionary Computation, 2013, pp. 2758–2765.
[48] M. A. Potter and K. A. De Jong, “A cooperative coevolutionary approach

to function optimization,” in Proc. Int. Conf. Parallel Problem Solving

from Nature, vol. 2, 1994, pp. 249–257.
[49] M. Perc and A. Szolnoki, “Coevolutionary games – a mini review,”

BioSystems, vol. 99, no. 2, pp. 109–125, Feb. 2010.
[50] K. Tang, X. Li, P. N. Suganthan, Z. Yang, and T. Weise, “Benchmark

functions for the CEC’2010 special session and competition on large-
scale global optimization,” Nature Inspired Computation and Applica-
tions Laboratory, USTC, China, Tech. Rep., 2009.

[51] M. N. Omidvar, X. Li, and K. Tang, “Designing benchmark problems
for large-scale continuous optimization,” Information Sciences, vol. 316,
pp. 419–436, Sep. 2015.

[52] Y. Shi, H. Teng, , and Z. Li, “Cooperative co-evolutionary differential
evolution for function optimization,” in Proc. Int. Conf. Natural Com-
putation, 2005, pp. 1080–1088.

[53] F. van den Bergh and A. P. Engelbrecht, “A cooperative approach
to particle swarm optimization,” IEEE Transactions on Evolutionary

Computation, vol. 8, no. 3, pp. 225–239, Jun. 2004.
[54] M. N. Omidvar, X. Li, and X. Yao, “Cooperative co-evolution with delta

grouping for large scale non-separable function optimization,” in Proc.

IEEE Congr. Evolutionary Computation, 2010, pp. 1762–1769.
[55] J. Liu and K. Tang, “Scaling up covariance matrix adaptation evolution

strategy using cooperative coevolution,” in Proc. Int. Conf. Intelligent

Data Engineering and Automated Learning. Springer, 2013, pp. 350–
357.

[56] Z. Yang, K. Tang, and X. Yao, “Multilevel cooperative coevolution for
large scale optimization,” in Proc. IEEE Congr. Evolutionary Computa-

tion, June 2008, pp. 1663–1670.
[57] H. H. Rosenbrock, “An automatic method for finding the greatest or least

value of a function,” The Computer Journal, vol. 3, no. 3, pp. 175–184,
Mar. 1960.

[58] Y. Sun, M. Kirley, and S. K. Halgamuge, “Extended differential grouping
for large scale global optimization with direct and indirect variable
interactions,” in Proc. Genetic and Evolutionary Computation Conf.,
2015, pp. 313–320.

[59] J. E. Hopcroft and R. E. Tarjan, “Algorithm 447: Efficient algorithms
for graph manipulation,” Communications of the ACM, vol. 16, no. 6,
pp. 372–378, Jun. 1973.

[60] “IEEE standard for floating-point arithmetic, IEEE std. 754-2008,” Aug.
2008.

[61] R. M. Corless and N. Fillion, A graduate introduction to numerical

methods. Springer, 2013.
[62] N. J. Higham, Accuracy and stability of numerical algorithms. SIAM,

2002.
[63] P. H. Sterbenz, Floating-point computation. Prentice Hall, 1973.
[64] N. Hansen and S. Kern, “Evaluating the CMA evolution strategy on

multimodal test functions,” in Proc. Int. Conf. Parallel Problem Solving

from Nature, 2004, pp. 282–291.
[65] X. Li, K. Tang, M. N. Omidvar, Z. Yang, and K. Qin, “Benchmark

functions for the CEC’2013 special session and competition on large-
scale global optimization,” RMIT University, Melbourne, Australia,
Tech. Rep., 2013.

[66] M. N. Omidvar, B. Kazimipour, X. Li, and X. Yao, “CBCC3 – a
contribution-based cooperative co-evolutionary algorithm with improved
exploration/exploitation balance,” in Proc. IEEE Congr. Evolutionary

Computation, 2016, pp. 3541–3548.
[67] Z. Yang, K. Tang, and X. Yao, “Self-adaptive differential evolution with

neighborhood search,” in Proc. IEEE Congr. Evolutionary Computation,
2008, pp. 1110–1116.

[68] N. Hansen, S. Muller, and P. Koumoutsakos, “Reducing the time
complexity of the derandomized evolution strategy with covariance
matrix adaptation (CMA-ES).” Evolutionary Computation, vol. 11, no. 1,
pp. 1–18, 2003.

[69] B. Kazimipour, M. N. Omidvar, X. Li, and A. Qin, “A sensitivity analysis
of contribution-based cooperative co-evolutionary algorithms,” in Proc.

IEEE Congr. Evolutionary Computation, 2015, pp. 417–424.
[70] Y. Sun, M. Kirley, and S. K. Halgamuge, “On the selection of decom-

position methods for large scale fully non-separable problems,” in Proc.
Companion on Genetic and Evolutionary Computation Conf., 2015, pp.
1213–1216.

[71] Y. Liu, X. Yao, Q. Zhao, and T. Higuchi, “Scaling up fast evolutionary
programming with cooperative coevolution,” in Proc. IEEE Congr. on

Evolutionary Computation, 2001, pp. 1101–1108.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2694221, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 14

Mohammad N. Omidvar is a research fellow in
evolutionary computation at the school of computer
science, University of Birmingham, UK. Prior to
joining the University of Birmingham, he completed
his Ph.D. in computer science at RMIT University
in Melbourne, Australia. He also holds a bachelor
in applied mathematics and a bachelor in computer
science with first class honors from RMIT Uni-
versity. In 2017 he won the IEEE Transaction on
Evolutionary Computation Outstanding Paper Award
for his work on large-scale global optimization. He

has also received an Australian Postgraduate Award in 2010 and the best
Computer Science Honours Thesis Award from the School of Computer
Science and IT, RMIT University. He is a member of IEEE Taskforce on
Large-Scale Global Optimization, and his current research interests are large-
scale global optimization, decomposition methods for optimization, and multi-
objective optimization.

Ming Yang received the B.Sc., M.Sc., and Ph.D.
degrees in computer science from China University
of Geosciences, Wuhan, China, in 2005, 2008, and
2012, respectively. He carried out a postdoctoral
research at the School of Computer Science, Uni-
versity of Birmingham, U.K. from Dec., 2014 to
Dec., 2015. He is currently an Associate Professor
with the School of Computer Science, China Univer-
sity of Geosciences, Wuhan, China. He also works
in the Hubei Key Laboratory of Intelligent Geo-
Information Processing, Wuhan, China. His research

interests include swarm intelligence, large-scale optimization, multi-objective
optimization and their applications.

Dr. Yi Mei (M09) is a Lecturer at the School of
Engineering and Computer Science, Victoria Uni-
versity of Wellington, Wellington, New Zealand. He
received his BSc and PhD degrees from University
of Science and Technology of China in 2005 and
2010, respectively. His research interests include
evolutionary computation in scheduling, routing and
combinatorial optimisation, as well as evolution-
ary machine learning, genetic programming, feature
selection and dimensional reduction. He has more
than 50 fully referred publications, including the top

journals in EC and Operations Research (OR) such as IEEE TEVC, IEEE
Transactions on Cybernetics, European Journal of Operational Research, ACM
Transactions on Mathematical Software. He currently serves as a Vice-Chair
of the IEEE CIS Emergent Technologies Technical Committee, and a member
of three IEEE CIS Task Forces. He is a guest editor of a special issue of the
Genetic Programming Evolvable Machine journal. He serves as a reviewer of
over 25 international journals including the top journals in EC and OR.

Xiaodong Li (M03-SM07) received his B.Sc. degree
from Xidian University, Xi’an, China, and Ph.D.
degree in information science from University of
Otago, Dunedin, New Zealand, respectively. He is a
Professor with the School of Science (Computer Sci-
ence and Software Engineering), RMIT University,
Melbourne, Australia. His research interests include
evolutionary computation, neural networks, data an-
alytics, multiobjective optimization, multimodal op-
timization, and swarm intelligence. He serves as
an Associate Editor of the IEEE Transactions on

Evolutionary Computation, Swarm Intelligence (Springer), and International
Journal of Swarm Intelligence Research. He is a founding member of IEEE
CIS Task Force on Swarm Intelligence, a vice-chair of IEEE Task Force on
Multi-modal Optimization, and a former chair of IEEE CIS Task Force on
Large Scale Global Optimization. He is the recipient of 2013 ACM SIGEVO
Impact Award and 2017 IEEE CIS “IEEE Transactions on Evolutionary
Computation Outstanding Paper Award”.

Xin Yao is a Chair Professor of Computer Science at
the Southern University of Science and Technology,
Shenzhen, China, and a part-time Professor of Com-
puter Science at the University of Birmingham, UK.
He is an IEEE Fellow, and a Distinguished Lecturer
of IEEE Computational Intelligence Society (CIS).
His major research interests include evolutionary
computation, ensemble learning, and their applica-
tions in software engineering. With his PhD student
and colleague, he pioneered the recent effort in large
scale evolutionary optimisation in a 2008 paper (Z.

Yang, K. Tang and X. Yao, “Large scale evolutionary optimization using
cooperative coevolution,” Information Sciences, 178(15):2985-2999, August
2008.) With his research fellows and colleagues, he also won the 2017
IEEE Transactions on Evolutionary Computation Outstanding Paper Award
on this topic (M. N. Omidvar, X. Li, Y. Mei and X. Yao, “Cooperative Co-
evolution with Differential Grouping for Large Scale Optimization,” IEEE
Transactions on Evolutionary Computation, 18(3):378-393, June 2014.) In
addition, his research won the 2001 IEEE Donald G. Fink Prize Paper
Award, 2010 and 2016 IEEE Transactions on Evolutionary Computation
Outstanding Paper Awards, 2011 IEEE Transactions on Neural Networks
Outstanding Paper Award, and many other best paper awards. He received
the prestigious Royal Society Wolfson Research Merit Award in 2012 and the
IEEE CIS Evolutionary Computation Pioneer Award in 2013. He was the the
President (2014-15) of IEEE CIS, and the Editor-in-Chief (2003-08) of IEEE
Transactions on Evolutionary Computation.

