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ABSTRACT 43 

Samples of PM2.5 and PM10 have been collected in all of four seasons at seven sites within the city 44 

of Jeddah, Saudi Arabia.  The samples have been analysed for a range of trace elements.  There is a 45 

large loading of wind-blown dust and the majority of elements are predominantly associated with 46 

coarse particles.  Enrichment factors, however, show that some elements are markedly enriched 47 

above crustal abundance.  Using mean data for the PM2.5 and PM10 fractions from each of the seven 48 

sampling sites, health risks have been estimated for particulate matter mass, the elements Cr, Mn, 49 

Ni, Pb, As, Cd and V measured in this study, and polycyclic aromatic hydrocarbons using data from 50 

an earlier study within Jeddah.  Cancer risks are calculated from mean airborne concentrations and 51 

cancer slope factors for the carcinogenic metals and PAH, but the cancer risks are relatively modest 52 

compared to the lifetime risk of mortality due to PM2.5 exposure.  The risks associated with 53 

exposure to V and Mn are considered to be small, while concentrations of cadmium far exceed the 54 

European Union Limit Value and World Health Organisation guideline.  Cadmium shows a very 55 

high crustal enrichment factor but is present predominantly in the coarse particle fraction suggesting 56 

that local soils and surface dusts are unusually enriched in Cd relative to the global average. Using 57 

national data for mortality rates, the excess mortality due to PM2.5 exposure has been calculated and 58 

amounts to over 1100 deaths annually for the city of Jeddah.  59 

 60 

Keywords:  Particulate matter; PM2.5; PM10; health risk  61 
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1. INTRODUCTION 62 

Saudi Arabia is a country with a fast growing population enumerated as 30.8 million in 2014.  The 63 

population is heavily focussed on the major cities and especially Riyadh and Jeddah.  The city of 64 

Jeddah is located on the Red Sea coast of Saudi Arabia and has a population of 3.98 million (in 65 

2014).  In addition to its resident population, the sea port and airport of Jeddah act as a gateway for 66 

pilgrims entering Saudi Arabia for the traditional Hajj and Umrah in the Holy City of Makkah.  67 

Jeddah extends considerably further from north to south than from east to west (see Figure 1) with 68 

the Red Sea on its western border.  However, to the north, south and east of Jeddah lie large areas of 69 

desert which provides an extensive source for wind-blown dusts.   70 

 71 

While there have been air quality studies in the inland city of Makkah (Al-Jeelani, 2009; Simpson et 72 

al., 2014), and the coastal town of Yanbu to the north of Jeddah (Khalil et al., 2016), these have 73 

focussed largely on gas phase pollutants and only the latter study provides limited data for 74 

particulate matter concentrations.  Mean concentrations of PM10 and PM2.5 in Yanbu based on six 75 

years of observations are reported as 70 µg m-3 and 60 µg m-3 respectively (Khalil et al., 2016).  The 76 

small differential between PM2.5 and PM10 measured between 2000 and 2005 in Yanbu is rather 77 

surprising and diverges from the experience of many other sites in western Saudi Arabia (e.g. 78 

Khodeir et al., 2012).   79 

 80 

There have been a number of studies within and close to the city of Jeddah.  Kadi (2014) reports 81 

measurements of total suspended particulate matter (TSP) collected with high volume samplers 82 

together with analyses of Al, Ba, Ca, Cu, Mg, Fe, Mn, Zn, Ti, V, Cr, Co, Ni, As and Sr.  These were 83 

made at seven sites within Jeddah, and concentrations of the various metallic components and 84 

crustal enrichment factors are reported.  Enrichment factors of elements at the more polluted sites 85 

range approximately from 10-60 whilst for Cu and Zn, these are much higher at some of the sites 86 

with a peak value of over 700 for Cu at a site influenced by light industry and road transport 87 
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activities.  The data show very large inter-site differences for the majority of the elements analysed.  88 

In another paper, the same author (Kadi, 2009) also determined soil composition and reports a 89 

strong elevation in lead and zinc content at heavily trafficked sites.   90 

 91 

Khodeir et al. (2012) report data from seven sampling sites within Jeddah from samples collected in 92 

2011.  They report overall mean mass concentrations of 28.4 ± 25.4 µg m-3 for PM2.5 and 87.3 ± 93 

47.3 µg m-3 for PM10 with considerable spatial and temporal variability.  The average ratio of PM2.5 94 

to PM10 of 0.33 appears typical of data from western Saudi Arabia but is very different from the 95 

pattern of behaviour reported above from Yanbu.  Khodeir et al. (2012) provide a factor analysis 96 

model with Varimax orthogonal rotation to determine the sources contributing to concentrations of 97 

PM2.5 and PM10.  These include heavy oil combustion, resuspended soil and a mixed industrial 98 

source for both PM2.5 and PM10, and for PM2.5 road traffic and a second industrial source, and for 99 

PM10, marine aerosol.  The main contributor to PM2.5 was identified as heavy oil combustion while 100 

for PM10 it was wind-blown soil.  Crustal enrichment factors relative to Fe in PM2.5 were very high 101 

for S (average 3000), Se (14000) and Cd (8800).  The same elements were enriched in PM10, with 102 

Se (2400) and Cd (15000) showing the highest enrichment. 103 

 104 

Alghamdi et al. (2015a) sampled PM10, PM2.5 and PM1 fractions and measured the elemental 105 

composition of PM2.5 in Jeddah during March 2012.  The data were disaggregated into dust storm 106 

and non-dust storm periods.  Based upon enrichment factors, it was concluded that in both non-dust 107 

storm and dust storm periods, the main sources of Na, Mg, Si, K, Ca, Ti, Cr, Mn, Fe, Rb and Sr are 108 

of a crustal type whereas S, Cl, Co, Cu, Zn, Ga, As, Pb and Cd as well as V and Ni are 109 

predominantly anthropogenic. The conditions giving rise to dust storms were also considered.  110 

Crustal enrichment factors relative to aluminium in PM2.5 were highest for S (average 2792), As 111 

(2581), Cd (28,699) and Pb (5879).  Enrichment factors were highest during non-dust storm 112 

conditions but the same elements also showed enrichment during dust storm conditions.  From 113 
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samples collected in Riyadh, Alharbi et al. (2015) found that concentrations were considerably 114 

higher in summer than winter which was attributed to dust storm activity.  Crustal species such as 115 

Fe, Mn, Ti, Ca and Mg were found at appreciably higher concentrations in summer.   116 

 117 

Porter et al. (2014) analysed PM10 data collected in 2010-2011 in sites in and around Jeddah and at 118 

a remote background site for comparison.  Data were collected with automated beta gauges making 119 

diurnal variations in concentrations available.  The PM10 concentrations do not show a very 120 

consistent seasonal pattern with major differences between the various sites.  PM10 showed a 121 

reduced concentration at weekends relative to weekday concentrations clearly indicating an 122 

anthropogenic influence.  Data from Yanbu (Khalil et al., 2016) showed marked diurnal variations 123 

that do not link clearly with road traffic activity and appear more likely to be influenced by the 124 

speed of local winds.   125 

 126 

Shaltout et al. (2013, 2015) have reported concentrations of PM2.5 and trace elements in the city of 127 

Taif in western Saudi Arabia.  In the more recent study (Shaltout et al., 2015) they report PM2.5 128 

concentrations of 50, 57 and 37 µg m-3 respectively at traffic, industrial and residential sites. 129 

 130 

Measurements of particulate matter made at a rural background site (Hada Al-Sham) about 60 km 131 

east of the Red Sea coast and the city of Jeddah are reported by Lihavainen et al. (2016).  Mean 132 

PM10 concentrations were 109 ± 89 µg m-3 and PM2.5, 38 ± 68 µg m-3 hence showing a clear 133 

dominance of coarse mode particles.  PM10 concentrations were markedly higher in January to June 134 

than in July to December, but given the limited duration of sampling, it is difficult to attach any 135 

significance to this.  The mass fraction of PM2.5 was around 0.35 and showed maxima in February 136 

and December with minimum concentrations in March, June and July.  PM10 and PM2.5 showed 137 

diurnal variations which appeared to be related to traffic activity with reduced concentrations at the 138 

weekend.  The strength of the diurnal variation, apparently connected with traffic, is rather 139 
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surprising given that it was a rural site.  However, the authors speculate that the strong sea breeze 140 

circulation with diurnal changes in wind direction and speed may have been an important influence.  141 

The fact that black carbon showed a very different diurnal pattern peaking at night suggests that 142 

road traffic was probably not the cause. 143 

 144 

Two studies have reported concentrations of particulate and vapour phase polycyclic aromatic 145 

hydrocarbons (PAH) sampled at sites within and north of Jeddah (Alghamdi et al., 2015; Harrison 146 

et al., 2016).  Alghamdi et al. (2015) carried out a source apportionment study reporting that the 147 

major identifiable sources of PAH were gasoline vehicles (17%), industrial sources, particularly the 148 

oil refinery (33%) and diesel/fuel oil combustion (50%).   149 

 150 

2. EXPERIMENTAL 151 

Full details of the sampling sites and analytical methods are given by Khodeir et al. (2012).  In the 152 

interests of completeness, brief details are provided here.  The sampling sites and brief details of 153 

their characteristics are provided in Table 1, while Figure 1 shows their location within the city of 154 

Jeddah and in relation to major local sources.  In particular, the desalination plant is notable as it 155 

burns heavy fuel oil and emits through two elevated chimneys.  The older parts of Jeddah lie to the 156 

south, where there is a concentration of light and heavy industries, mainly concentrated around the 157 

port and refinery area (see Figure 1).  In contrast, the north of Jeddah is more recently developed, 158 

with less industry and lower population density.  Hussein et al. (2014) provide a valuable map 159 

which shows the distribution of light and heavy industries and major facilities in the city. 160 

 161 

PM2.5 and PM10 were sampled using an automated cartridge collector unit (ACCU) sampler in the 162 

period June 2011 to June 2012.  Daily samples of 24 hours duration were collected on alternate days 163 

on 37 mm, 0.2 µm pore size Gelman Teflo filters.  Chemical analysis was by energy dispersive x-164 
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ray fluorescence after filter mass had been determined on a micro-balance (Mettler-Toledo Model 165 

MT5). 166 

 167 

Samples were collected through all seasons of the year, the number at each site appearing in Table 168 

2. 169 

 170 

3. RESULTS AND DISCUSSION 171 

The sampling sites used in this study were the same as those used by Khodeir et al. (2012) for their  172 

receptor modelling work, but the study now reported differs in important ways from the work of 173 

Khodeir et al. (2012).  Firstly, a substantially larger number of samples was collected, and at all 174 

sites, samples were collected in all of the four seasons of the year.  This was in order to estimate 175 

annually-averaged exposure, rather than that in just one season of the year.  The seasonal variations 176 

have not been analysed as they are not directly relevant to the topic of this paper, which focusses on 177 

the consequences of long-term exposure.  Secondly, Khodeir et al. (2012)  pooled their data and did 178 

not look at it on an individual site basis.  We now look at site-specific information for PM mass and 179 

selected health-relevant trace constituents. 180 

 181 

A large number of elements was analysed and the data are summarised for individual sites in 182 

relation to means and standard deviations in Tables S1 to S7 in the Supplementary Information.  As 183 

this study is focussed upon the health risk associated with particulate matter exposures within the 184 

city of Jeddah, the data analysis has focussed upon PM2.5 and PM10 mass and a number of specific 185 

chemical constituents for which there are significant health concerns, and for which regulatory 186 

guidelines and standards are available.  Those elements are chromium (Cr), nickel (Ni) and arsenic 187 

(As), which are of concern because of their carcinogenicity, lead (Pb) which is a potent neurotoxin, 188 

manganese (Mn) which can affect neuro-behavioural function, vanadium (V), which is a potent 189 

respiratory irritant, and cadmium (Cd) which leads to an increased risk of renal dysfunction.  190 
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Regulatory standards and guidelines relating to chronic exposure to these constituents and to PM2.5 191 

and PM10 mass appear in Table 3.  This contains both concentration guidelines (listed as a 192 

concentration) and cancer slope factors (presented as incremental lifetime risk per unit of 193 

concentration).  In the case of chromium, Cr(VI) is a potent respiratory carcinogen, while Cr(III) is 194 

relatively benign, hence the cancer slope factors and concentration guideline relate only to the 195 

former oxidation state.  196 

 197 

Mean concentrations of the health-related particle size fraction masses and chemical species at the 198 

seven sampling sites and the overall mean of all sites appear in Table 4. There has been no attempt 199 

to elucidate seasonal patterns because of the limited number of samples collected in each season at 200 

each of the sites (see Table 2).  It is clear from Table 4 that PM10 mass far exceeds PM2.5 mass at all 201 

of the sites and that this is also the case for many of the elemental constituents.  The split between 202 

fine particles (PM2.5) and coarse particles (PM2.5-10) is shown for all constituents in Figure S1 and 203 

for the elements of health concern, in Figure 2.  It may be seen from Figure S1 that the typical 204 

crustal elements, Ca, Ti, Fe, Si and Al are 90% or more in the coarse fraction consistent with a large 205 

input of crustal dust to the samples as has been observed in earlier studies (Rushdi et al., 2013; 206 

Hussein et al., 2014).  Those elements of health concern which show a larger contribution from the 207 

fine fraction indicative of anthropogenic sources are Ni, As, V and Pb, for which 40-60% lies in the 208 

fine fraction.  The question of anthropogenic contribution to concentrations has been further 209 

examined through the calculation of crustal enrichment factors according to the method described 210 

by Pant et al. (2015) and Table 5 shows averaged crustal enrichment factors for the elements of 211 

concern calculated separately for the PM10 and PM2.5 size fractions.  If the enrichment factor of 5 is 212 

taken as the threshold for a significant enrichment above crustal ratios, then in the PM10 fraction, V 213 

shows a slight enrichment, with As appreciably enriched, and Pb and Cd showing very large 214 

enrichments.  In the PM2.5 fraction, Ni now shows significant enrichment with a larger enrichment 215 

of V and substantial enrichments of As, Pb and Cd.   216 
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Referring to Table 4, site 2 has the highest concentration of PM10, but the second lowest of PM2.5, 217 

suggesting a local source of coarse dust, possibly resuspension from the dense traffic at this site.  218 

Site 3 is located in a predominantly residential area, with substantial light industry locally, and a 219 

visit to the site revealed recent tyre and waste oil burning.  There is a marked contrast to site 1, also 220 

in a residential area, but without intense vehicle traffic.  Site 1 shows markedly lower 221 

concentrations of both PM10 and PM2.5 mass than the other sites as well as appreciably lower 222 

concentrations of many of the trace elements, especially Pb and As.  The site showing the highest 223 

concentrations of Ni and V is site 6 which is located most closely to the oil refinery and the port and 224 

shipyard, although with the prevailing winds coming predominantly from the NNW, it is unlikely to 225 

have a high exposure to emissions, especially from the oil refinery.  Nonetheless, the elevated 226 

concentrations of these elements are indicative of a fuel oil combustion source influencing this site.  227 

Some evidence of this is also seen in elevated concentrations at site 5 which is also in the area of 228 

Jeddah closest to the oil refinery and port.  Concentrations of Pb and As are elevated at all sites 229 

except for rather lower concentrations at site 1 which is in a residential area in the north of Jeddah 230 

and remote from major industrial activity. The highest concentrations of Pb in both the PM10 and 231 

PM2.5 size fraction appear at sites 3 and 4, and since leaded additives are not used in gasoline in 232 

Saudi Arabia, must result from one or more local industrial sources.   233 

 234 

Hussein et al. (2014) measured particle mass and number (Dp 0.25-32 µm) through the year 2012 at 235 

a sampling site on the campus of King Abdulaziz University in Jeddah.  The diurnal variation of 236 

both PM10 and PM2.5 on workdays showed a pattern typical of an influence of traffic emissions.  237 

The concentration of total particle number, but not of PM2.5 or PM10 mass showed a marked 238 

elevation in a wind sector centred on 250°, leading Hussein et al. (2014) to infer that the industrial 239 

city in the south of Jeddah is the main source of particulate matter.  They also report that the PM10 240 

concentration shows a clear U-shaped dependence upon wind speed, which is characteristic of a 241 

contribution of wind-blown dust at high wind speeds, with dilution of emissions below the 242 
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threshold for dust resuspension (Harrison et al., 2001).  The occurrence of dust storm events in 243 

Saudi Arabia is well documented (Alharbi et al., 2013; Kutiel and Furman, 2003). 244 

 245 

Aburas et al. (2011) measured lead concentrations in the air of Jeddah in 2008-9, seven years after 246 

the phase-out of leaded gasoline in Saudi Arabia.  The mean lead content of PM2.5 was 73 ng m-3 247 

(range 4-446 ng m-3), with crustal enrichment factors (relative to K) at four sites of 761 to 15080.  248 

Concentrations were markedly higher at two sites in the south of Jeddah (King Abdulaziz 249 

University campus and Alfayhaa district) which was attributed to very high traffic density and the 250 

proximity to the industrial zone.  Rushdi et al. (2013) report concentrations and enrichment factors 251 

(relative to Al) for Na, Mg, Al, Si, P, S, K, Ca, Mn, Fe Ni, Cu, Zn and Ba.  The mean enrichment 252 

factor for Ni was 16.3.  The only other analyte showing an elevated enrichment factor was S, 253 

suggesting fuel oil combustion as the source.  Measurements from Taif in western Saudi Arabia 254 

made on samples collected in 2011-12 showed average concentrations of Mn of 34-52 ng m-3; Ni of 255 

3.5-4.0 ng m-3; and Pb of 6.3-8.5 ng m-3 across traffic, industrial and residential sites.  These are in 256 

all cases lower than those measured in our study and suggest that Jeddah is subject to greater levels 257 

of pollutant emissions. 258 

 259 

The results for Cd are quite surprising.  This shows substantial enrichment relative to crustal 260 

abundance in both the PM10 and PM2.5 size fractions (Table 4) and the predominant presence in 261 

coarse particles (see Figure 1) seems to suggest either that the local soils have an abnormal 262 

geochemical enrichment of Cd or that there is a widespread source of coarse Cd arising from an 263 

industrial process.  However, such a process would need to be widespread in order to cause such an 264 

extensive enrichment across all of the sites.  It is notable that Alharbi et al. (2015) measured 265 

concentrations of Cd in PM10 in Riyadh of ca. 180 ng m-3 during dust storm periods which exceeded 266 

the non-dust storm concentrations by a factor of 2.3-fold.  Such concentrations are broadly 267 

consistent with those in our measurements from Jeddah which strongly suggests an abnormal 268 
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enrichment of cadmium in surface soils in Saudi Arabia.  Alghamdi et al. (2015a) also report very 269 

high enrichment factors for Cd in PM2.5 sampled in western Saudi Arabia with average 270 

concentrations in this size fraction in excess of 10 ng m-3, and appreciably higher on dust storm than 271 

non-dust storm days.  Unfortunately, Cd concentrations were not reported by Kadi (2014) and Cd 272 

was not included in the factor analysis conducted by Khodeir et al. (2012), and consequently that 273 

work does not shed light on the likely sources of Cd.   274 

 275 

3.1 Health Risk Assessment 276 

Comparing the mean concentrations in Table 4 with the standards and reference concentrations in 277 

Table 3, it is clear that concentrations of V are not a matter of concern.  However, concentrations of 278 

Cd, even those in the PM2.5 fraction, exceed the recommendation of WHO (2000) and the EU Limit 279 

Value of 5 ng m-3.  The likely health consequences of such an exceedence are very hard to estimate 280 

particularly as there are no quantitative exposure-response functions relating airborne 281 

concentrations of Cd to the progression of kidney disease.  There seems to be ample evidence for 282 

high concentrations of Cd in the atmosphere of Saudi Arabia and this warrants further study in 283 

relation to potential risks for human health.  Concentrations of PM10 far exceed the WHO and EU 284 

requirements for this size fraction, and those for PM2.5 exceed the WHO (2006) recommendation at 285 

all sites and exceed the EU recommendation of 25 µg m-3 at site 3, but not the other sampling sites. 286 

 287 

In Table 6, health risks associated with the mean exposures have been calculated for those 288 

pollutants for which there are quantitative exposure-response functions available.  In addition to the 289 

pollutants in Table 4, polycyclic aromatic hydrocarbons have been included using the cancer slope 290 

factor recommended by WHO (2000) and a mean concentration from three sites within Jeddah 291 

reported by Alghamdi et al. (2015b).  The concentration used is for benzo(a)pyrene, which 292 

following the guidance of WHO (2000), is taken as a marker compound for the PAH mixture.  As 293 

recommended by WHO the unit risk has been applied to the concentration of this compound, but 294 
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the risk estimation applies to the entire PAH mixture.  Considering the chemical carcinogens, the 295 

highest risk appears to apply to Cr, but the value is an upper limit which assumes that all of the Cr 296 

exposure is in the form of Cr(VI) which is very improbable.  This therefore represents an upper 297 

limit to the risk associated with Cr exposure.  The risk is quite high and studies of the oxidation 298 

state of Cr in local airborne dusts would be well justified.  Risks associated with exposure to As and 299 

PAH are of somewhat lesser magnitude but still exceed those calculated for Ni exposure.   300 

 301 

In the case of PM2.5, a coefficient for all cause mortality has been taken from WHO (2006), and 302 

rather than the usual mortality burden calculation, an incremental risk has been estimated for the 303 

mean concentration exposure assuming a mean life expectancy of 74.5 years.  This reveals a risk 304 

associated with PM2.5 exposure which substantially exceeds the risks associated with the chemical 305 

carcinogens, which is logical as the PM2.5 exposure includes exposure to the associated chemical 306 

carcinogens which present a subset of the mortality risks associated with PM2.5 exposure.  The work 307 

of Pope et al. (2002) and Lepeule et al. (2012) has shown a significant association between PM2.5 308 

exposure and lung cancer mortality in the ACS cohort, but the lung cancer risk is only a component 309 

of the overall all cause mortality risk.  Harrison et al. (2004) considered whether exposure to the 310 

chemical carcinogens within PM2.5 could explain the carcinogenicity demonstrated by Pope et al. 311 

(2002).  Their conclusion was that it was quite plausible that the chemical carcinogens present could 312 

explain the observed carcinogenicity, which serves to confirm the view that the risk associated with 313 

exposure to the specific chemical carcinogens is only one part of the overall risk to health from 314 

PM2.5 exposure which has been associated with a range of cardiopulmonary diseases.  The mean 315 

concentration of Ni in the Jeddah samples falls significantly below the EU and EPAQS 316 

recommendation of 20 ng m-3 serving to confirm that the cancer risks associated with Ni exposure 317 

are not excessively high.  However, the recommendations of the EU and EPAQS for As of 6 ng m-3 318 

and 3 ng m-3 respectively are appreciably exceeded in Jeddah and there is a good case for further 319 

investigating the source of emission of this element and seeking to take action to mitigate the risk.   320 
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The USEPA IRIS reference concentration of 50 ng m-3 for manganese is a highly precautionary 321 

value designed to protect against impairment of neuro-behavioural function.  It is exceeded by a 322 

factor of up to almost four-fold at the Jeddah sampling sites, but this factor is relatively small 323 

compared to the large in-built margin of safety and it seems unlikely that manganese presents an 324 

important risk to public health.  The crustal enrichment factors in Table 5 show little evidence for 325 

anthropogenic emissions and hence the majority of exposure is from crustally-derived material in 326 

which the manganese may be significantly less bio-accessible than in the industrial exposures used 327 

as the basis for setting the reference concentration.  In the case of lead, the exposure concentrations 328 

in PM10 at many of the sites exceed the USEPA (1996) and EPAQS (1998) recommendations.  Air 329 

quality standards for lead are designed to protect the developing infant from neuro-developmental 330 

effects which have been shown to lead to a reduction in IQ.  The fact that the concentrations in 331 

Jeddah exceed the regulatory guidelines from these jurisdictions is a matter of some concern.  The 332 

lead concentrations reported by Aburas et al. (2011) are considerably exceeded by the recent 333 

measurements suggesting that there is a significant industrial source or sources in the south of 334 

Jeddah which is responsible for the substantial elevation of concentrations at sites in this part of the 335 

city.  It is notable that lead concentrations at the most northerly site (site 1) are very much lower and 336 

within the acceptable range. 337 

 338 

Very few studies have provided data on the effects of mixtures of pollutants, and it is not possible to 339 

comment on the possible interactions.  It can reasonably be expected that the effects of the chemical 340 

carcinogens are additive, but as noted above this effect is included in the overall toxic effect of 341 

PM2.5 as an exposure metric. 342 

 343 

3.1.1 Premature mortality due to PM2.5 exposure 344 

The latest demographic information available for Jeddah relates to the year 2014.  It lists 345 

populations for 60 areas of the city, which have been classified according to their similarity to the 346 



14 
 

areas represented by the sampling sites in Figure 1 and Table 1.  The land use types are shown 347 

diagrammatically in Figure 3, and are listed in Table S8, both of which include population data.  348 

Table 7 shows a calculation of premature mortality according to the different district types for 349 

Jeddah, using both the 2014 population data for the districts listed in Table S8, as well as the total 350 

Jeddah population, including districts beyond the boundaries shown in Figure 3, making the 351 

questionable assumption that growth in the population is distributed in the same way as the 2014 352 

population within Table S8. 353 

 354 

In the approach used to estimate the burden of premature mortality, the burden is linearly related to 355 

both the exposure concentration and the population exposed.  Thus for a similar concentration of 356 

PM2.5, the overall number of premature deaths will be greater in a larger city, while in a city of 357 

similar size to Jeddah, the burden will be greater if the mean PM2.5 concentration is higher. The 358 

World Health Organization has recently reviewed air quality data from around the world (WHO, 359 

2016).  While measured data for PM10 are plentiful, measurements of PM2.5 are far less abundant, 360 

and in many cases have been crudely estimated from the PM10 data.  Measured concentrations vary 361 

greatly between countries.  Australia reports some of the lowest PM2.5 concentrations, with annual 362 

means ranging from 5-10 µg m-3.  European concentrations are typically a little higher with annual 363 

means mostly in the range of 10-20 µg m-3 in western Europe and 20-40 µg m-3 in eastern Europe.  364 

Concentrations in China and India are typically higher, with most in the range of 30-100 µg m-3 and 365 

some  exceeding 100 µg m-3.  The mean of 10 sites in Delhi in 2013 was 122 µg m-3.  The WHO 366 

data for PM2.5 concentrations in Saudi Arabia are all estimated from PM10 measurements and range 367 

from 65 to 156 µg m-3 in 2014.  These include a mean for Jeddah of 68 µg m-3.  This concentration 368 

well exceeds those reported for Jeddah in Table 4, but this may be due, at least in part, to the 369 

calculation method of WHO as opposed to direct measurement.  This wide range of PM2.5 data 370 

implies that many countries will have considerably lower mortality rates per million of population 371 
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due to PM2.5 exposure than calculated in this work for Jeddah, while in others the rates will be 372 

higher.   373 

 374 

A further factor to be considered is that almost all buildings and cars in Jeddah are air conditioned.  375 

Janssen et al. (2002) have shown that in the United States there appear to be lower rates of some 376 

diseases associated with PM10 exposure in areas with a high percentage of homes with air 377 

conditioning, as this can reduce exposures. This implies that the estimated premature mortality 378 

shown in Table 7 may be an over-estimate, but this effect has not to date been established for PM2.5 379 

exposure. 380 

 381 

4. CONCLUSIONS 382 

It is clear from the high concentrations of the crustally-related elements such as Ca, Fe and Si that 383 

crustal material in the form of wind-blown soil and dust makes up a substantial proportion of 384 

particulate matter in Jeddah.  It is predominantly in the coarse (PM2.5-10) size fraction, but a 385 

significant proportion lies also in the fine fraction.  Of the health-related elements, only Ni, Pb, As, 386 

Cd and V show significant anthropogenic enrichment which is most marked in the fine particle 387 

fraction, except for Cd.  Comparison with health-related guidelines suggest that the risks associated 388 

with exposure to Mn and V are very modest or wholly negligible, while the chemical carcinogens 389 

Ni, Cr and As present a smaller risk from chronic exposure than does exposure to PM2.5.  This is 390 

unsurprising as PM2.5 exposure has been shown to be associated with a range of cardiopulmonary 391 

diseases, including lung cancer which is only a sub-component of the overall health impact of PM2.5 392 

exposure.  Inclusion of data for PAH from an earlier study shows that these also do not represent a 393 

large risk in relation to the overall risk of PM2.5 exposure.  The largest potential risk from the 394 

chemical carcinogens relates to Cr, but the calculated risk is an upper limit which makes the 395 

pessimistic and probably unrealistic assumption that all of the Cr is present in the Cr(VI) oxidation 396 

state.  Were this oxidation state to make up only a small proportion of the Cr content, then the 397 
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estimated risk would be greatly reduced.  The enrichment factor for Cr is very small indicating that 398 

most Cr arises from the local soils and dusts and could not readily be abated.  One unexpected 399 

finding is the very high enrichment factor for Cd.  The concentrations measured in this study are not 400 

dissimilar from those reported in earlier studies from both Jeddah and Riyadh, and the fact that the 401 

enrichment is broadly similar in both the fine and coarse particle fractions suggests that there is an 402 

abnormal geochemical abundance of Cd in local surface soils which could be readily verified by 403 

chemical analysis.  The calculated Cd exposures exceed health-based guidelines by a small factor in 404 

the PM2.5 size fraction and a much larger factor in PM10.  However, if the Cd is associated with 405 

surface soils, it seems likely that its bio-accessibility is limited and hence the risk to health may be 406 

relatively modest.   407 

 408 

The health risk associated with chronic exposure to PM2.5 has been estimated in the form of 409 

premature mortality.  This shows that total deaths influenced by chronic exposure to PM2.5 exceed 410 

1100 for the 2014 population of Jeddah, making this a very significant public health problem. 411 

 412 
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FIGURE CAPTIONS 558 
 559 
Figure 1:   Location of sampling sites (stars) and major industrial sources (circles) in Jeddah, 560 

Saudi Arabia. 561 
 562 
Figure 2:   Average coarse and fine percentages of the health-relevant elements and particulate 563 

matter (PM) mass. 564 
 565 
Figure 3:   Map of Jeddah, showing the districts according to land use type (colour), population 566 
  (circles) and the air sampling sites (stars). 567 
  568 
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Table 1:  Characteristics of sampling sites. 569 
 570 
 District Population Type Characteristics 
1 Al-Muhammadiyah 28315 Residential Typical residential with no 

intense traffic 
2 Al-Rehab 43400 Residential Influenced by heavy traffic 

from the nearby highway 
and the crowded Tahleya 
street 

3 Al-Rughama 38437 Suburban Heavy traffic, open burning 
of batteries, electric wires, 
and tyres. Some significant 
marble workshops 

4 University 141277 Urban Dense traffic 
5 Al-Nuzlah/Al Yamaneyyah 53602 Urban Dense traffic, some car 

repair workshops 
6 Pitrumin 41774 Urban Refinery emissions 
7 Al-Alfiyyah 43037 Residential Refinery emissions (less 

affected than Pitrumin) 
 571 

Table 2:  Seasonal distribution of sample numbers at the seven sites. 572 

Site/Season 1 2 3 4 5 6 7 All sites 
Spring 7 8 7 6 7 7 50 92 
Summer 7 2 5 7 6 7 37 71 
Autumn 6 7 7 7 7 7 37 78 
Winter 6 9 5 7 7 5 47 86 
Totals 26 26 24 27 27 26 171 327 

 573 

  574 
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Table 3:  Air quality standards (annual mean), reference concentrations and cancer slope factors for 575 
chronic respiratory exposure to relevant aerosol components. 576 
 577 
 
Constituent 

 
WHO (2000) 

 
WHO (2006) 

 
USEPA (1996) 

 
EU (2016) 

EPAQS 
(1998; 2009) 

PM2.5  10 µg m-3 12 µg m-3 25 µg m-3  
PM10  20 µg m-3  40 µg m-3  
Cr(VI) 4 x 10-5/ng m-3  1.2 x 10-5/ng m-3  0.2 ng m-3 
Mn   50 ng m-3   
Ni 3.8 x 10-7/ng m-3   20 ng m-3 20 ng m-3 
Pb   150 ng m-3 500 ng m-3 250 ng m-3 
As 1.5 x 10-6/ng m-3  4.3 x 10-6/ng m-3 6 ng m-3 3 ng m-3 
Cd 5 ng m-3   5 ng m-3  
V 1000 ng m-3     
 578 
 579 
 580 
Table 4:  Mean concentrations of health-relevant size fractions and chemical species at the seven 581 
sites. 582 
 583 
Site/Analyte 1 2 3 4 5 6 7 All sites 
PM10 fraction 
PM10 mass (µg m-3) 

 
69.8 

 
143 

 
120 

 
112 

 
110 

 
104 

 
94.0 

 
108 

Cr (ng m-3) 4.9 12.1 14.2 10.3 10.5 7.4 8.1 9.6 
Mn (ng m-3) 56.4 153 137 105 85.6 100 95.7 105 
Ni (ng m-3) 6.6 12.1 12.6 12.6 12.4 15.0 11.6 11.7 
Pb (ng m-3) 38.6 595 695 695 84.6 379 440 450 
As (ng m-3) 3.3 26.5 19.7 19.7 5.8 11.4 15.2 15.2 
Cd (ng m-3) 80.2 194 145 145 100 231 98.4 140 
V (ng m-3) 20.6 32.6 27.8 27.8 34.2 43.5 26.8 30.7 
PM2.5 fraction 
PM2.5 mass (µg m-3) 

 
14.2 

 
17.5 

 
21.6 

 
21.6 

 
23.4 

 
24.2 

 
21.8 

 
20.7 

Cr (ng m-3) 0.5 1.1 1.7 1.7 1.6 0.9 1.2 1.2 
Mn (ng m-3) 5.3 9.7 12.2 12.2 9.8 9.5 8.4 9.4 
Ni (ng m-3) 2.6 2.8 3.6 3.6 4.6 7.2 3.6 4.1 
Pb (ng m-3) 31.3 256 443 443 59.8 137 209 248 
As (ng m-3) 0.8 15.6 10.3 10.3 1.8 5.3 6.9 8.4 
Cd (ng m-3) 9.5 13.5 9.4 9.4 9.8 11.9 6.7 11.0 
V(ng m-3) 9.1 8.8 9.5 9.5 16.3 25.8 11.7 13.4 
 584 
  585 
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Table 5:  Average crustal enrichment factor for the elements of concern* . 586 
 587 
Element/ 
Size fraction 

Cr Mn Ni Pb As Cd V 

PM10 1.4 3.0 3.4 810 88 20,200 5.9 
PM2.5 1.8 2.7 12.0 4533 491 16,100 26 
* Relative to Al 588 
 589 
  590 
Table 6:  Health risk associated with the mean exposures. 591 
 592 
Pollutant End Point Coefficient Mean 

Concentration 
Lifetime Risk 

PM2.5
a Mortality (all cause) 4%/10 µg m-3 22.5 µg m-3 1.2 x 10-3 

Crb Cancer 4 x 10-5/ng m-3 9.6 ng m-3 3.8 x 10-4 
Ni Cancer 3.8 x 10-7/ng m-3 11.7 ng m-3 4.4 x 10-6 
As Cancer 1.5 x 10-6/ng m-3 15.2 ng m-3 2.3 x 10-5 
PAH (B(a)P)c Cancer 8.7 x 10-5/ng m-3 0.23 ng m-3 2.0 x 10-5 
 593 
Notes: 594 
(a) Calculation based upon a life expectancy of 74.5 years (World Health Rankings, 2016) 595 
(b) Calculation assumes all Cr is present as Cr(VI) which is extremely unlikely, and hence this 596 
is an upper limit to risk 597 
(c) B(a)P concentrations measured in Jeddah by Alghamdi et al. (2015);  mean of particulate 598 

concentration at three sites 599 
 600 
 601 
Table 7:  Estimated premature mortality due to PM2.5 exposure in Jeddah. 602 
 603 
District Type PM2.5 (µg m-3) Total Population 

(2014) (thousand)a 
Premature 
Deathsb,c 

Total Premature 
Deathsb,d 

Residential (1) 14.2 274 53 77 
Residential (2) 17.5 392 94 136 
Residential (3) 21.8 211 63 91 
Suburban 21.6 173 51 74 
Urban (1) 21.6 1153 341 494 
Urban (2) 23.4 307 98 142 
Urban (3) 24.2 234 77 112 
TOTAL  2744 777 1126 
 604 
Notes:   605 
a Population data from Jeddah Council (personal communication). 606 
b Based upon a crude death rate of 3.42 per 1000 in 2015 (Index Mundi, 2016). 607 
c Based on population for 2014 from districts listed in Table S8. 608 
d Extrapolated to total population of Jeddah in 2014. 609 
 610 
  611 
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 612 
 613 
Figure 1:  Location of sampling sites (stars) and major industrial sources (circles) in Jeddah, Saudi 614 
Arabia. 615 
  616 
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 617 

 618 
 619 
Figure 2:  Average coarse and fine percentages of the health-relevant elements and particulate 620 
matter (PM) mass. 621 
  622 
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 623 

 624 
 625 
Figure 3:  Map of Jeddah, showing the districts according to land use type (colour), population 626 
(circles) and the air sampling sites (stars). 627 
 628 


