
 
 

University of Birmingham

Tailoring the Electrochemical Properties of Carbon
Nanotube Modified Indium Tin Oxide via in Situ
Grafting of Aryl Diazonium
Hicks, Jacqueline M.; Wong, Zhi Yi; Scurr, David J.; Silman, Nigel; Jackson, Simon K.;
Mendes, Paula M.; Aylott, Jonathan W.; Rawson, Frankie J.
DOI:
10.1021/acs.langmuir.7b00494

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Hicks, JM, Wong, ZY, Scurr, DJ, Silman, N, Jackson, SK, Mendes, PM, Aylott, JW & Rawson, FJ 2017,
'Tailoring the Electrochemical Properties of Carbon Nanotube Modified Indium Tin Oxide via in Situ Grafting of
Aryl Diazonium', Langmuir, vol. 33, no. 20, pp. 4924-4933. https://doi.org/10.1021/acs.langmuir.7b00494

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 10. Apr. 2024

https://doi.org/10.1021/acs.langmuir.7b00494
https://doi.org/10.1021/acs.langmuir.7b00494
https://birmingham.elsevierpure.com/en/publications/a10f73ea-f215-4ebb-98dc-22f6b61a893e


Tailoring the Electrochemical Properties of Carbon Nanotube
Modified Indium Tin Oxide via in Situ Grafting of Aryl Diazonium
Jacqueline M. Hicks,† Zhi Yi Wong,† David J. Scurr,† Nigel Silman,‡ Simon K. Jackson,§

Paula M. Mendes,∥ Jonathan W. Aylott,† and Frankie J. Rawson*,†

†School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
‡Public Health England, Porton Down, Salisbury SP4 OJG, U.K.
§School of Biomedical & Healthcare Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, U.K.
∥School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K.

*S Supporting Information

ABSTRACT: Our ability to tailor the electronic properties of surfaces by nanomodification is
paramount for various applications, including development of sensing, fuel cell, and solar
technologies. Moreover, in order to improve the rational design of conducting surfaces, an
improved understanding of structure/function relationships of nanomodifications and effect they
have on the underlying electronic properties is required. Herein, we report on the tuning and
optimization of the electrochemical properties of indium tin oxide (ITO) functionalized with
single-walled carbon nanotubes (SWCNTs). This was achieved by controlling in situ grafting of
aryl amine diazonium films on the nanoscale which were used to covalently tether SWCNTs. The
structure/function relationship of these nanomodifications on the electronic properties of ITO
was elucidated via time-of-flight secondary ion mass spectrometry and electrochemical and
physical characterization techniques which has led to new mechanistic insights into the in situ
grafting of diazonium. We discovered that the connecting bond is a nitro group which is
covalently linked to a carbon on the aryl amine. The increased understanding of the surface
chemistry gained through these studies enabled us to fabricate surfaces with optimized electron transfer kinetics. The knowledge
gained from these studies allows for the rational design and tuning of the electronic properties of ITO-based conducting surfaces
important for development of various electronic applications.

■ INTRODUCTION

There is a pressing requirement to tune the electronic
properties of materials in order to advance the development
of sensors, fuel cells, energy capture, and solar technologies. A
more detailed knowledge of the structure/function relationship
is required of the nanomodification techniques used for
developing electronics. This will facilitate the rational design
of conductive surfaces and optimize the development of
technology. For example, particular attention has been paid in
the use of carbon nanotubes (CNTs) as cellular sensing devices
due to their ability to sense a wide range of moieties as well as
their ability to penetrate into cells for intracellular measure-
ments.1−3 Our group have recently developed conducting
electrodes that used indium tin oxide (ITO) modified with an
aryl amine film via the in situ electrochemical grafting of aryl
diazonium, which acted as an anchor layer, to which CNTs
where attached for sensing cellular events2−4 and mediating
charge transfer from bacteria.1

Changes in cellular analytes that can be potentially detected
by electrochemical sensing technology tend be at very low
concentrations. Additionally, in applications where there is a
requirement to facilitate charge transfer, such as in fuel cells,
electrodes require optimization in order to maximize current,
output, and efficiency.4 Therefore, investigations are required to

optimize the ITO platform to enhance sensing sensitivities and
facilitate charge transfer. Importantly, no thorough studies have
been performed to improve the electronic properties of ITO
conducting surfaces using diazonium chemistry or details
elucidated of the physicochemical structure/function relation-
ships.
Diazonium chemistry has been attracting growing interest

particularly in its ability to form organic layers that can
covalently bind onto a variety of surfaces.5 A majority of studies
using diazonium chemistry to modify surfaces have focused on
modification of gold and carbon surfaces6−9 (see Table 1).
Adaptation of indium tin oxide (ITO) surfaces with films via
grafting of diazonium molecules has only recently been
reported.2,10,11 However, the underlying mechanism of
diazonium attachment to an ITO substrate has largely gone
unstudied until the work reported herein. The application of
diazonium species are broad but have been important for
functionalization of surfaces by immobilizing carbon nanotubes
(CNTs)2 and anchoring polymers12 and applied to improving
the electronic performance of microbial fuel cells.13
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The grafting mechanisms that have been previously
suggested at varying surfaces including gold, carbon, and ITO
involve the formation of either a radical intermediate or a
diazonium cation that reacts with the substrate (see Table 1).
The assertion of the presence of a covalent bond between the
surface and the diazonium ion is largely reliant on its stability
and ability to withstand ultrasonic cleaning in a variety of
solvents including hydrochloric acid and ammonium hydrox-
ide.6,14−16 The layer formed from the diazonium onto the
varied material surfaces has also been shown to withstand
extreme potentials in cyclic voltammetry experiments, giving
further evidence of a strong covalent attachment.17 The identity
of this bond and the mechanism of binding are of great interest,
though the general consensus is that either an aryl radical or a
cation is formed from the diazonium, which then attaches to
the surface. This mechanism of binding has been thought to
produce a carbon-based bond directly from the benzene group
to the surface independent of the surface chemistry.5,6 There is,
however, recent evidence of a mixed mechanism involving an
azo phenyl group which can bind directly to the surface via its
nitrogen atom.18 More recently, an azo phenyl radical was
shown to have been involved in the grafting of diazonium salts
on metallic surface material.19 There have also been literature

reports that contradict the theory of electrochemically induced
grafting of diazonium as the sole method of attachment, with
evidence indicating that diazonium ions can graft to the surface
spontaneously19−21 as well as electrochemically.
The functionalization of conducting surfaces with carbon

nanotubes (CNTs) to build electrochemical sensors has
commonly been achieved through chemically coupling to
surfaces modified with a molecular anchor. These molecular
anchors include self-assembled monolayers (SAMs) or
diazonium generated films which may contain functional
groups such as carboxylic acid, amine, or hydroxyl groups.
These functional groups are then used to couple CNTs to the
surface. While SAMs form monolayers more consistently than
diazonium-derived films, diazonium films have been shown to
be more stable.4,22−24

CNTs display interesting electrochemical properties which
are dependent on the length25 of the nanotubes as well as the
surface to which they are attached. CNTs have been studied on
numerous surfaces such as glass,26,27 metal-coated silicon
wafers,28 gold-coated SiO2,

29 pyrolyzed photoresist electrodes,4

and ITO.2 Different methods exist for the attachment of CNTs
to surfaces with the most common being chemical vapor
deposition where the nanotubes are “grown” directly onto the

Table 1. Reaction Schemes of Diazonium Formation and Its Attachment to Surfaces As Reporteda

aScheme 5 displays generic multilayer formation as described in the literature.
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surface. Alternatively, CNTs can be covalently bound to
surfaces either directly (dependent on the surface) or via a
tether molecules. One example of which is a diazonium,2,30

based electrochemical grafted aryl amine layer, which was then
used to covalently tether carboxylated CNTs.
With the diverse uses and clear adaptability of diazonium-

based organic films on surfaces, it is important to fully
understand the mechanism behind their attachment to the
surface. Therefore, the aim of the present work was to provide
more detailed knowledge of the structure/function relationship
of ITO surfaces modified with nanoscale films and the effect on
their electronic properties. This allowed us to optimize the
electron transfer kinetics of the electrode once the ITO-aryl
films were functionalized with CNTs and gain insight into how
the underlying film structure affects the end-sensor properties.
We propose a new mechanism that for the formation of aryl
amine film on ITO via the in situ electrochemical grafting of
aryl diazonium. The knowledge gained from these studies
allows for the rational design and tuning of electronic
properties of ITO based conducting surfaces important for
development of various electronic applications.

■ EXPERIMENTAL SECTION
Electrochemical Grafting of Surfaces. Corning low alkaline

earth boroaluminosilicate glass, deposited with indium tin oxide (ITO)
on one side, was purchased from Delta Technologies Limited and
rinsed with HPLC grade ethanol and then distilled water before being
exposed to UV light for an hour in a UV drawer (Bioforce
Nanosciences). The ITO was then sonicated (Fisherbrand
FB11021) in acetone twice each for 2 min and propan-2-ol for 30 s.
In order to graft the aryl layer to the ITO, a 10 mM solution of p-
phenylenediamine in 0.5 M hydrochloric acid was added to a 1 mol
equiv of sodium nitrite in distilled water and allowed to react for 2 min
to form 4-aminobenzenediazonium. The reaction solution was then
added to the electrochemical cell with the ITO in place. The
diazonium radical from the reaction mixture was electrochemically
grafted to the ITO by chronoamperometry at a fixed potential at −0.6
V for 2 min (unless otherwise stated). The electrochemical surface
area was defined by a silicon “O” ring and was approximately 7 mm in
diameter.
Preparation of Carbon Nanotubes and Surface Attachment.

Single-walled carbon nanotubes (SWCNTs) were obtained from
Nanolab Inc. and were subsequently cut via acid treatment in
concentrated sulfuric and nitric acid (3:1 mix) and sonicated for 10 h.
The SWCNTs were then submerged into 1 L of distilled water
overnight. The cut SWCNTs were then rinsed until a neutral pH was
detected by vacuum filtration through a 0.22 μM hydrophilic PVDF
filter (Millipore) and washed with Milli-Q water until the rinse water
was close to neutral pH. The SWCNT containing filter was then dried
in an oven overnight at 65 °C. In order to couple the SWCNTs to the
aryl amine films on the ITO chip, suspensions of SWCNTs were
prepared in DMSO. ITO−aryl surfaces were submerged in the CNT/
DMSO suspension at a concentration of 0.2 mg mL−1, containing 0.5
mg mL−1 dicyclohexylcarbodiimide (DCC). The reaction mixture was
sonicated for 15 min and then placed in the oven at 60 °C for 18 h.
Samples were then sonicated in acetone for 2 min and isopropyl
alcohol for 10 s before being rinsed with Milli-Q water and dried with
argon.
Time-of-Flight Secondary Ion Mass Spectroscopy (ToF-

SIMS). ToF-SIMS was carried out using a ToF-SIMS IV (IONTOF
GmbH) instrument in static mode. Static conditions were ensured by
maintaining a primary ion dose density <1 × 1012 ions per cm−2. A
Bi3

+ pulsed ion beam was used with a target current of ∼0.3 pA. Scans
were taken (5 × 5 mm areas at a resolution of 100 pixels per mm)
covering both a region with diazonium grafting (within the O ring)
and a region where grafting did not occur (outside the O ring) as an
internal control. Positive and negative data were collected and

normalized to total ion peak intensity for comparison. ToF-SIMS data
acquisition and analysis was performed using SurfaceLab 6 software
(IONTOF GmbH). Further analysis including statistical tests were
conducted with Graphpad Prism software. Samples analyzed are
described by the length of time a potential is applied during
electrografting with an additional control performed in which no
electrochemical grafting was performed, which we term 0 s as no
application of potential was applied but the sample was exposed to a
solution of the in situ generated 4-aminobenzenediazonium.

Ellipsometry. The thickness of the aryl films on ITO were
measured with a J.A. Woollam Co., Inc., spectroscopic ellipsometer α-
SE and modeled with CompleteEASE software. Thicknesses were
calculated in fast mode with the refractive index, n, and dispersion
coefficient, k, calculated to be approximately 1.705 and 0.045,
respectively, for the ITO layer and 1.713 and 0.011, respectively,
when measuring the aryl layer as calculated by the CompleteEASE
software. The ellipsometry model was based on multiple layers. The
base of the surface being 1 mm of glass was inputted as a 7059 Cauchy
substrate. Layer 1 was “ITO parametrized” (built into the software) to
measure the thickness of the ITO; this was done for each individual
sample for the ITO outside the grafted region in order to get a more
accurate measurement of the aryl amine layer. Layer 3to measure
the thickness of the aryl aminewas a standard Cauchy layer with
substrate backside correction on and back reflections set to 5% to take
into account the near-transparent nature of our surfaces.

Atomic Force Microscopy (AFM). Depth analysis of samples was
conducted by AFM depth profiling with an atomic force microscope
(Dimension 3000, Veeco) with a NanoScope version:IIIa controller
and NanoScope V531r1 software. All AFM images were obtained with
a RTESPA-150 cantilever (BRUKER) with a resonant frequency of
150 kHz and a spring constant of 6 N m−1. The samples were held on
a metal stage and initially scanned in tapping mode with a scan size of
15 μm × 15 μm, a scan angle of 90°, and scan rate of 1 Hz to gain an
initial idea of topography of the surface. The surface of the samples
was then scratched in contact mode with a deflection set point of 8 V,
scan size of 5 μm × 5 μm, scan angle of 0°, scan rate of 0.5 Hz, integral
gain of 0.2, and a resolution of 512 × 512 pixels. Following this the tip
was disengaged, and the sample was scanned for a second time in
tapping mode again at 15 μm × 15 μm with the same settings as
previously described.

Processing and analysis of the AFM images was performed with
NanoScope Analysis 1.5. Images were “flattened” with the scratch area
excluded in this function. The thickness of the aryl film was
subsequently determined by the “step” function, which measured the
difference in height between the scratched and unscratched regions.

XPS. XPS data were collected with a Kratos Axis Nova
spectrometer. The X-ray source was monochromatic Al Kα with a
working energy of 1486.6 eV. Spectra were collected with a 0°
emission angle with a field of view of 700 μm × 300 μm. A pass energy
of 160 eV was used for the survey scans and 20 eV for the high-
resolution regions (C 1s, O 1s, and N 1s). CASA XPS curve-fitting
software was used to analyze the spectra. Bare ITO, “0” s grafted, and
“1” s grafted were analyzed with three repeats of each and three
regions within each. Samples were analyzed at the National XPS
EPRSC users service (NEXUS) at Newcastle University.

Stability Study. Samples were electrografted by applying a fixed
potential of −0.6 V for either 1, 2, 4, 6, 8, or 10 s. These were then
tested via cyclic voltammetry using a VersaStudio potentiostat cycling
between 0.8 and −0.4 V at a scan rate of 100 mV/s. Samples were
tested on the same day as grafting (day 0) and days 3, 5, and 7
postgrafting. Phosphate buffered saline (PBS) was used as a control
solution while potassium ferricyannide (250 μM, in PBS) was utilized
as a standard redox molecule. Bare, cleaned ITO was also tested on
“day 0” as a control.

Scan Rate Study. Cyclic voltammetry studies were performed with
an electrochemical cell with a surface area of 7.07 mm2 (diameter 3
mm). Scan range was between 0.8 and −0.4 V starting at 0.8 V and
switching at −0.4 V. For determination of the heterogeneous rate,
constant scan rates were varied between 5 mV/s and 5 V/s. Potassium
ferricyannide (250 μM) in phosphate buffered saline (PBS) was used
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as an analyte and was purged of air with argon. Control scans were
conducted with PBS at the two extreme scan rates. Ohmic drop was
not compensated for at any scan rate.
Materials. All materials unless otherwise stated were obtained from

Sigma-Aldrich.

■ RESULTS AND DISCUSSION
Characterization of the Aryl Amine Film. Our group2

and others10 have recently developed sensors that used ITO
modified with an aryl amine film which acted as an anchor
layer. We used this to functionalize surfaces with SWCNTs.
The choice of the aryl diazonium is based on previous work
done by the Rawson group. The amine terminal group is ideal
for conjugating to the CNTs which have exposed carboxylic
acid groups.2,3The SWCNT modified ITO was subsequently
modified with an electrocatalyst.3 Importantly, the electronic
properties of the sensor-cell constructs were not optimized and
constructed with an aryl film that was electrografted by
applying a fixed potential of −0.6 V for 120 s.2,4 This results in
comparatively thick filmsclose to the maxima reported in the
literature.12,37 Initial investigations to establish the electro-
chemical nature of this relatively thick aryl amine film were
therefore conducted. This was achieved by performing cyclic
voltammetric experiments (Figure 1) on solutions of in situ

generated aryl diazonium, thereby modifying the ITO with an
aryl amine layer. Figure 1 demonstrates that the resulting film
passivates the conductive nature of the ITO. The initial cyclic
voltammogram (CV) obtained (Figure 1; CV1) with the in situ
generated diazonium solution resulted in observing a reductive
peak at −0.141 V, which after applying a fixed potential of −0.6
V for 120 s disappears (Figure 1; CV2). This has previously
been seen on both ITO and gold.18 This is presumed to be
because a thick multilayered film has been formed37 which
increases the resistance of the film to the point that little to no
current reaches the surface and therefore no additional aryl
diazonium in solution can be reduced. In order to investigate
the effect of film thickness on the final nanotube sensor
construct, a physical and electrochemical characterization of the
aryl film electrografted for different lengths of time was
conducted before testing the films with the nanotubes.

In order to determine the precise nature of the aryl amine
film produced, time-of-flight secondary ion mass spectrometry
(ToF-SIMS) was utilized to investigate how the surface
chemistry changes with grafting time. Initial ToF-SIMS analysis
of the ITO was conducted on samples electrochemically grafted
for between 1 and 120 s, either scanned immediately after
grafting (Day “0”) or after 3 or 7 days, respectively. This
allowed an assessment of the changes on the surface of the
sample in order to examine the stability of the grafted surfaces
as well as the effect of grafting time. If the CNT sensors were to
ever be constructed on a large scale as a diagnostic device, for
example, the stability of each step of their construction
becomes important and could indeed become a limiting factor
in their fabrication. Figures 2A and 2B show secondary ion

images for indium (m/z = 114.91), including both grafted and
nongrafted regions of the sample, for 4 and 120 s grafting time,
respectively. These ion images highlight the differences in ion
intensities within the grafted regions while also functioning as
an internal control in areas which were not grafted. The grafting
area was defined by use of an O-ring as detailed in the methods
section.
Figure 2C demonstrates that there is a decrease in indium

ion intensity (within the grafted region) with increasing grafting
time correlating to the increasing thickness of the bound aryl
layer on the surface. The 120 s sample showed no detectable
In+ ions within the grafted region presumably due to the depth
limits of the ion beam and the thickness of the layer. This is
contrasted by the 4 s grafted sample as displayed in Figure 2A
which shows some In+ fragments but is still not as intense as

Figure 1. Typical cyclic voltammograms (CVs) obtained for solutions
containing p-phenylenediamine and sodium nitrite at an ITO electrode
before grafting (CV1) and after grafting with the aryl radical produced
after 120 s (CV2) using fixed potential amperometry. CVs were
conducted using an initial potential of 0.2 V and a vertex of −0.6 V at a
scan rate of 0.1 V/s.

Figure 2. Secondary ion images for In+ for [A] 4 s grafting and [B]
120 s grafting. The regions outlined in [A] represent the four regions
of interest (ROI’s) isolated in each sample within the reaction area to
generate the mean ion intensities that are represented in [C] indium
ion (m/z = 114.91) intensities for samples grafted between 1 and 120
s, scanned either on day of grafting (day 0) or day 7 postgrafting
(±SD).
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the region outside the grafted circle. For the thinner layers on
the 1 and 2 s grafted surfaces there is a mixture of fragments
including indium ions and fragments formed from the aryl
layer; this is due to the aryl layer being thinner than the analysis
depth of the ion beam which is approximately 4 nm.38 Two
methods were utilized to estimate the depth of the varying
electrografted films: AFM depth profiling and ellipsometry
(Table 2). Because of the limitations of ellipsometry, mainly
that within our model the indices of refraction of the ITO and
the aryl amine layer are very similar, for this reason the AFM
depth profiling was necessary as an alternative method to
measure the depth of the films. A summary of typical data
obtained from the depth profiling can be seen in Figure S7.

From the data shown in Table 2, it can be seen that the layers
range in thickness from approximately 2 to 26 nm. The
standard deviations displayed in Table 2 are believed to arise
from a combination of the limitations of the techniques and the
heterogeneity of the surfaces. It is important to note that the
surface roughness (Ra) of bare, clean ITO is approximately 0.8
nm with a standard deviation of ±0.03 nm. Considering that
the standard deviation of the surface roughness at the 1 s
grafted sample is ±1.1 nm indicates that the technique is
sufficiently accurate to determine the film thickness even at the
thinnest film. This data is in agreement with previous studies
stating the maximum achieved diazonium-based aryl film
formed on a surface by electrochemical reduction is

Table 2. Ellipsometry and AFM Depth Profiling Data of Samples Grafted for between 1 and 120 s (Values Displayed Are Mean
Thickness in nm ± Standard Deviation)

grafting time (s) 1 2 4 6 8 10 120

ellipsometry 2.3 ± 0.3 2.3 ± 0.5 2.6 ± 0.4 2.6 ± 0.5 4.5 ± 2.9 4.6 ± 2.5 15.5 ± 2.4
AFM 2.9 ± 1.1 3.1 + 2.0 3.5 ± 1.6 4.7 ± 2.3 5.2 ± 1.9 5.4 ± 2.8 26.4 ± 4.2

Figure 3. [A] Bar graph displaying normalized ion intensities for C3H7NO
+, C3H8NO

+, NO2
−, and CO+; error bars represent 1 standard deviation.

Proposed chemical structures based on the chemical assignments are shown above the tallest bar for each ion. Two-way ANOVA was performed with
Tukey post-test to test for significance against the bare ITO control. [B] NO2

− ion peaks for ITO, 0 s, 1 s, and 120 s (all with NaNO2 only), 1 s (p-
phenylenediamine “amine” only), and 1 s complete mix (right y-axis). [C] XPS data displaying nitrogen peaks (N 1s, n = 9) for samples of bare ITO,
0 and 1 s grafted. Fitted peaks are displayed.
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approximately 20 nm.12,37 With a single aniline molecule being
approximately 0.9 nm in diameter,39 it would seem that even at
the surface grafted for only 1 s aryl amine multilayers are
exhibited at the surface of the electrode and become thicker
with increased grafting time as indicated by the ellipsometry
and AFM data. This is in agreement with the literature in which
there are extensive descriptions and reports of multilayers
formed with modification of surfaces by diazonium graft-
ing.34−36

The nature of the bond formed from electrochemically
grafting the in situ generated 4-aminobenzenediazonium to the
ITO surface is yet to be established. Establishing the nature of
the bond formed will be indicative of the mechanism. To
elucidate the type of bond formed, we used ToF-SIMS to
determine and compare the chemical fragments produced from
four different samples which were an unmodified ITO; “0” s
which was exposed to in situ generated 4-aminobenzene-
diazonium but without application of any applied potential to
determine if any spontaneous electrografting occurs (see
methods); 1 s electrografted and 120 s electrografted samples.
When a fixed potential was applied for 1 s, it resulted in thinner
aryl amine layers on the ITO than compared to longer
electrografting times (Table 2). Therefore, electografted sample
fragments formed by ToF-SIMS from the 1 s sample should
contain ions formed from the ITO surface and the bond
formed between the ITO and the first aryl layer. The results of
this can be seen in Figure 3.
To determine the secondary ions that were likely to contain

information relating to the bond to the ITO surface from the
ToF-SIMS, the mass spectra peak list was initially filtered so
only peaks that were exclusive in either the 1 or 0 s remained.
The sample electrografted for 120 s was used as a negative
control as the aryl amine layer will be so thick that fragments
produced in ToF-SIMs will not contain ions from the surface of
the ITO. A two-way ANOVA followed by a Sidak multiple
comparison test was then conducted to isolate the peaks that
were significantly different to the bare ITO control. Following
this, two secondary ions in particular were isolated as being of
interest to the binding of the aryl amine to the ITO surface:
C3H7NO

+ (p < 0.0001) and C3H8NO
+ (p = 0.01). Considering

the initial compound, these fragments can be arranged in two
ways with the carbon binding to either the surface oxygen or
the nitrogen. It is, however, the significantly increased N−O−

ion in the 1 s and the lack of a C−O− ion that leads us to
propose that the aryl amine is binding via a nitrogen and an
oxygen and not via a carbon. Figure 3B further shows the
presence of the NO2

− ion peak in increasing intensity in
samples that only came into contact with sodium nitrite. It is
also interesting to note that with increased length of time the
relative ion intensity associated with NO2

− increases providing
further evidence this is adsorbed on to the ITO surface, which
is in contrast to that observed on copper.40 We also performed
CVs of NaNO2 solutions (Figure S8) and an increase in
charging current is seen when compared to the HCl control
CV, but no faradaic events were observed. This presumably
occurs due to ions associated with NaNO2 adsorbing on the
ITO supporting the ToF-SIMS data. This is also supported by
the XPS data in Figure 3C, which displays the N 1s spectra for
the ITO, 1 and 0 s samples. In the N 1s spectra, there are clear
NH2 peak at ∼400 eV and NO and NO2 peaks at ∼402 and
∼406 eV, respectively.41,42 There is a slight increase in the C−
O peak42 from the O 1s spectra in the XPS; however, as can be
seen in the Supporting Information (Figure S1), there is high

background carbon as well on the control sample (for wide-
field spectra and O 1s see Supporting Information). After blank
subtracting the ITO from the 1 s XPS data the C 1s and N 1s
spectra data give a ratio of N:C of 1:6.78, which is what would
be expected assuming we have complete reduction of the azo
group to the aryl radical which then reacts with the surface
yielding an amine functional group. Interestingly, the NO2

−

peaks observed are not found to the same magnitude when
looking at the sodium nitrite samples only (Figure 3B). We
tentatively infer from this that there is some sort of cooperative
effect between the sodium nitrite and the p-phenylenediamine
(Figure 4), although the exact details require further study.

There also appears to be a small amount of spontaneous
binding as can be seen by the presence of the C3H7NO

+ ion in
the ToF-SIMS data for the “0” second grafted surface (Figure
3). There does not appear to be any spontaneous binding
shown in the XPS data so if any spontaneous binding is
occurring it is likely to be nominal compared to the reductive
electrochemical binding.
Mechanisms proposed for diazonium binding shown on

other surfaces such as gold and carbon (see Table 1) have
indicated a carbon-based bond or a −NN− bond. In our
investigations we have identified an N−O bond, previously
unseen for diazonium grafting, which suggests a different
mechanism for diazonium binding at ITO to that previously
observed at gold and carbon. Work by Hetemi et al.33 has
shown that while the diazonium is reduced to an aryl radical as
expected, it is also possible to reduce sodium nitrate to nitrite
which can then absorb to the surface. This support our
assertions that sodium nitrite adsorb to ITO. As the diazonium
cation is formed in situ from the reaction of sodium nitrite and
p-phenylenediamine (in a 1:1 ratio), the data suggest that the
NO2 identified originates from unreacted sodium nitrite. This
then provides a docking point for the aryl radical formed from
the diazonium (as depicted in Figure 4). This is further
supported by the presence of the same NO− ion fragment when
the diazonium grafting is conducted on gold (see Figure S2),
further substantiating that an alternative reaction is occurring in
situ than has been observed previously.

Figure 4. Schematic demonstrating aryl amine film formation on
surface.
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Stability of Aryl Amine Film. Stability of the aryl amine
film will become an important factor if the ITO-SWCNT
sensors are to ever be mass produced. Stability was studied
electrochemically by performing cyclic voltammetry, across the
different depth films, by using the well-characterized redox
mediator ferricyanide ([Fe(CN)6]

3−) as a standard redox
probe, on day 0the day that they were graftedand days 3
and 7 postgrafting. The initial hypothesis for the films was that
with time the oxidative and reductive peaks seen via CV run in
the presence of ferricyanide would become larger as the film
degrades and reveals the conductive nature of the ITO film
beneath. However, as can be seen from Figure 5, the reverse of
this is true.
It is apparent that from day 0 (Figure 5A) that the thinner

aryl amine layers are not thick enough to passivate electron
transfer to ferricyanide. Therefore, reductive and oxidative
peaks can be seen at 0.130 and 0.286 V, respectively, as is
shown for the 1 s grafted sample in Figure 5A. The peak
currents also start at approximately 2 μA for both reductive
(Ipc) and oxidative (Ipa) peak currents (Figure 5A, day 0), and
the magnitudes of the peak currents decay with time, which can
be seen in Figures 5B and 5C. This is seen consistently with all
the film depths with an apparent inverse relationship between
film thickness and peak current, as to be expected. We
hypothesized from Figure 5 that the layer is not degrading
which would reveal the ITO but rather material from the
atmosphere is being adsorbed and passivating the surface with
time. If films were not stable and the ITO surface was being
revealed, cyclic voltammograms obtained in the presence of
ferricyanide would result in a typical redox couple associated
with ferricyanide as seen at day 0 (Figure 5A). On the contrary,
this was not the case, and the peak current associated with the
ferricyanide becomes smaller, which is indicative of a smaller
electroactive area as governed by the Randles−Sevcik equation.
It was therefore important to understand what is occurring at
the surface to passivate the aryl amine layers. This was achieved
by performing ToF-SIMS analysis on surfaces grafted and
stored in air for several days (see Figures S3 and S4). We
investigated the C6H2

− peak, which was indicative of the
diazonium-derived film’s presence and establish that this was
the case (Figure S4). A phenyl−NO peak was not chosen as
this can only be detected in the thinnest layers as shown with
the 1 s grafted sample due to narrow penetration of the ion
beam.
Figure 6 shows that surfaces are prone to absorbing

impurities from the atmosphere such as the characteristic

CN− shown in Figure 6. This can also be seen from the In+

secondary ion images which show an increase in surface
coverage with time as the In+ ion intensity decreases. By
combining the electrochemical data from the CVs (Figure 5)
and the surface analysis from ToF-SIMS, it would appear that
the aryl amine layers are stable throughout 7 days. As such, if
they were to be mass produced, it would be necessary to store
them either under an inert gas such as argon or under vacuum
conditions prior to CNT coupling.

Calculation of Heterogeneous Rate Constant, k0.
Finally, samples of varying film thicknesses were used to
construct various ITO−CNT sensor platforms, and the ability
to tailor the electron transfer kinetics of the chips was
investigated. To provide evidence that CNTs are physically
bound to the ITO and the mechanism is not via adsorption,
plain ITO and ITO functionalized with the aryl amine were
exposed to CNTs, which had their carboxyl groups activated,
via carbodiimide coupling chemistry, and characterized by
SEM. SEM images were then taken (Figure S6). In the absence
of the aryl amine tether layer very few CNTs were observed on
the surface, suggesting a physical interaction between the CNTs
and aryl amine is the mechanism of attachment. As the layers
seem to passivate with time due to contaminants from the
environment, in all cases CNTs were bound to the aryl layer
immediately after grafting. Three different aryl thicknesses were
utilized by grafting the aryl layer for either 1, 10, or 120 s. It was
hypothesized that the thinner the aryl layer the faster and more
efficient the electron transfer kinetics should be. Laforgue et al.
showed that thin films on a surface exhibit no detectable barrier
effect unlike thick films as seen in Figure 1.18 They also showed

Figure 5. The y-axis label consistent for [A−C]. [A] CVs of 1 s grafted sample across 7 days in 250 μM potassium ferricyannide (PBS) at a scan rate
of 100 mV/s between 0.6 and −0.4 V scanned initially in the negative direction. [B] Mean peak cathodic currents (Ipc) from all samples across 7 days
with mean peak anodic currents (Ipa) shown in [C]; [B + C] n is between 4 and 8.

Figure 6. ToF-SIMS secondary ion images of In114+ in the figure
legend (left) and CN− (right) of samples grafted for either 1 or 2 s,
scanned on day 0 and day 3. Scale bar indicative for all images.
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that the kApp
0 , which is the apparent rate constant, is dependent

not only on layer thickness but also on the homogeneity of the
surface. Despite thinner layers being ideal, a monolayer,
however, may not be. With a monolayer the conformational
state is fixed, but when multilayers are present there is flexibility
in the conformation which can give a higher conductivity.43 As
is clear from the ellipsometry and AFM scratching data (Table
2) even the layer grafted for 1 s is on average more than a
monolayer in thickness, yet still very thin, which should result
in more conductive and efficient final sensor when compared to
the sensor made with the aryl layer grafted for 120 s.
The heterogeneous rate constant (k0) was calculated for each

CNT sensor using eq 1

ψ π=
−⎡

⎣⎢
⎤
⎦⎥k

DnvF
RT

0
0.5

(1)

where ψ is a function of the peak separation as described by
Nicholson and Shain,44,45 D is the diffusion coefficient, n is the
number of electrons transferred in the redox reaction, F is the
Faraday constant, R is the gas constant, and T is the
temperature. Whereas Nicholson and Shain’s method for
determining ψ is based on the assumption that the rate transfer
coefficient, α, is 0.5, to get a more accurate value of ψ, α was
calculated independently for each sensor. By plotting ψ versus
[πDnvF/RT]−0.5, k0 can be determined from the slope of the
resultant graph (Figure 6) (see Supporting Information for full
calculations and graphs, Figure S5).

By decreasing the aryl amine film from ∼20 nm (120 s) to
∼2 nm (1 s) the k0 is increased by an order of magnitude from
3.57 × 10−4 to 4.26 × 10−3 cm s−1 with the ∼5 nm aryl amine
film (10 s) following the trend and having a k0 of 1.74 × 10−3

cm s−1. The ITO control also has a k0 of only 3.7 × 10−4 cm
s−1, which is slower than all surfaces modified with CNTs. This
gives direct evidence for the improvement in electron transfer
rates of ITO−CNT sensors through the tailoring and thinning
of the aryl amine film. One interpretation of the data is that the
trend of increasing rate constant with thinner films results from
greater access of the redox couple to the bare ITO as the aryl
layer gets thinner. However, this can be discounted as we have
previously reported that at the thickest film the electro-

chemistry (grafting time 120 s) associated with the ferricyanide
is blocked.2 Therefore, the fact that the rate constants are
greater when aryl amine functionalized ITO is modified with
CNTs in comparison to plain ITO, and we are observing
electrochemistry associated with ferricyanide which is not
observed at thicker films,2 is evidence that it is the presence of
the CNTs which results in the increased rate constants.
Consequently, it is not due to increased access of the redox
probe to the ITO as the films become thinner.

■ CONCLUSION

In this work we have shown evidence that the bond formed
between an ITO substrate and a diazonium-based film to be
N−O in nature, resulting from the reduction of diazonium and
the physio-adsorption of excess sodium nitrite in solution. The
depth of such films can be tailored by altering the length of
time a current is passed through the substrate. The films are
stable with time though prone to adsorb contaminates from the
environment, as displayed by the increasing presence of the
CN− ion as a function of time in the ToF-SIMS data; therefore,
binding of CNTs should ideally be done immediately to limit
exposure to contaminants. Decreasing the aryl amine layer from
∼26 to ∼2 nm resulted in an increase in the heterogeneous rate
constant, k0, by an order of magnitude. Thus, we show the
importance of molecularly controlling surface diazonium film
thickness for improving the sensor kinetics.
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