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ABSTRACT 

Supercapacitors are energy storage devices with higher energy densities than conventional 

capacitors, but lower than batteries or fuel cells. There is a strong interest in increasing the 

volumetric and gravimetric capacitance of these devices to meet the growing demands of the 

electrical and electronic sectors. The capacitance depends largely on the electrode material, 

and carbon nanofibers (CNFs) have attracted much attention because of their relatively low 

cost, large surface area, good electrical conductivity as well as chemical and thermal stability. 

The deposition of metal nanoparticles on CNFs is a promising way to increase their surface 

properties and, ultimately, the capacitance of the devices. In this study, nickel and silver 

nanoparticles were deposited on CNFs using the active screen plasma technology. The CNFs 

were characterized and their electrochemical performance was assessed in a three electrode-

cell. The results show significant improvements over the untreated CNFs, particularly after 

functionalization with silver nanoparticles. 

KEYWORDS: carbon nanofibers; plasma; surface functionalization; electrochemistry; 

supercapacitors. 

 

1. INTRODUCTION 

In recent years, carbon nanofibers (CNFs) have attracted the attention of researchers for countless 

applications.
1
 One example is the fabrication of electrodes for supercapacitors (SC), which are 

electrical devices used for storing energy.2 The devices consist of two electrodes separated by an 

electrolyte,
3
 and the principle of energy storage can be Faradic or non-Faradic, depending on their 

interaction.
4
  Electrical double layer capacitors (EDLC) are based on non-Faradic mechanisms, in 

which the electric charge is stored in the double layer formed at the interface between the inert 

electrode material and the electrolyte, without involving redox reactions.
2
 On the other hand, the 
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pseudo-capacitors (PsC) rely on reversible redox reactions (Faradic) which take place on the surface 

of the active electrode material in contact with the electrolyte.5 

Supercapacitors can typically charge/discharge at higher rates than batteries and they have longer 

operating life, but their capacitance is limited.1, 6 This limitation may be overcome by facilitating the 

charge exchange between the electrode material and the electrolyte, and the strategies to achieve this 

include: increasing the specific surface area,
2
 optimizing the pore size,

6
 increasing the electrical 

conductivity,1 reactivity 7 or wettability 8 of the electrode material. The ideal electrode material for 

supercapacitors should combine the following chemical and physical properties:2 

• high electrical conductivity 

• high specific surface area 

• good corrosion resistance 

• high temperature stability 

• controlled pore structure 

• ease of processability and compatibility in composite materials 

• low cost 

Carbon materials meet most of these requirements,
2
 and recent efforts have aimed to optimize the pore 

structure for a given electrolyte,
6
 or to increase the surface reactivity with the addition of transition-

metal oxides,7 or both.3 With this regard, carbon nanofibers (CNFs) and carbon nanotubes (CNTs) 

offer great versatility in terms of pore architecture 
9
 and they can act as scaffolds for more conductive 

or electroactive materials.
10

 Ruthenium oxide has been extensively studied to increase the surface 

reactivity of CNFs and CNTs, but its practical use is hindered by high cost and environmental 

toxicity.
5
 On the other hand, manganese oxides offer lower cost and environmental compatibility,

11
 

but lower electrical conductivity.12 Nickel 13 and its oxides 14 have been proposed as electroactive 

materials, to superimpose pseudo-capacitance and double layer energy storage mechanisms in carbon 

based supercapacitors. The charge storage mechanism is based on surface adsorption of electrolyte 

cations C+ (K+, Na+…) as well as proton incorporation.6 Additionally, the incorporation of silver 
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nanoparticles into PAN fibers was reported to increase their electrical conductivity and, ultimately, 

the capacitance of the device.15 In this case, the charge is stored electrostatically using reversible 

adsorption of ions of the electrolyte onto the electrochemically stable and highly conductive material, 

with large specific surface area.6 Regardless of the manufacturing process, the architecture consisting 

of a conductive or electroactive material deposited on the carbon nano-fibers was found to facilitate 

the diffusion of electrolyte ions, maximize the surface area for the electrochemical reaction and 

improve the charge percolation efficiency.11 

Several multi-step processes use some kind of plasma technology to grow or etch nanostructures on 

carbon scaffolds,
16-17

 or to modify the surface chemistry by reaction with gas species.
18-19

 In this study, 

a simpler one-step surface engineering process, based on the advanced composite active screen 

technology, was used for the first time to functionalize carbon nanofibers. The surface morphology 

achieved with this technique, which consists of nanoparticles rather than smooth and continuous 

films, 20 increases the surface area significantly. In addition, the technology offers flexibility in terms 

of the metals and gas species which can be introduced. In this case, the plasma treatment conditions 

were optimized for nickel and silver nanoparticles, to assess the Faradic and non-Faradic charge 

storage mechanisms, respectively. The CNFs were characterized by scanning electron microscopy 

(SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX) and 

X-ray diffraction (XRD) to assess their surface morphology, chemical composition and phase 

composition, respectively. In addition, cyclic voltammetry (CV) tests, cyclic charge-discharge (CCD) 

tests and electrochemical impedance spectroscopy (EIS) were conducted to assess the effectiveness of 

the plasma treatment. The results indicate that the capacitance of the cell increased considerably with 

the active screen plasma treatment, particularly for the CNFs functionalized with silver nanoparticles. 

The possible reasons for this improvement are discussed and the opportunities for further 

development of this novel technique are outlined. 

 

2. EXPERIMENTAL PROCEDURES 
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The CNFs were acquired from Sigma-Aldrich (product No. 719811) and sonicated in isopropanol for 

60 minutes to disperse them. The slurry was pipetted into clean borosilicate glass Petri dishes and the 

isopropanol was left to dry overnight. The Petri dishes with the dry residue of CNFs were introduced 

in the vacuum chamber of a Klockner Ionon plasma furnace fitted with a composite active screen 

(AS), in which nickel and silver plates were attached to the conventional AS set-up, respectively 

(Figure 1). The distance between the CNFs and the target plate of the active screen set-up was 15 mm. 

The chamber was evacuated to a base pressure below 1 Pa and the plasma treatments were conducted 

in a gas mixture consisting of 25% N2 and 75% H2 at a pressure of 75 Pa. The processing time was 

selected empirically, and varied between 15 minutes and 120 minutes to produce nanoparticles of 

different morphology, depending on the sputtering yield, nucleation and growth rate of each material 

(Table 1). The temperature was monitored with a K-type thermocouple inserted into a dummy block, 

and was limited to 400°C (±5°C) in all cases, to avoid damaging the Petri dishes (softening). 

 

Table 1. Processing times selected for nickel and silver active screen arrangements. 

Active screen material Processing time 1 Processing time 2 Processing time 3 

Nickel – AS(Ni) 15 minutes 30 minutes 60 minutes 

Silver – AS(Ag) 30 minutes 60 minutes 120 minutes 

 

The CNFs were fixed onto aluminum stubs using double sided adhesive carbon discs. The 

observations were conducted in a Jeol 7000 FEG-SEM, fitted with an Oxford Instruments Energy 

Dispersive X-ray (EDX) detector for chemical analysis. Some CNFs were transferred to copper grids 

and observed under a Jeol 2100 LaB6-TEM. 

X-ray diffraction experiments were conducted in a Rigaku AFC11K SATURN 944 diffractometer 

with a micro-focus rotating copper anode operated at 40 kV and 30 mA (λ = 0.15418 nm). The 

detector was 93.7 mm x 93.7 mm in size (1042 x 1042 pixels), and the samples were positioned at a 

distance of 45 mm (resolution 0.09°). The CNFs were introduced in borosilicate glass capillaries with 
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a wall thickness of 0.01 mm. The system was calibrated using lanthanum hexaboride (LaB6) powder 

and the background was corrected using an empty glass capillary. The exposure time was 10 s in all 

cases. 

 

 

Figure 1. Experimental set-up for active screen plasma treatment. 

 

The electrochemical assessment was conducted in a three electrode cell,21 consisting of a platinum 

counter electrode, a saturated calomel reference electrode (SCE) and the CNF working electrode 

(Figure 2a). The loading of CNF on each electrode was 300 µg, measured with a OHAUS Galaxy 

160D balance, and they were evenly distributed over an area of 28.3 mm2 at the tip of the electrode 

(diameter = 6 mm). The potentiostat was a Gamry Instruments Interface 1000. The solution was made 

by dissolving sodium sulfate (Na2SO4), reagent grade, in deionized water to a 1M concentration, and 

the cell was kept at a constant temperature of 30°C ± 0.1°C using a Clifton thermostatic bath. Oxygen 

free argon was bubbled in the solution for 1 hour before the immersion of the sample and throughout 

the experiments. The samples were left to stabilize in the bath for 10 minutes before the 

measurements. 

For the cyclic voltammetry (CV) tests, the working electrode was biased between -0.2 V and -0.8 V 

(± 0.01 V), versus the SCE reference electrode, at different rates: 25, 50, 100 and 200 mV/s. The 

cyclic charge/discharge (CCD) curves between -0.2 V and -0.8 V were collected at a constant current 

of 10 mA for 10 cycles. The electrochemical impedance spectra (EIS) were collected with a voltage 
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oscillation amplitude of 10 mV at frequencies between 0.01 Hz and 100 kHz. Figure 2b shows the 

equivalent circuit analog used to fit the experimental data,22 in which the circuit elements are typically 

attributed to the resistance of the electrolyte (Re), the charge transfer resistance (Rct) and double layer 

capacitance (Cdl), the pseudo-capacitance (Cps) and its associated resistance (Rps). In this model, the 

capacitors Cdl and Cps were modeled by constant phase elements, with exponents m and n, 

respectively, reflecting the departure of these circuit elements from ideal capacitors according to the 

following formula: 

1

����
� �. 	
ω� 

where ZCPE is the impedance of the constant phase element, Q is the pre-factor, i is the imaginary unit, 

ω is the frequency and α is the exponent (n and m, for the two constant phase elements in Figure 2b). 

 

 

Figure 2. a) Experimental set-up used for the electrochemical tests and b) Electric circuit analog. 

Re: electrolyte resistance; Rct: charge transfer resistance; Cdl: double layer capacitance and exponent 

of the constant phase element (m); Rps: resistance of pseudo-capacitance; Cps: pseudo-capacitance 

and exponent of the constant phase element (n). 

 

All the electrochemical tests were replicated a minimum of 5 times and the results presented in this 

article correspond to the most representative curves or the average values. It should be emphasized 

that these experiments, conducted in a three-electrode cell, do not simulate a supercapacitor device. 
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As a consequence, the results are a qualitative comparison between CNFs with different surface 

treatments, but the data should not be extrapolated to real supercapacitor devices, which are likely to 

have a different geometrical set-up and exhibit lower contact resistance between the active material 

(CNFs) and the current collector. 

 

3. RESULTS AND DISCUSSION 

Characterization of functionalized CNFs 

Figure 3 illustrates the differences observed on the CNFs before and after the active screen surface 

functionalization. The untreated material consisted of fibers with a mean diameter between 100 nm 

and 200 nm, which exhibited a smooth surface morphology. The TEM observations revealed the 

hollow nature of these fibers, which resembles CNTs. Moreover, a ‘stacked-cup’ structure was 

observed along the fiber axis. The active screen surface functionalization did not affect the size or the 

structure of the CNFs, but the surface morphology was significantly altered. The SEM micrograph in 

Figure 3b shows a high density of particles on the surface of the CNFs. The deposited particles are 

also visible in the TEM micrograph in Figure 3d, having a diameter which typically varies between 

10 nm and 50 nm. More importantly, the latter image shows that the deposition is not uniform and the 

particle density differs from fiber to fiber. 
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Figure 3. SEM and TEM images of: a) and c) untreated CNFs and  

b) and d) active screen plasma functionalized CNFs: AS(Ni)2. 

 

Figure 4 shows the EDX spectra, in which the presence of nickel and silver can be clearly identified 

on the CNFs after the active screen plasma treatments. The density and size of the deposited particles 

changed with the sputtered material and with the processing time. The AS(Ni) CNFs in Figure 5a 

exhibit the same smooth morphology of the untreated CNFs, and there were no signs of nickel on 

their surface. On the other hand, the CNFs treated for longer times exhibited small particles on their 

surface (Figure 5b and 5c), which were rich in nickel. The nanoparticles grew larger with increasing 

processing time and they became uneven in size and shape after 60 minutes of plasma treatment. 

The morphology of the CNFs functionalized with silver was quite different, and the deposited 

nanoparticles were very small but uniform after 30 minutes of active screen plasma treatment (Figures 
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5d). With increasing processing time, the particles became coarser and coalesced, to cover the full 

surface of the CNFs. In spite of this, the surface morphology remained uniform, even after 2 hours of 

plasma treatment (Figures 5e and 5f). 

 

 

Figure 4. EDX results corresponding to: a) AS(Ni) and b) AS(Ag) functionalized CNFs 

 

The X-ray diffraction traces also revealed differences between the AS(Ni) and the AS(Ag) CNFs 

(Figure 6). The CNFs functionalized with nickel exhibited a diffraction pattern comparable to the 

untreated material, with the typical turbostratic carbon ring and only one faint ring attributed to nickel 

(111). The ring is blurred, which reflects the low content and uneven layer of nickel on the CNFs. 

What is more, this peak appears shifted to lower angle compared to the reference pattern, possibly 

indicating the introduction of interstitial nitrogen in the nickel structure. The elucidation of this 

phenomenon requires further work. 
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Figure 5. SEM micrographs of active screen plasma functionalized CNFs: 

AS(Ni): a) 15 min., b) 30 min., and c) 60 min.;  

AS(Ag): d) 30 min., e) 60 min., and f) 120 min. 
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In contrast, the CNFs functionalized with silver produced two clear diffraction rings corresponding to 

the (111) and (200) planes. Moreover, the intensity of these diffraction rings increased with the 

treatment time, reflecting the increase in the silver content on the surface of the CNFs. 

These results indicate that the AS(Ag) CNFs had a higher content of metal particles on their surface 

compared with their AS(Ni) counterparts. This could be attributed to the shorter processing time used 

for AS(Ni) and the lower sputtering yield of nickel, compared to silver.23 Unfortunately, the surface 

morphology obtained after longer AS(Ni) treatments was excessively uneven, and this condition was 

rejected in favor of the ones which produced smaller and more uniform particles on the CNFs. On the 

other hand, the silver particles deposited on the CNFs became coarser with increasing treatment time, 

but their size remained uniform and, consequently, they were considered more suitable for the 

electrochemical assessment. 

 

 

Figure 6. X-ray diffraction traces corresponding to: UT, AS(Ni) and AS(Ag) CNFs. 

 

In both cases, AS(Ni) and AS(Ag), the sputtering of material from the target and its re-deposition on 

the CNFs is a line-of-sight process. Therefore, the CNFs which are closer to the target are expected to 

develop larger particles or thicker deposition layers than the CNFs which are further away or partially 
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covered. Figure 5 shows nickel or silver nanoparticles beyond the first layer of CNFs, but a careful 

observation reveals that their size is smaller in partially covered areas, compared to the most exposed 

areas; this difference is a result of the shadowing effect mentioned before. The shadowing effect 

would be more significant for AS(Ni) because of the lower sputtering yield and throwing power of 

nickel, compared to silver. 

The faint rings observed in the X-ray diffraction traces of AS(Ni) CNFs is another indication of the 

uneven surface treatment, which contrasts with the continuous layer of nickel particles observed under 

the SEM on these same CNFs. The conflicting results obtained by SEM (surface sensitive) and XRD 

(bulk sensitive) indicate that further improvements in the active screen plasma processing conditions 

should aim to produce a uniform surface functionalization of the CNFs, particularly when using 

materials with low sputtering yield. 

 

Electrochemical testing 

Figure 7 shows the cyclic voltammetry results obtained using CNFs with different surface conditions. 

The AS(Ni) 1 sample showed the same response as the untreated CNFs (UT) with a rather small loop 

area but with little distortion from the rectangular shape, even at high scan rates. The curves of CNFs 

treated for longer time, AS(Ni) 2 and AS(Ni) 3, exhibited marginally larger loop areas, which are 

indicative of higher capacity, but the curves deviated from the rectangular shape and appeared 

distorted at high scan rates, which is attributed to the low ion transport efficiency.12 On the other hand, 

all the CV curves obtained with AS(Ag) CNFs exhibited a considerably larger loop area, which 

increased with the processing time: AS(Ag) 1 < AS(Ag) 2 < AS(Ag) 3. In addition, the curves 

retained their rectangular shape, even at high scanning rates, which is a result of the high surface 

conductivity and ion transport efficiency obtained with the Ag nanoparticles on the CNFs.  
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Figure 7. Cyclic voltammetry tests conducted on functionalized CNTs: 

a) UT / AS(Ni) 1, b) AS(Ni) 2, c) AS(Ni) 3, d) AS(Ag) 1, e) AS(Ag) 2 and f) AS(Ag) 3. 

 

The differences in surface condition were also reflected on the cyclic charge-discharge (CCD) results. 

Figure 8a shows the CCD curves obtained with the CNF electrodes in their maximum 

functionalization conditions, AS(Ni) 3 and AS(Ag) 3, compared to the untreated material (UT). The 

charge and discharge times were clearly longer for AS(Ni) 3 and AS(Ag) 3 CNFs, indicating that 
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these electrodes could accommodate higher levels of electric charge. The curves retained their 

triangular shape and appeared quite symmetrical, although there were signs of distortion at the end of 

the charging cycle, which indicate an increase in the diffusion resistance. The IR drop visible at the 

vertex of each charge-discharge cycle was moderate in all cases, but smaller for the functionalized 

CNFs compared to the UT electrodes. This was particularly true for the AS(Ag) electrodes, and 

indicates a lower equivalent series resistance (ESR). 

A summary of the results from the CCD tests is presented in Figure 8b, which illustrates the 

difference between the AS functionalized CNFs and the untreated material. This figure also reveals a 

significant scattering in the data, which was attributed to the uneven functionalization with nickel and 

silver nanoparticles, as described above. However, the differences observed for most of the 

functionalized conditions are unquestionably higher than the UT material. 

 

 

Figure 8. a) Cyclic charge-discharge curves (10 mA); and b) calculated capacity for CNFs with 

different surface conditions. 

 

The electrochemical impedance spectra (EIS) exhibited a similar trend and some characteristic curves 

are shown in Figure 9. The high values of Z are attributed to the experimental set-up, particularly the 

double-sided copper tape used as collector. Nevertheless, the shape of the curves is consistent with the 
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proposed electric circuit analog model, and the fitting parameters are summarized in Table 2. Samples 

AS(Ni) 1 and AS(Ni) 2 produced inconsistent results, which was attributed to the poor and uneven 

coverage of the CNFs with nickel nanoparticles. Moreover, the EIS and the fitting values 

corresponding to these two samples were comparable to the UT CNFs. Therefore, these results were 

excluded from Table 2. However, this is noteworthy given that the N2 and H2 plasma are known to 

introduce polar functional groups on carbon substrates, which increase their wettability in aqueous 

solutions.24 Therefore, the lack of improvement observed on AS(Ni)1 and AS(Ni) 2 samples indicates 

that the N2 and H2 plasma by itself, i.e. without the deposition of metal nanoparticles, was insufficient 

to improve the electrochemical performance of the CNF electrodes. 

 

Table 2. Summary of electric circuit analog parameters used to fit the EIS results 

Circuit element Untreated AS(Ni) 3 AS(Ag) 1 AS(Ag) 2 AS(Ag) 3 

Rct
a 1 0.71 0.88 0.84 0.37 

Cdl
a
 1 0.7 4.65 2.22 7.70 

n 0.91 0.79 0.86 0.86 0.93 

Rps
a 1 0.14 >1E3 >1E3 >1E3 

Cps
a 1 0.38 0.62 0.27 0.59 

m 0.6 0.59 0.48 0.44 0.38 
a Values relative to the untreated carbon nanofibers. 

 

On the other hand, the AS(Ni) 3 and all the AS(Ag) CNFs showed clear differences compared with 

the UT CNFs. The functionalization with nickel decreased Rps significantly, which was attributed to 

Faradic mechanisms associated with the electroactive layer of nickel, although the values of both Cdl 

and Cps dropped. In the low-frequency section, the curve also shows a lower slope which indicates a 

low ion transport efficiency. In contrast, the functionalization with silver reduced Rct and increased 

Cdl, which is consistent with the non-Faradic mechanism of electric charge storage. In addition, Rps 

increased relative to the UT CNF electrodes. In both cases, the values of exponents n and m were 

quite low, particularly for m (associated with Cps), which indicates a deviation from the ideal 
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capacitor. The reasons for this deviation are not known, but it has been attributed to the physical and 

chemical heterogeneity of the electrode surface. 

 

 

Figure 9. Electrochemical impedance spectra of UT, AS(Ni)3 and AS(Ag)3 CNF electrodes. 

 

The results presented in this article show that the largest increase in capacity was achieved with the 

highly conductive silver nanoparticles, rather than the electroactive nickel nanoparticles. This seems 

to indicate that the increase in capacity was mainly achieved by the double layer, rather than the 

pseudo-capacitance. However, it was recently reported that vanadium and other transition metal 

nitrides can improve both Faradic and non-Faradic charge storage mechanisms, which make them 

promising electrode materials for supercapacitors.25-26 This finding opens good prospects for the 

active screen plasma technology, considering that it has been extensively used to form nitrides and 

carbides for surface functionalization and hardening. However, the processing conditions will need to 

be optimized to obtain nanoparticles of the required size and shape and to functionalize the carbon 

nanofibers evenly. With this regard, the use of modified reactors which stir the CNFs during the 

process is promising, 
27

 but it poses technical challenges as well as health and safety concerns due to 

airborne CNFs.28 Alternatively, the plasma treatment could be conducted on the finished electrodes 

made of thin CNF mats, rather than on loose CNFs. In this way, the nanoparticles would mainly form 
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on the surface exposed to the electrolyte, where they are most effective, but they may also reduce the 

surface area by clogging the porosity of the mat. 

 

4. CONCLUSIONS 

The surface functionalization of carbon nanofibers with the active screen plasma technology produced 

the following results: 

- It was possible to form silver and nickel nanoparticles on the surface of carbon nanofibers, 

although the treatment was not entirely uniform. 

- The nanoparticles varied in size and morphology depending on the processing conditions and the 

deposited material; this is associated with the sputtering yield and processing time. 

- The electrochemical response of the functionalized carbon nanofibers shows an increase in 

capacity, although the results bare considerable error because of the lack of treatment uniformity. 

- The increase in performance was particularly significant for the nanofibers functionalized with 

silver, based on a double layer storage, rather than a pseudo-capacitance mechanism;  

The recent findings on transition metal nitrides for improved Faradic and non-Faradic charge storage 

mechanisms open very good opportunities for the active screen plasma technology. 
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Figure 1. Experimental set-up for active screen plasma treatment.  
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Figure 2. a) Experimental set-up used for the electrochemical tests and b) Electric circuit analog.  
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Figure 3. SEM and TEM images of: a) and c) untreated CNFs and  
b) and d) active screen plasma functionalized CNFs: AS(Ni)2.  
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Figure 4. EDX results corresponding to: a) AS(Ni) and b) AS(Ag) functionalized CNFs.  
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Figure 5. SEM micrographs of active screen plasma functionalized CNFs: AS(Ni): a) 15 min., b) 30 min., and 
c) 60 min.;AS(Ag): d) 30 min., e) 60 min., and f) 120 min.  
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Figure 6. X-ray diffraction traces corresponding to: UT, AS(Ni) and AS(Ag) CNFs.  
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Figure 7. Cyclic voltammetry tests conducted on functionalized CNTs: a) UT / AS(Ni) 1, b) AS(Ni) 2, c) 
AS(Ni) 3, d) AS(Ag) 1, e) AS(Ag) 2 and f) AS(Ag) 3.  

 

968x1090mm (96 x 96 DPI)  

 

 

Page 30 of 32

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



  

 

 

Figure 8. a) Cyclic charge-discharge curves (10 mA); and b) calculated capacity for CNFs with different 
surface conditions.  
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Figure 9. Electrochemical impedance spectra of UT, AS(Ni)3 and AS(Ag)3 CNF electrodes.  
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