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Highlights 

 Freeze-thaw effect on physical dimensions and surface roughness of coronary artery 

 Processing (fixation and dehydration) of coronary arteries for microscopic imaging 

 Surface roughness measurements assess changes during processing of tissue 

 Correction factor accounting for processing of soft biological tissue 

Abstract 

Background: To allow measurements of surface roughness to be made of coronary arteries using 

various imaging techniques, chemical processing, such as fixation and dehydration, is commonly 

used. Standard protocols suggest storing fresh biological tissue at -40°C. The aim of this study was to 

quantify the changes caused by freezing and chemical processing to the surface roughness 

measurements of coronary arteries, and to determine whether correction factors are needed for 

surface roughness measurements of coronary arteries following chemical processes typically used 

before imaging these arteries. 

Methods: Porcine left anterior descending coronary arteries were dissected ex vivo. Surface 

roughness was then calculated following three-dimensional reconstruction of surface images 

obtained using an optical microscope. Surface roughness was measured before and after a freeze 

cycle to assess changes during freezing, after chemical fixation, and again after dehydration, to 

determine changes during these steps of chemical processing. 

Results: No significant difference was caused due to the freeze cycle (p > 0.05). There was no 

significant difference in the longitudinally measured surface roughness (RaL = 0.99 ± 0.39 µm; p > 

0.05) of coronary arteries following fixation and dehydration either. However, the circumferentially 

measured surface roughness increased significantly following a combined method of processing (RaC 

= 1.36 ± 0.40, compared 1.98 ± 0.27 µm, respectively; p < 0.05). A correction factor can compensate 

for the change in RaC due to processing of tissue, 𝑅𝑎𝐶𝛽  =
𝑅𝑎𝐶

1+0.46
. Where RaCβ, the corrected RaC, had 

a mean of 1.31 ± 0.21 µm. 

Conclusions: Independently, freezing, fixation and dehydration do not alter the surface roughness of 

coronary arteries. Combined, however, fixation and dehydration significantly increase the 

circumferential, but not longitudinal, surface roughness of coronary arteries. 

Keywords: Coronary arteries; Dehydration; Fixation; Freezing; Surface imaging; Surface roughness  
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1 Background 

Coronary heart disease, a result of coronary artery disease, is the leading cause of death worldwide 

(1). In the USA it was the underlying cause of death in 1 out of every 7 deaths in 2011, and 

associated direct and indirect costs were estimated to be $204.4 billion in 2010 (2). The gold 

standard practice for artery replacement is to use the patients’ own artery or vein as a graft (3), 

however, 30-40% of patients lack a viable vein (4). The development of biomaterials can aid in 

creating a feasible alternative (5). For instance, restenosis following angioplasty occurs within 3-6 

months for 40-50% of patients, but decreases with stenting to 20-30% (6). While this is an 

improvement, there is a push to develop novel stents to increase endothelialisation but also to 

prevent restenosis and thrombus formation (7, 8). 

Progress has been made in developing suitable bulk materials for coronary artery replacement (9), 

but surface properties have received less attention. Surface modification, however, allows the bulk 

modulus of the material to remain unchanged but with the additional benefit of being able to: 

increase the biocompatibility of materials (10-14); influence cell growth, alignment, viability and 

attachment (15-24), and increase patency rates by deterring thrombus formation (7, 12, 25). 

However, replication of bio-inspired surface texturing requires measurements of the physical 

properties of surfaces. 

Surface properties of materials, and topography, are typically characterised through their mean 

surface roughness, Ra, the arithmetic average of absolute values of sampling length (26). While 

surfaces of coronary arteries have been analysed qualitatively (27), the feasibility of quantitatively 

measuring the surface roughness has only recently been established (28). Ra was calculated from 

three dimensional reconstructed optical images of porcine left anterior descending (LAD) coronary 

arteries. Beyond providing a standard for surface roughness of replacement materials, surface 

roughness may also have applications to identify disease; recent examples include assessment of 

diabetics’ red blood cells (29) and grading of osteoarthritis in cartilage (30). 

The preparation of biological tissues for microscopy typically requires various procedures, including 

freezing, fixation and dehydration. The effect of these procedures on certain physical characteristics 

of tissues are known, and can be accounted for, including changes in dimensions of the heart (31) 

and biological tissue (32), and correcting cell density of endothelium (33). Currently, however, it is 

unknown whether Ra might be altered by preparatory procedures used for soft connective tissues 

(such as coronary arteries).  

The aim of this study was to quantify the surface roughness (Ra) of porcine LAD coronary arteries, 

through optical microscopy. Furthermore, to determine whether freezing, fixation and dehydration, 

common procedures for preparing biological specimens for microscopy (e.g. Scanning Electron 

Microscopy, SEM) alter the measured Ra; and if so, to determine a suitable correction factor. 

Porcine hearts are an established model of human hearts due to their anatomical similarity (34, 35), 

and were therefore chosen for use in this study. 

2 Methods 

2.1 Specimens 

Six porcine hearts were obtained from Fresh Tissue Supplies (Horsham, UK), and frozen on excision. 

No animals were sacrificed specifically for this study. Ethical approval was granted for this study by 
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the University of Birmingham Research Support Group [ERN_15-0032]. Hearts were wrapped in 

tissue paper soaked in Ringer’s solution and stored at -40°C. Before dissection hearts were defrosted 

at 4 °C overnight. The LAD coronary artery was identified and dissected from the most distal point 

visible to the bifurcation of the LAD and the left circumflex coronary artery (LCX). A longitudinal 

incision (along the length of the artery) was made along the LAD sample so as to expose its internal 

surface (Figure 1), with excess tissue removed. Finally, the sample was sectioned into three 

specimens of 20 mm each leading to 18 tissue samples. These tissue samples were categorised as 

proximal, middle and distal where in this case proximal refers to a position nearer the base of the 

heart and distal near to the apex of the heart, along a longitudinal axis of the LAD (Figure 1). For 

consistency, the six middle tissue samples were used in this study; however, the Ra of porcine LAD 

coronary arteries does not differ along its length (28). Tissue samples were wrapped in tissue paper 

soaked in Ringer’s solution and stored at -40 °C until required for microscopy. Before further testing, 

tissue samples were defrosted at 4 °C for an hour, following protocols from previous studies of 

porcine heart tissue (36-39). 

Dimensions of tissue samples were measured using a Vernier calliper at each stage of tissue 

processing. For each individual specimen (n = 6), the mean of three measurements was taken for 

length (L), width at either end of the specimen (W1 and W2 respectively), and thickness (t) of 

specimens (Figure 1). Measurement of these dimensions were repeated at each stage of imaging of 

the specimens (Figure 2). 

2.2 Optical imaging 

An optical focus variation microscope (G5 Infinite Focus , Alicona UK, Kent, UK) was used to image 

the surface of the specimens at 10× magnification (10× Nikon CFI 60 TU Plan Epi Infinity Corrected 

Obj lens, Alicona UK, Kent, UK), as described previously (28). The Alicona Infinite Focus (IF) 

microscope is a non-contact, optical, three-dimensional (3D) measurement system. Lighting was 

controlled via white LED (Light Emitting Diode) coaxial illumination. Illumination intensity, and lateral 

(X and Y axis) and vertical (Z axis) resolution were adjusted using automated ideal settings, as 

defined using the instruments’ software, Alicona IF-Measure Suite (version 5.1, Alicona UK, Kent, 

UK), consistent with previous studies (40). The Alicona software was used to obtain and analyse all 

images.  

Briefly, imaging was performed at four stages in this study (Figure 2): before and after a freeze-thaw 

cycle; following fixation; and following dehydration. A three-dimensional reconstruction of the 

image was performed using the Alicona IF-Laboratory Measurement Module (version 6.1, Alicona 

UK, Kent, UK), from which the Ra was measured. The three-dimensional reconstruction process is 

described elsewhere (28). Briefly, the entire surface of each sample was imaged and reconstructed. 

Subsequently, five profile lengths with a mean of 2.63 ± 0.67 mm were measured along two 

directions aligned with circumferential and longitudinal sample orientations (Figure 1). The Ra was 

assessed both longitudinally and circumferentially, as previously a significant difference was found 

between the two orientations (28). When measuring Ra profiles, bifurcations where smaller vessels 

connected to the LAD were avoided during profile selection. They were avoided because they 

formed part of the blood vessel structure rather than being an intrinsic property of the surface. Also, 

profiles were not measured near the edges of the sample where distortion may have occurred 

during dissection. Equation 1 and Equation 2 (41) were used to calculate surface roughness in the 

circumferential direction, RaC, and the longitudinal direction, RaL, respectively. 
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Equation 1 
𝑅𝑎𝐶 =  

1

𝑙
∫ |𝑍(𝑥)|𝑑𝑥

𝑙

0

 

 

Equation 2 
𝑅𝑎𝐿 =  

1

𝑙
∫ |𝑍(𝑦)|𝑑𝑦

𝑙

0

 

Where Z(x) is the profile height function along x (Equation 1), Z(y) is profile height function 

along y (Equation 2), and l is the sampled length. The mean surface roughness for each 

individual specimen (n = 6) was determined from five repeat measurements taken in each 

direction. 

2.3 Tissue preparation 

Tissue samples underwent fixation and dehydration, following a standard protocol for soft 

mammalian tissues (42). Briefly, specimens were immersed in a 3% glutaraldehyde solution (Fluka 

Analytical, Sigma Aldrich, St Louis, MO, USA) with 0.2 M sodium phosphate buffer for 1 hour, at an 

average pH value for animal tissue of pH 7.4 (43) (Table 1). Subsequently, specimens were rinsed in 

three 10 minute washes of phosphate buffer saline (PBS) solution to remove any remaining 

glutaraldehyde. To ensure that the samples remained hydrated they were stored in PBS solution at 

4°C until dehydration. 

Dehydration was performed in washes of 10 minutes with increasing concentrations of ethanol 

(Fisher Chemical, Fisher Scientific UK Ltd, Loughborough, UK) at 30%, 50%, 70%, 95% and two 

washes at 100%. The concentration series ensures that dehydration occurs in a controlled manner, 

minimising distortion of the specimen (32). Finally, hexamethyldisilazane (HMDS; Aldrich Chemistry, 

St Louis, MO, USA) was used to complete dehydration (44), removing any remaining ethanol from 

the specimen by displacement. The specimen underwent a wash of HMDS for 15 minutes before 

replenishing with fresh HMDS to be left overnight to evaporate. 

2.4 Correction Factor 

A correction factor was calculated for Ra when a significant difference was identified following 

processing. Raβ, a corrected surface roughness value, was calculated using Equation 3. 

Equation 3 𝑅𝑎𝛽  =
𝑅𝑎

1 −  𝛼
 

 

α was calculated using Equation 4, where Rapre and Rapost were the mean values of Ra before and 

after processing respectively.  

Equation 4 𝛼 =
𝑅𝑎𝑝𝑟𝑒 − 𝑅𝑎𝑝𝑜𝑠𝑡

𝑅𝑎𝑝𝑟𝑒
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2.5 Data analysis 

All statistical analysis was performed using Minitab Statistical Software (Minitab 17.0, Minitab Inc, 

State College, PA, USA). To assess the effect of a freeze cycle (Figure 2; stages 1 and 2) on surface 

roughness and physical dimensions on coronary arteries, a student paired t-test (p < 0.05) was 

performed for each dependent variable (RaC, RaL, L, W1 and W2) (45).  

A one-way repeated measures Multivariance Analysis of Variance (MANOVA) test was performed to 

analyse processing of coronary arteries (Figure 2), and to assess whether there was a significant 

difference in surface roughness and physical dimensions of the tissue (45, 46). Multiple dependent 

variables (RaC, RaL, L, W1 and W2) were compared during three independent stages (Figure 2; stages 

1, 3 and 4), with the risk of Type 1 errors reduced due to the choice of MANOVA (47). If a statistical 

significance was identified (p < 0.05) using a MANOVA test, Analysis of Variance (ANOVA) was then 

performed on each dependent variable using Tukey’s method (p < 0.05) to determine which stage of 

the independent variable resulted in this change. When a correction factor was applied to results, a 

student paired t-test was performed between the calculated and actual results to determine if there 

was a significant difference (p < 0.05). 

3 Results 

3.1 Surface Roughness 

Figure 3 shows the 3D reconstructed surface at each stage of processing, with the respective optical 

images shown in Figure 4. Sample Ra profiles aligned circumferentially and longitudinally along the 

LAD coronary artery are provided in Figure 5. From these figures an increased surface roughness in 

the circumferential over longitudinal direction can be observed, with ridges visible (Figures 3 and 4).  

RaC values ranged from 0.82 to 2.26 µm. Freezing (1.28 ± 0.34 µm), fixation (1.49 ± 0.49 µm) and 

dehydration (1.98 ± 0.26 µm), independently, did not significantly alter RaC (p > 0.05; Table 2) from 

one stage of tissue preparation to the next. However, the cumulative effect of fixation and 

dehydration during the preparation stages led to a significant increase in RaC from 1.36 ± 0.27 µm 

(the initial surface roughness) to 1.98 ± 0.26 µm (p < 0.05;Table 2) following all tissue preparation 

(Figure 6).  

RaL measurements ranged from 0.57 to 2.24 µm. Freezing (1.00 ± 0.38 µm), fixation (1.03 ± 0.55 µm) 

and dehydration (1.07 ± 0.18 µm), independently, did not significantly alter RaL (p > 0.05;Table 2; 

Figure 6). There was no significant difference in the initial RaL (0.87 ± 0.30 µm) and that measured 

following the cumulative effect of freezing, fixation and dehydration (1.07 ± 0.18 µm; p > 0.05; Table 

2; Figure 6). 

3.2 Ra correction factor 

RaC was significantly increased following processing, thus a correction factor was applied. The 

correction factor, α, calculated using Equation 5 was -0.46, was inserted into Equation 3 to calculate 

RaCβ, the corrected surface roughness in the circumferential direction, as shown in Equation 5.  

Equation 5 
𝑅𝑎𝐶𝛽  =

𝑅𝑎𝐶

1 + 0.46
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The mean RaCβ was 1.31 ± 0.21 µm. No significant difference was found between the original RaC 

values and the calculated RaCβ values (p > 0.05; Table 2). 

3.3 Tissue dimensions 

Freezing did not significantly alter any of the physical dimensions (p > 0.05; Table 2); the physical 

dimensions of tissue, though, were significantly altered due to the cumulative effect of processing (p 

< 0.01;Table 2). The initial length of specimens (1.98 ± 0.11 mm) was not significantly different to the 

fixed specimen lengths (1.83 ± 0.13 mm, p > 0.05), but they were significantly greater than the 

dehydrated specimen lengths (1.56 ± 0.44 mm, p = 0.001; Table 2). The fixed lengths were also 

significantly greater than the dehydrated lengths (p < 0.05; Table 2). 

The initial width at W1 and W2 (0.71 ± 0.07 and 0.58 ± 0.08 mm, respectively) were significantly 

greater than the widths after processing (0.55 ± 0.08 and 0.43 ± 0.06 mm, W1 and W2 respectively, p 

< 0.05; Table 2). However, the individual stages of fixation (0.62 ± 0.05 and 0.53 ± 0.06 mm, W1 and 

W2 respectively) and dehydration caused no significant differences to the width measurements (p > 

0.05; Table 2). The thickness of specimens ranged from 0.02 to 0.05 mm. No significant difference 

was seen in thickness due to the processing stages (p > 0.05; Table 2). 

4 Discussion 

This study has investigated the effects caused by freezing and chemical processing of connective 

tissues on the surface roughness and physical dimensions of LAD coronary arteries. The procedure of 

preparing LAD coronary artery samples for microscopy (i.e. freezing, glutaraldehyde-fixation, and 

dehydration) led to the cumulative effect of tissue shrinkage and increased circumferential surface 

roughness. The dehydration process caused the most significant change to values, and this was 

obvious when looking at the cumulative effect of processing, as fixing alone did not cause any 

changes. RaL was not significantly affected by the processing, however, RaC was more sensitive to 

the processing and a correction factor was developed for this (Equation 5). Further, Equations 3 and 

4 provide a generalised description for developing correction factors for Ra of soft connective 

tissues.  

Freezing alone did not affect the surface roughness or physical dimensions of samples. Storage via 

freezing is a standard protocol employed by many studying biological tissue (36, 38, 48, 49). Freezing 

prevents the degradation of biological tissues which require storage (49). Minimal changes have 

been noted of the biomechanical properties due to repeat freeze-thaw cycles of soft tissue allografts 

(50), or prolonged freeze storage of porcine aortic tissue (48). While other studies have noted that 

any effects of freezing soft connective tissues are outweighed by the standard deviation of the 

original measurements (51). The results in this study confirm that soft connective tissues stored at -

40°C are not altered in physical dimensions; further, that this storage procedure does not affect the 

surface roughness (Ra) of coronary arteries. 

Previous studies have highlighted the benefits of storing tissue cryogenically with an appropriate 

cryo-protectant (52) to allow indefinite storage of blood vessels. Additionally, without the use of a 

cryo-protectant, when storing tissues at -20 °C, the stress-strain properties of porcine femoral 

arteries were altered; potentially due to ice crystal growth or damage to the extracellular matrix 

(53). However, storing soft tissues at -20 °C has revealed no changes in mechanical properties for 

porcine liver (54), porcine aortic samples (48) and murine tendons (49) to name but a few. Increased 

rate of storage and lower storage temperature are known to reduce of the size ice-crystals (55), with 

smaller ice-crystals having less effect on the extra-cellular matrix composing soft connective tissues 
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(56). In this study, a protocol for storing soft tissues by freezing at -40 °C was used (13-16). Further, 

neither repeated freeze–thaw cycles or extended frozen storage have been found to lead to more 

than minimal changes in biomechanical properties, for bone-patella tendon-bone soft tissue 

allografts (50) and porcine aortic tissue (48), respectively. This is consistent with our own finding that 

a freeze-thaw cycle did not alter surface roughness of the tissue at -40 °C. Although no significant 

difference was seen in surface roughness after a freeze-thaw cycle, some established storage 

procedures do incorporate cryo-storage and cryo-protectants (52, 57, 58). Therefore, it would be of 

value to assess the effect of cryo-protectants on the surface roughness of soft connective tissues 

using the methodology from this current study. 

Arteries are made up of smooth muscle cells, collagen, and elastin (59, 60). Fixation is used to 

preserve the structure of the samples and prevent degradation of connective tissues, through the 

reacting of aldehyde groups (61) in the fixing solution (e.g. glutaraldehyde) with amino acids found 

in collagen (62), forming crosslinks between the collagen fibres (43, 63, 64). Conversely, elastin is not 

fixed by glutaraldehyde or formaldehyde fixatives (65). Glutaraldehyde is often chosen for fixation to 

attempt to preserve the mechanical properties of tissue (66), preventing their degradation during 

storage for instance. However, the cross-linking process is known to affect the anisotropy of 

biological materials such as pericardium tissue (67), with an increase in mechanical strength seen in 

pulmonary ligaments (68) and increase in elasticity noted elsewhere in pericardial tissue (69). 

Conversely, heart valve tissue was found to be less stiff following fixation (70). Regardless, fixation 

affects the structure and mechanical strength of tissue. The results of this study determined that the 

surface roughness was not affected by the fixation procedure; however, it is unclear whether the 

cross-linking of proteins would be expected to alter the surface roughness of an endothelium lined 

coronary artery. Dehydration prevents the distortion of light when performing microscopy and is 

necessary to ensure a vacuum for traditional SEM for instance (43, 71). Biological tissue in the 

human body is naturally hydrated, and the dehydration of tissue has been shown to affect its 

viscoelastic properties (72, 73). The dehydration process removes both free water molecules, and 

those bound to the tissue such as water soluble proteins. Therefore, the results of this study which 

show that both the circumferential surface roughness and physical dimensions of coronary arteries 

are significantly altered due to dehydration appear reasonable. Further, the dependency of tissue 

dimensions on hydration, and the finding in this study that surface roughness changed significantly 

only subsequent to dehydration, imply that the need for a correction factor to compensate for the 

changes due to processing should be considered particularly when tissue processing includes 

dehydration. 

The correction factor in this study can be used as a standard for preparing coronary artery tissue 

through fixation and dehydration. This correction factor would provide outer limits of the 

circumferential surface roughness measurements, analogous to how the tissue fraction effect is 

corrected for in dynamic imaging (74). A correction factor would be beneficial for assessing the 

effect that processing techniques have on surface roughness measurements of biological tissues. It is 

accepted that measurements of tissue dimension (31), tumour volume (75), and cell density (33) 

should be corrected due to the effect of processing, however, this correction has not been 

quantified previously for surface roughness. The results of this study are beneficial to the 

development of biomaterials, where replicating the endothelium could be achieved through surface 

modification techniques, including nano-texturing. This would leave the bulk modulus of the 

material unchanged, but allow the opportunity to influence cell formation (15-24), increase patency 

rates (7, 12, 25), and increase biocompatibility (10-14).  
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This study used glutaraldehyde based fixation, typically associated with the preparation of samples 

for SEM. This assessment is of value because it is difficult to perform SEM on tissues without any 

preparation, i.e. to obtain a baseline measurement for comparison. Therefore, the correction factor 

calculated in this paper would be suitable when using the stated protocols when preparing samples 

for investigation by SEM. Our study, however, has used light microscopy which is typically associated 

with fixatives such formalin or paraformaldehyde (76, 77). Given that such fixatives tend to be 

milder as compared to glutaraldehyde fixation, they would not be expected to alter surface 

roughness. Pointedly, though, the methods proposed in this study could be replicated to assess the 

effect of a range of fixation (e.g. formalin, paraformaldehyde, etc) and/or dehydration protocols on 

surface roughness. The methods proposed also enable the need for correction factor to be 

determined, for a range of soft connective tissues being evaluated for surface roughness. 

The correction factor calculated in this paper is similar to that calculated in previous work (28), 

where α was -0.63 compared to -0.46 found in this study. The variation in values is likely due to the 

natural variation of biological tissue. The average mean corrected value of RaCβ in the previous paper 

was 1.04 ± 0.47 µm, which is comparable to the value of 1.31 ± 0.21 µm found in this study. A 

change in Ra after processing was only noted in the circumferential direction. Collagen is orientated 

circumferentially within the thicker medial layer, but axially in the thin sub-endothelial layer; hence a 

change in surface roughness circumferentially may be due to the collagen within the thicker medial 

layer causing a significant distortion during fixation compared to axially (78).  

The uncorrected RaC and RaL values (1.98 ± 0.27 µm and 0.99 ± 0.39 µm, respectively) within this 

paper are comparable to those measured previously (1.69 ± 0.75 µm and 0.89 ± 0.27 µm, 

respectively) (28). This confirms the repeatability of results, and emphasises the importance of using 

a correction factor for the circumferential surface roughness. Similar to the previous study, the 

uncorrected RaC was significantly greater than RaL.  

Coronary arteries are anisotropic, where mechanical properties vary from the longitudinal to 

circumferential direction. The results in this study, and the authors’ previous work (28), now suggest 

that their surface roughness is too, with the surface roughness of LAD coronary arteries being 

significantly higher in the circumferential than longitudinal direction. This may have implications for 

recent studies investigating the helical flow in coronary arteries (79), and potentially multiscale 

analysis of such flow (80). The main factor in the anisotropy of surface roughness appeared to be the 

presence of ridges along the artery. These ridges may depend on the underlying arrangement of 

macro-molecules such as collagen (81) and their orientation in arteries (82-84), and/or may impact 

on the endothelial cell orientation along the arteries (85). Further investigation into the multi-scale 

characteristics of the surface roughness of coronary arteries would be beneficial, as Ra is dependent 

on the measurement method used (86). A correction factor could be determined for scanning 

electron microscopy, to correct the changes caused by processing to surface roughness at a nano-

scale. An environmental scanning electron microscope would be useful in aiding this, as it would be 

possible to measure the surface roughness at the various stages of processing, including in a 

hydrated form, at higher magnifications than possible with an optical microscope. 

5 Conclusions 

The findings from this study are as follows: 

 a freeze cycle at -40 °C does not significantly alter the surface roughness 

measurement or physical dimensions of porcine LAD; 
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 the cumulative process of glutaraldehyde based fixation followed by dehydration, 

caused no significant difference to RaL of porcine LAD, measuring an average mean 

of 0.99 ± 0.39 µm; 

 the cumulative process of glutaraldehyde based fixation followed by dehydration, 

caused a significant increase to RaC, from 1.36 ± 0.40 to 1.98 ± 0.27 µm 

 changes to surface roughness due to processing of tissue, as described by this 

paper, can be accounted for by applying the following correction factor: 

𝑅𝑎𝐶𝛽  =
𝑅𝑎𝐶

1 + 0.46
 

 corrected RaCβ has an average mean of 1.31 ± 0.21 µm 

In conclusion, while individual preparation procedures of tissues for microscopy may not individually 

alter the surface roughness of coronary arteries, additive effects may be present (particularly 

following dehydration) which may require a correction factor. For coronary arteries this is the case 

circumferentially, but not longitudinally.  
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Table 1 – Buffer and fixative preparation protocols. 
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Table 2 – Surface roughness and dimensions (mean, median and standard deviation, SD) of samples 

at their original state (stage 1), and following a subsequent freeze-thaw cycle (stage 2), 

glutaraldehyde based fixation (stage 3) and a final dehydration stage (stage 4). Measurements were 

obtained from six independent specimens. Where † indicates a significant difference for stage 4 as 

compared to stages 1 and 2, and ‡ indicates a significant difference at stage 4 as compared to stage 3 

(p < 0.05). Note, Racβ is the correction following the cumulative processes up to stage 4, for Rac. 

 Stage 1 Stage 2 Stage 3 Stage 4 
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ea

n
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SD
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n

 

SD
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n
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n

 

SD
 

M
ea

n
 

M
ed
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n

 

SD
 

RaC 
(µm) 

1.36 1.40 0.27 1.28 1.38 0.34 1.49 1.33 0.49 1.98† 2.07 0.26 

RaL 
(µm) 

0.87 0.76 0.30 1.00 0.91 0.38 1.03 0.75 0.55 1.07 1.08 0.18 

L 
(mm) 

1.98 1.98 0.11 1.91 1.95 0.16 1.83 1.82 0.13 1.56†‡ 1.56 0.14 

W1 
(mm) 

0.71 0.69 0.07 0.67 0.67 0.02 0.62 0.62 0.05 0.55† 0.52 0.08 

W2 
(mm) 

0.58 0.57 0.08 0.57 0.58 0.06 0.53 0.55 0.06 0.43† 0.45 0.06 

t 
(mm) 

0.04 0.04 0.01 0.03 0.03 0.01 0.04 0.04 0.01 0.04 0.04 0.01 

Racβ 

(µm) 
1.31 1.42 0.21          
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Figure Captions 

Figure 1 – LAD artery samples (a) dissected to reveal its endothelial layer; longitudinal and 

circumferential orientations are highlighted. (b) Length (L) and sample width (W1 and W2) of medial 

LAD coronary artery specimens used in this study. Note, thickness (t) was measured perpendicular to 

the x-y plane. 

Figure 2 – Flow chart for processing and imaging stages of LAD coronary artery specimens of porcine 

hearts (n = 6), frozen immediately after excision. 

Figure 3 – Three-dimensional reconstruction of imaged samples (a) in their initial state (stage 1), and 

following (b) a subsequent freeze-thaw cycle (stage 2), (c) glutaraldehyde fixation (stage 3), and (d) a 

final dehydration stage (stage 4). 

Figure 4 – Optical image of the LAD coronary artery surface (a) at their original state (stage 1), and 

following a subsequent (b) freeze-thaw cycle (stage 2), (c) glutaraldehyde fixation (stage 3), and (d) a 

final dehydration stage (stage 4). Axes along which RaC and RaL measurements were taken are 

shown. 

Figure 5 – Sample surface roughness measurements for RaC (top) and RaL (bottom). 

Figure 6 – Surface roughness mean with 95% confidence intervals (n = 6) at various processing stages 

(RaC – black; RaL – white), where process 1 = original, 2 = post-freeze; 3 = post-fixation; 4 = post-

dehydration (see Figure 2). 
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