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Abstract- Despite their low profile and competitive radiation 
characteristics, most of the devices in the corrugated leaky wave 
antenna family feature an unnecessary excess weight which 

result detrimental for current innovative applications, such as 
unmanned aerial vehicles (UAV), aircrafts or satellite antennas. 
Stereolitography, accompanied by plating, is presented as an 

economic and fast solution for the manufacturing of lightweight 
devices, which at the same time is able to overcome traditional 
metal drilling/spark erosion manufacturing limitations, like the 

impossibility of eroding extremely narrow grooves. Here we 
present an elliptical Bull's-Eye antenna operating at 96 GHz 
fabricated following a 3D-printing and copper coating process. 

Due to its off-centered grooves distribution, a tilted beam 
pointing at 16.5º is obtained, presenting a gain of 17 dB and 3.5 
beamwidth. The theoretical analysis conducted to obtain the 

equations which govern the grooves distribution and shape is 
also presented. This prototype results of interest for point-to-
point communications where direct front side view is not 

possible, as well as for applications where lightweight and cost-
effective antennas are needed, such as satellite communications 
or deployed in UAV’s. 

I. INTRODUCTION 

The radiation efficiency and reduced volume of leaky 

wave antennas [1]–[6] is nowadays well known and, indeed, 

they are quite interesting for applications where this low 

profile is a prerequisite. Nevertheless, most of the metal-

based structures antennas [7]–[10] present a weight which 

might be a handicap for applications where light-weight is an 

issue is directly linked to the cost, as satellite or drones 

deployment. 3D printing is already proving useful in several 

everyday areas like prosthesis, in the automotive sector or 

even in the toy industry. Thus, it is easy to understand an 

equivalent importance in the manufacturing of complex 

geometries antennas.  

In this work, we present a copper coated 3D printed 

antenna that weighs including screws less than a fourth of a 

solid copper antenna. It was designed such that a high gain 

beam pointing at 16.5º, rather than at broadside [11], is 

obtained. The distribution and shape of the employed 

elliptical grooves is backed up by a theoretical analysis of the 

physical mechanism of the leaky wave propagation. The 

experimental results (peak gain of 17 dB with a narrow 

beamwidth of approximately 3.5º) resemble the simulations; 

the observed quantitative disagreement comes from ignoring 

the fabrication tolerances in the model, as refined simulations 

confirm. A more comprehensive work can be found in [12]. 

II. THEORETICAL ANALYSIS OF GROOVE DESIGN  

AND DISTRIBUTION  

A 3D view of the scheme used for the theoretical analysis 

of the off-axis beaming antenna is shown in Fig. 1(a). The 

observed asymmetry in both half-planes in the y direction 

(defining the half-part of the antenna with y > 0 as forward 

and the half part with y < 0 as backward, Fig. 1(b)) allows 

tilted beaming in a direction governed by the interaction 

between the cylindrical wavefront of the wave launched by 

the central open ended waveguide and the elliptical grooves. 

The antenna is designed in such a way that the forward part, 

supporting a forward leaky-mode, and the backward part, 

supporting a backward leaky-mode, generate a beam in the 

same direction θ at a certain frequency, Fig. 1(a). 

  

Fig.1 Geometry of analyzed structure. (a) 3D view. (b) Cross-sectional view 
in the plane z-y. 

Let us take the radiating aperture as the center of our 

cylindrical coordinate system, with ,  the coordinates of the 

observation point on the surface of the structure. The central 

aperture excites a grazing wave propagating with electric 

field normal to the surface and cylindrical wavefront which 

interacts with the grooves that produce the leakage at an angle 

controlled by the groove period. The axis of the first groove is 

given by the polar coordinate equation   d , where φ ∈ 

(0º, 180º) for the forward part and φ ∈ (180º, 360º) for the 

backward part. The analytical expression of this polar 

coordinate equation, for which a phase-coherence condition 
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for the scattered field from the first curvilinear groove in a 

direction ˆ ˆˆ' cos '  sin 'r z y     is ensured, can be formulated 

as: 

     0
ˆ ˆ ' +   ,       0,2     kd k r d r kd kr             )2,0(     (1) 

 

with r the far field distance from the origin,  

ˆ ˆ ˆcos sinx y      the ray direction, k  the free-space radial 

wavenumber and  0 0d d    the distance in the  x 

direction to the first groove. Since ˆ ˆ ' sin 'sinr    , we may 

rewrite (1) as: 
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which defines the equation of the first groove as an ellipse 

with a focus at the origin. The intersection distances of the 

first annular groove with the y axis (  and  FW BWd d ) are 

obtained by substituting / 2 and 3 / 2    in (2). The 

equations of the remaining grooves are found by replacing 

0kd  with 
0 2 ,  0,1,2,..,kd n n    at the right hand side of (1):  
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with λ the operation frequency (free space wavelength) and n 

the index of the P periods. This implies that all rings radiate 

in phase with the first (n = 0) ring.  Given that sinφ is positive 

the interspace between grooves in the forward region (

( ) / (1 sin 'sin )D       ) is larger than the wavelength. In 

contrast, the groove spacing is less than a wavelength in the 

backward region, as sinφ is negative. The space in the y 

direction between two consecutive grooves is, for the forward 

and backward regions respectively: 

 

 / (1 sin ');    / (1 sin ')FW BWD D                      (4) 

 

The arbitrary constant d0 and the interspace distances, 

must go through an optimization routine (based on the Trust 

Region Framework), setting as a goal to achieve the highest 

possible gain at θ = 15° and as lowest side lobe level as 

possible at the design frequency. In order to excite the TE11 

mode (i.e., fundamental mode of the coaxial waveguide 

formed by each groove), grooves must present a depth

4p  and a width w  (as observed in previous works) 

and, due to the asymmetry of the structure with respect to the 

x axis, both parameters have to be simultaneously optimized 

in the forward and backward parts.  

III. PROTOTYPE DESIGN AND SIMULATION RESULTS  

The antenna was designed and studied using the commercial 

simulator CST Microwave Studio
TM

 [13]. Its response was 

simulated form 85 GHz to 105 GHz, with a step of 100 MHz 

step. A magnetic symmetry was defined in the y-z plane and a 

non-uniform hexahedral mesh with smallest mesh cell of 44 

µm × 32 µm × 127 µm (13.66λ × 9.93λ × 39.4λ) was used to 

map accurately the geometry. The metallization of the 

antenna was modelled as bulk Copper (σ = 5.8×10
7
 S/m). The 

antenna follows a design process similar to previous antennas 

[7], [8] where a metallic slab is perforated by a central 

aperture, whose dimensions  (sx × sy × sz)  fix the frequency at 

which the power, fed by a waveguide attached to the rear part, 

will be coupled to a TM surface wave. In this case, the slot’s 

width (1.627 mm) and the height (0.470 mm) fix the 

operating transversal resonance and its Q-factor, whereas the 

slot’s depth (0.77 mm) locates the longitudinal resonance at 

higher frequencies. As the slot’s depth corresponds to the 

thickness of the metal slab, it is possible to obtain a structure 

as thin as the corrugations depth allow. For an antenna 

working at 96 GHz it is necessary to use a standard WR-10 

waveguide (W-Band, 75-110 GHz). Once the whole antenna 

was designed, the optimization routine returned d0 = 3.189 

mm, DFW = 4.142 mm and DBW = 2.438 mm, whereas the 

grooves presented final width and depth values between 420 

mm and 520 mm. 

Red curves in Fig. 2 correspond to the simulation results. 

The S11 (Fig. 2(a)) presents a dip at f = 93 GHz, 

approximately 2 (sx/2), frequency at which the maximum 

realized gain (20.35 dB) is obtained (Fig. 2(b)). In the range 

from ~90 GHz to 97 GHz the radiated beam points at ~15º 

(Fig. 2(c)), while the realized gain is over 15 dB, the 

beamwidth is approximately 6º ((Fig. 2(d)) and the return loss 

is below -10 dB. This reveals that the proposed structure 

presents in this bandwidth a good frequency-stable radiation 

behavior. Evidently, the narrowest beam (5.1º) and a precise 

pointing at 15º is obtained at f = 93 GHz, the frequency of 

design. It was chosen to include only P = 7 rings, as it was 

found to be a good tradeoff between size and gain. A higher 

gain is not necessarily obtained with an increasing number of 

periods, as reported in [7], [8], [14]. 

IV. FABRICATION AND EXPERIMENTAL RESULTS 

3D printing allows fast prototyping light antennas at a 

competitive price compared to traditional milling machining. 

Nevertheless, as the metallization of the inner surface of the 

slot and waveguide would present an increased difficulty, it 

was decided to print the antenna in two splitted blocks 

(splitted along the electric (y-z) plane, which also minimizes 

spurious radiation losses [15]), thus facilitating the 

metallization process. Both blocks were manufactured by 

means of a Stereolitography (SLA) additive process, where 

successive photo reactive liquid resin layers are cured by an 

ultra-violet light beam, resulting in solid stacked layers. Then, 

it was carried out the  metallization process, consisting of a 

four stage chemical process, to imbue both pieces with 

conductivity, and an electro-less nickel layering followed by a 

30 µm thick copper layer electro-plating-process-based 

deposition. The nickel layer is necessary to improve the 

adhesion of the copper to the structure. Finally the metallized 

halves were fastened by means of light screws (with an 

overall weight of 50.95 g). The total weight of the final 

structure (Fig. 3), including the fasteners, was 111.2 g,  far 

from the equivalent weight  of  a solid copper antenna, which 

would weight ~ 456 g (with copper’s density = 8.9 g/cm
3
). 

Hence, a 75% lighter antenna, considering the fasteners, was 

obtained.  



  

 

 

Fig. 2 Simulation (red curves) and experimental (black curves) results. (a) 

S11.  (b) Realized gain. (c) Beam Direction. (d) Beamwidth. (e) E-plane 

radiation diagram at the frequency of the maximum gain (f = 93 GHz for 
simulation, f = 96 GHz for measurement). 

 

Fig. 3 Manufactured antenna. (a) Back view. (b) Front view of one half of the 

uncoated prototype and of the final structure. 

The scrutiny of the antenna’s dimensions by means of an 

electronic microscope revealed certain inaccuracies in the 

fabrication process, such as a 123 µm narrower slot width and 

up to 160 µm narrower grooves in both forward and 

backward regions (350 µm and 260 µm, respectively). These 

deviations from the ideal design led to different radiation 

characteristics.  

In order to obtain the radiation characteristics of the 

antenna, it was used an ABmm
TM

 Quasioptical Vector 

Network Analyzer. The E-plane radiation was acquired facing 

the BE antenna (mounted over an azimuth-rotary platform) 

and a standard W-band corrugated horn antenna at a distance 

of 4.5 m, 1.10 m above the floor. All surfaces susceptible of 

producing reflections were covered with radar absorbing 

material. The broadband gain, recorded from 0 to 90º, with a 

step of 0.5º, and from 85 to 105 GHz with a step of 100 MHz, 

was obtained by applying the gain comparison method [16]. 

While the simulated return loss presents a dip at 92.8 GHz 

(frequency of design), the experimental result (black curve in 

Fig. 2 (a)) shows a red-shift of the dip frequency towards 

higher values. Furthermore, when compared to the simulation 

result, a decrease of 3 dB of the maximum gain (17 dB) and a 

4 GHz shifting of its location towards higher frequencies is 

observed (black curve in Fig. 2(b)). This might be due to the 

aforementioned fabrication tolerances.  Black curves in Fig. 2 

(c) and (e) display the beam direction and the E-plane 

radiation diagram, respectively. It can be seen that, although 

the experimental beam direction remains stable with 

frequency (as the simulated one did), it now points at 

approximately 16.5º in the band of interest. The decrease of 

the experimental gain peak and its shifting towards 16.5º is 

easily observed in the E-plane radiation diagram when 

compared with the simulated diagram. Nevertheless, a 

narrower beam is also observed for almost all the band under 

consideration, obtaining a minimum value of θ3dB = 3.5º at 

the frequency of the maximum experimental gain (Fig. 2(d)). 

It is also interesting to address the trend of the beamwidth 

values from 98 GHz to 103.5 GHz. At f = 98 GHz, the single 

beam splits in two beams, corresponding to the forward and 

backward parts contributions. As frequency is swept towards 

higher frequencies, the separation between beams is 

increased, but still appear as a single increasingly wider 

beam. From f ~102 GHz to f ~103.5 GHz, both beams appear 

clearly separated, presenting the backward contribution the 

largest amplitude, thus fixing the beam direction (Fig. 2(d)) to 

~3.5º. As the backward beam melts with a contiguous lobe , it 

can be observed a wide θ3dB = 25º beam at f ~ 103.5 GHz. 

Then, its amplitude decreases, becoming the forward beam 
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the dominant one, thus fixing the beam direction at ~14º and 

presenting θ3dB = 4.8º. The apparent inconsistency of having 

a measured narrower beam along a lower gain can be 

explained by the fact of the alteration of the optimum design, 

which results in a less efficient merging of both narrow 

forward and backward beams. 

This deviation from the ideal case can be related with the 

previously mentioned fabrication tolerances, as well as with 

extra-losses due to metal roughness and experimental errors. 

Thus, for example, the red-shifting of the maximum gain peak 

might be due to the excitation of the TE11 mode at a higher 

frequency as a result of the narrower grooves. However, 

despite this, both structures show an overall good agreement 

and the manufactured prototype is shown to be an interesting 

solution to replace full metal antennas.   

 

V. CONCLUSIONS 

In this work we have presented a cost-effective metal-

coated 3D printed antenna with good radiation characteristics. 

The structure, fabricated by means of SLA and then copper-

plated by means of several chemical and plating steps 

process, due to its off-center distributed elliptical grooves, 

displays a beam pointing at 16.5º (interesting for point-to-

point communications where tilted beaming is required). The 

equations that govern the corrugations shape and distribution 

as well as the analysis of the leaky wave carried out to obtain 

the final formulation have also been presented. The fabricated 

antenna displays a 17 dB beam with θ3dB = 3.5º at f = 96 

GHz, thus showing an overall good agreement with the 

numerical results (when fabrication tolerances and 

experimental inaccuracies are taken into account) and a 75% 

lighter weight. It has been shown that, thanks to 3D printing 

and metal-coating, it is feasible to obtain, in a fast and cheap 

way, antennas which are a good solution to  replace fully 

metal structures (heavy for some applications such as drones, 

UAV’s or satellites, where excess weight is avoided). 
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