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A MULTILINEAR FOURIER EXTENSION IDENTITY ON R"

JONATHAN BENNETT AND MARINA ILIOPOULOU

ABSTRACT. We prove an elementary multilinear identity for the Fourier extension operator on
R"™, generalising to higher dimensions the classical bilinear extension identity in the plane. In the
particular case of the extension operator associated with the paraboloid, this provides a higher
dimensional extension of a well-known identity of Ozawa and Tsutsumi for solutions to the free
time-dependent Schrodinger equation. We conclude with a similar treatment of more general
oscillatory integral operators whose phase functions collectively satisfy a natural multilinear
transversality condition. The perspective we present has its origins in work of Drury.

1. INTRODUCTION

To a smooth function ¢ : R»~! — R we associate the Fourier extension operator
Eg(z) = / ei($/'§+xn¢(§))g(£)d£;
Rn—1

here x = (2/,z,) € R"! x R, and a-priori g € L'(R"!). The term “extension operator” is
used since the adjoint E*, given by E*f(§) = f(f ,0(£)), gives a (parametrised) restriction of
the Fourier transform of a function f on R™ to the hypersurface S = {(&,¢(¢)) : € € R* "1} In
practice the function ¢ is often only defined on some compact set U C R"~!, giving rise to a
compact hypersurface S. We gloss over this point in most of what follows since such a feature
may be captured by the implicit assertion that the function g is supported in U. In the 1960s
Stein observed that if S is compact and has everywhere nonvanishing curvature, then F satisfies

estimates of the form

(1.1) I1Egll Lamny S gl e

with ¢ < oo; the case (p,q) = (1,00) is of course elementary by Minkowski’s inequality. The
celebrated Fourier restriction conjecture asserts that estimates of this type continue to hold

for ¢ > 2% with elementary examples preventing an endpoint estimate at ¢ = %; see for

n—1?
example [16]. Since the 1990s bilinear, and more generally multilinear, estimates of this type
have emerged as particularly natural and useful; see for example [18], [17], [12], [5], [1], [7]. The

simplest such example is the well-known and elementary bilinear identity

200 = (97)2 ‘gl(fl)‘2’92(fz)’2
(1-2) [ 1B @B @) = x| 0,(6) — dh(&)

where F1, F5 are extension operators associated with phases ¢1,¢s and curves Si1,S55 in the
plane; see [11] for the origins of this.! This particular two-dimensional statement occupies a
singular position in Fourier restriction theory in the sense that it is an identity. The main
purpose of this paper is to establish natural higher-dimensional analogues of this. To this

d§déa,

Date: 18 January 2017.

This work was supported by the European Research Council [grant number 307617].

Las may be expected, some technical hypotheses relating to the geometry of these curves are needed here, and
it will suffice to ask that ¢} (&1) # ¢5(£2) whenever &; belongs to some interval containing the support of g;, for
each j =1,2.
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2 JONATHAN BENNETT AND MARINA ILIOPOULOU

end we consider extension operators F1,..., E, associated with the functions ¢1, ..., ¢,, and
hypersurfaces S1,...,S,.

Theorem 1.1.

(1.3) |E1g12 % - % | Engn|® = (QW)n(nl)/
(Rn—l)n

1 (602 |gn(€n) 2
1 1
det(wl@n wn(sn))

for all functions g1,...,gn such that the determinant factor is monzero whenever &; belongs to
the convex hull of the support of gj, 1 < j < n.

dg,

It should be remarked that requiring a non-vanishing determinant factor whenever £; belongs
to the support of g; (1 < j < n) is necessary in order for the integral on the right hand side
of (1.3) to be finite. This is due to a critical lack of local integrability, which is of course also
present in (1.2). Our requirement that this continues to hold on the convex hull of the supports
is a technical condition used in our proof, and is a product of the generality of the set-up. As
we shall see, this is not always necessary, as the particular case where each S; is the paraboloid
reveals. In particular, the following holds.

Theorem 1.2. Let E be the extension operator on the paraboloid S = {(&,¢(€)) : € € R 1},
with ¢ = | - |2. Then,

‘91(51)‘2 ’gn(fn)P df
w0
fl é’n

We clarify that while Theorem 1.2 does not impose a support condition on the functions

gj, finiteness in (1.4) requires that the determinant factor on the right hand side does not
vanish on their supports. This particular determinant factor is of course just the volume of the
parallelepiped in R”~! with vertices &q,...,&,.

(1.4) |Egi|* % -+ % |Egy|* = 27 ("D (2m)(nD) /
(Rnfl)n

Theorem 1.1 tells us that |Eygi|? * --- % |[Engn|? is a constant function. Nevertheless, it is
enough to prove (1.3) at the origin, as the right hand side is manifestly modulation-invariant.
The case n = 2 of Theorem 1.1 immediately reduces to (1.2) on evaluating the convolution at
the origin and performing a harmless reflection in either F1g; or Fage. The identity (1.3) may
be interpreted as an elementary substitute for the absence of a linear restriction inequality (of
the form (1.1)) at the endpoint ¢ = 2n/(n — 1). Indeed, notice that the n-fold convolution

Ln/(n—l)(Rn) . Ln/(n—l)(Rn) C Loo(Rn)

by Young’s convolution inequality; therefore, an inequality of the form (1.1) at ¢ = 2n/(n — 1)
would also imply that |E1gi|?  --- * |E,gn|? is a bounded function. This perspective on the
restriction conjecture originates in work of Drury, and the underlying ideas in this paper are
closely related to those in [10].

A more geometric interpretation of (1.3) comes from writing
Ejgj = f;doj,
where do; is surface area measure on S, and f; is given by

9;(€) = (1 + |V () )2 f;(E, 6;()).

In these terms (1.3) becomes

Fdoil2 % x| fdool? = (27)2(n—D) [fily)P - [ fulyn) P o e do
(13) [Feder oo Fudonf? = e [ B0, 40) o),
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where v;(y;) denotes a unit normal vector to S; at the point y; € S;. It is instructive to
(formally) take the Fourier transform of the identity (1.5), and look to interpret the resulting

distribution
n

[1(f5doy) = (f;do;)

=1
as a multiple of the delta distribution at the origin; here 1 denotes the reflection of a measure

p in the origin. The key observation is that each factor (fjdo;) * (fjdo;) is supported in the
complement of a cone with vertex at 0, and the axes of these cones point in a spanning set of
directions. We do not attempt to make these heuristics rigorous here.

We conclude this section with some further contextual remarks and generalisations.
Notice that the vector (1, —V¢;(&;))T is normal to the hypersurface S; at the point (£, $;(&;)),
and so if the surfaces S, ..., S, are compact and transversal, that is, satisfying?
‘vl(yl)/\/\vn(yn)’zl fOI' yleslv"‘7ynesn7
then (1.3) becomes
(1.6) [Evgi]? # - % | Bagnl® ~ 9113+ llgnl3-

It is interesting to contrast this with the (considerably deeper) endpoint multilinear restriction
conjecture

(L.7) 1Ergr- Engnll 2y o S gl llgnll2:
see [5]. While (1.7) remains open, the weaker
&
(18) B9t Bugnll, oy S Bl lonlls, R 1

is known; see [5], [1] for a modest improvement, and [3], [20] for generalisations.

Theorem 1.1 is a particular case of a one-parameter family of identities for the multilinear
operator T,(g1, .-y gn)(T1,. .., Tp) :=

1 1
/(Rn—l)n det( Voi(&) -+ Von(én) >

where z1,...,2, € R", z; = (ac;-,xjn) € R xR, and o € R. Of course T%(g1,...,9n) =
FEig1 ® -+ ® Epgn, so that Theorem 1.1 is the o = 0 case of the following:

H @&t aind; (gj))gj(ﬁj)dﬁj,
j=1

Theorem 1.3. For each o € R,
/ To(91, -+ s gn) (@1, - - )P

(1.9) _ (2m)7n-D) / gL (EDZ - |gn(€n) 2
(Rn—1)n

1—20 d§

det ( 1 .. 1 )
for all functions g1,...,gn such that the determinant factor is nonzero whenever &; belongs to
the convex hull of the support of gj, 1 < j < n.

In the case of the extension operator on the paraboloid, the support condition on the functions
g; may be dropped provided o > 0, as our next theorem clarifies.

2Throughout this paper we shall write A < B if there exists a constant ¢ such that A < ¢B. The relations
A 2 B and A ~ B are defined similarly.
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Theorem 1.4. Suppose o > 0. In the case of the paraboloid, i.e. for¢1 =...= ¢, =¢ =1 - |?,
/ Tolgr,- - gn) o, an) P
T4+, =0
2. 2
(1.10) — 9=(=1)(gyn(n-1) / g1 EOFlon(En)l” e
(Rnfl)n

1 - 1
(g )

If o < 0, (1.10) continues to hold provided the determinant factor is mon-vanishing on the
supports of the g;, 1 < j < n.

Of course when ¢ = 0, Theorem 1.4 becomes Theorem 1.2. In contrast with the case o = 0,
when ¢ > 0 finiteness in (1.10) no longer requires that the determinant factor is non-vanishing
on the supports of the g;.

Of course (1.9) ceases to have convolution structure for o # 0. However, alternative geometric
insight may be found in a more elementary Kakeya-type analogue of (1.9), which states that

/ Feef :0< Z ey A 6<Tn)|20 e Xty (1) - er X, (»”Un)) dx

(111) T1,....Tn

cry e,
= Cn )

TE,:TTL le(Ta) A= Ae(Ty)[ %7
here T1,...,T, belong to finite sets Ty,..., T, of doubly infinite 1-tubes (cylinders of cross-
sectional volume 1) in R"™, and for such a tube T, e(T) € S*~! denotes its direction. Here the
coefficients cr; are nonnegative real numbers, ¢, denotes a constant depending only on n, and
we make the qualitative transversality assumption that e(T7) A---Ae(T},) # 0 whenever T € T.
When n = 2, this is the well-known and elementary bilinear Kakeya theorem in the plane. By
multilinearity (1.11) immediately follows, for all o, from the elementary geometric fact that
(1.12) XTy %k n

X =TT A A e(T))|

whenever e(T7) A --- AN e(T,) # 0. (A simple way to see (1.12) is to begin with its manifest
truth for orthogonal axis-parallel rectangular tubes 11, ...,T;,, and then use multilinearity and
scaling to extend it to orthogonal tubes of arbitrary cross section, whereby a change of variables
may then be used to establish the claimed dependence on the directions e(T1),...,e(T},).) The
identity (1.11) with o = 1/2 has a similar flavour to the much deeper affine-invariant endpoint
multilinear Kakeya inequality

1 1
n—1 n—1
[ (3 e nnemionn en ) 5 (Ton T )
" T T

T1,...,Th

proved in [6] and [8], and the seemingly deeper still (conjectural) variant

1

n—1
/ ( Z ’e(TI) /\/\6<Tn)’20 CTlXTl ...CTTLXT’!l)
R’I’L

(1.13) ot

1

e
cT, - CT
< 1 n
~ 1—2 )
(Tl,.Z;Tn le(Ty) A=+ Ae(Th)| U)

for any real number o. This inequality for ¢ = 0, or at least a natural variant of it involving
truncated tubes, is easily seen to imply the classical Kakeya maximal conjecture via an appli-
cation of Drury’s inequalities from [10]. The identities in Theorems 1.1 and 1.3 are inspired by
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the analogous conjectural multilinear extension inequality
2 DY 2
R BBl a5 e @)l ge
LT (Rn) (Rn-1yn det < 1 . 1 ) ’
V(&) - V(&)

and its generalisation
(1.15)

, 2. 2 n
/IR" |Tcr(gla e 7911)(1;’ e ,$)|Edl‘ S </(Rn1)n ‘gll(gl)‘ o an(gz)‘ 1—2Ud£> .
det( Vi (&) - Von(én) >

These very strong conjectural inequalities (1.13)—(1.15) arose in discussions with Tony Carbery
in 2004, and also recall work of Drury in [10]. Some recent progress in this direction may be
found in [15]. Of course (1.3) and (1.9) are much more elementary than (1.14) and (1.15) when
n > 3.

Theorems 1.2 and 1.4 may be formulated in terms of solutions u, ..., u441 : R? x R — C to
the Schrodinger equation iOyu = Aw with initial data fi,..., fgr1. Indeed, Theorem 1.2 for
n = d + 1 becomes

1ty =091 (21 07 [ugir (@apr, tag)[Pdedt

(1.16) ftttann =0

_ 1 AEE - Vana Ear)l ,
20(2m) D guayers p(©)] ’

1 ... 1
= det ;
Pe) ¢ ( & 0 &an )
here € = (&1,...,6q41) € R? x -+ x RE We observe that p(€) = 0 if and only if &, ..., &4, are
co-hyperplanar points in R?, and, in order for the expression in (1.16) to be finite, one needs to

where

stipulate that the determinant factor is non-vanishing for §; in the support of j/”;-, 1<5<d+1.
Notice that the tensor product here is a space-time tensor product. Thus there are many times
in play, and the measure is Lebesgue measure on a linear subspace of space-time. Multilinear
expressions of a similar flavour to (1.16) may be found in [2].

A similar reformulation of Theorem 1.4 for o > 0 gives an extension of (1.16) that ceases to
have local integrability (finiteness) issues, retaining content even if the solutions u; all coincide.
In order to state this, it is natural to define the d-th order differential operator

1 .. 1
,O(V;p) = det < vxl . vmd_H > )
and its fractional power |p(V;)|” to be the operator with Fourier multiplier |p(£)|”; here the
Fourier variable ¢ belongs to R4+ In this notation, Theorem 1.4 for o > 0 becomes

Theorem 1.5. For solutions uy, ..., uqy1 of the Schrodinger equation, with initial data fi1, ..., fa+1
respectively, and for all o > 0,

vt tagss o PV (Wi (@1, 1) - tara (Tarn, tat1))|*dadt

trte gy =0

L €)1 | fara (Gar)?
 2d(2mr)dld+1) /(]Rd)d-H p(E)I 27 “

Setting o = % is particularly natural, as it reduces to the following;:
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Corollary 1.6.

1
(1.17) A1+-~~+xd+10 (V) (ur (@1, t1) - wgir (@asn, tar) Pdadt = gall 713+ [ fasall3-
t1+-+tgy1=0

The case d = 1 of Corollary 1.6 is due to Ozawa and Tsutsumi [13], and is more usually stated
as

1
(118) | [ 10 . Pzt = 515131215

where D, denotes the scalar derivative operator with Fourier multiplier |{|. Notice that the
complex conjugate and fractional derivative appearing here are encoded in the space-time re-
flection resulting from the restriction x; + x9 = ¢ + t2 = 0 in (1.17). Bilinear extensions of
(1.18) to higher dimensions are also natural, although these cease to be identities; see [4] for
further discussion.

As our proof of Theorem 1.5 reveals, the 0 = 1 case may be formulated as

vt tagss =0l P(Va) (@1, t1) - g (Tas, ta1))dedt

(1.19) t1t i1 =0
1

- 2d(27'r)d(d+1) (Rd)d+1

F1EOP - fasr Earn) Plo()1dg,

making it somewhat special since it involves only classical derivatives of the solutions. In [14]
(see also [19]), it was shown how to deduce the classical d = 1 case of (1.19) from certain
bilinear virial identities, avoiding explicit reference to the u; as Fourier extension operators.
This convexity-based approach has the noteworthy advantage of applying to certain nonlinear
Schrodinger equations, and it may be interesting to extend this approach to (1.19) in higher
dimensions. We do not pursue this here.

Organisation of the paper. In Section 2 we give a proof of Theorems 1.3 and 1.4 (thus also
proving Theorems 1.1 and 1.2). Finally, in Sections 4 and 5 we establish a version of Theorem
1.1 in the context of more general oscillatory integral operators.

Acknowledgments. We thank Neal Bez, Tony Carbery, Taryn Flock, Susana Gutiérrez and
Alessio Martini for many helpful discussions surrounding this work.

2. THE PROOF OF THEOREM 1.3

The proof we present follows the same lines as the classical case n = 2: a suitable change of
variables that allows the multilinear extension operator to be expressed as a Fourier transform,
followed by Plancherel’s theorem.

We have

Tg(gl, o 7gn)(x17 e l'n) _ / ei(wll~§1+~.‘+I;L~§n)€i(x1n¢l(El)+'-~+Inn¢n(£n))G(§)d§’
(Rnfl)n

where x; = (x;.,xjn) € R"! x R, for each j, and

g

G(é) = gl(‘fl)"'gn(fn)'

det(wll(én - wﬁnl(én))
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On the subspace x1 + - - - + x, = 0 we therefore have
Eig (5171) T Engn(xn) = Elgl(xl) t Engn(_xl — = fL'nfl)
_ / i@ (€1 —En) 4l (En1—En))
(Rnfl)n
% ei(11n(¢1(51)*¢n(én))+"'+$(n—1)n(¢n—1(§n—1)*¢n(§n)))G(§)d§'
We now make the change of variables n; = £; — &, for each 1 < j <n — 1, so that
Elgl ($1) te Engn(_wl — xnfl)
_ / ei(1'/1"’71+"'+$/nf1‘77n71)
(Rnfl)n
w e @1 (P1(m+E&n)—dn (§n))++2(—1)n (Pn—1(Mn-1+E&n) —Pn(§n)))
S G(nl +&ns - yMn—1 + &n, gn)dnl Tt dnn—ldén-

Applying Plancherel’s theorem in the variables 2/, ..., 2], _; gives

/ Ergi(20)]? - | Bngn(2a)|2da
T1+ AT =0

(21) :(27-()(”_1)2/‘/ei(wln((bl(n1+§n)_¢n(fn))+“'+x(n1)n(¢n—1(77n—1+§n)_¢n(§n)))

2
X G(nl +&ns -5 Mn—1+ &ns &n)dgn dny - dnp—1dxip - - dm(nfl)n-

For fixed 71, ...,m,—1 we make the change of variables &, — t, where t; = ¢;(n; + &) — on(én)
for 1 < j <mn — 1. This map is injective on the support of G, := G(m + - ,..., =1+ -, - ).
Indeed, if not, then there exist £; # & in the support of G, (implying that n; 4+ &1, n; + &2 are
both in the support of g;, for all j =1,...,n — 1), such that

bi(j +&1) — on(61) = @j(n; +&2) — dp(&2) forall j=1,...,n—1,
i.e. such that

dr(m +&1) —pr(m + &) = .. = dn1(Mm-1+ &) = Sn1(n-1 + &) = dn(&1) — dn(&2).
Note that, for all j = 1,...,n — 1, the line segment ¢; connecting 7n; + & with n; + & is just a
parallel translate of the line segment ¢,, connecting §; with &. Of course, for all j =1,...,n, ¢;

is contained in the convex hull of the support of g;, and so by our hypotheses, the determinant
in the statement of Theorem 1.1 is non-zero whenever {; € ¢; for all 1 < j < n . By the mean
value theorem for each ¢; on the line segment ¢;, it follows that, for all j = 1,...,n, there exists
c¢; € £, such that the directional derivative of ¢; at c¢;, in direction §; — &2, has the same value
for all j. In other words,

V(JSj(Cj) : (fl —52) = ¢ for allj = 1,...,n,

for some constant ¢ € R. Therefore,

(1, V¢j(6j)) : (—C, fl - fg) =0 for all j = 1, ey N
Since ¢; € ¢; for all j, the vectors (1,V¢;(c;)), j =1,...,n, span R™; thus

(—c, 61— &) =0,

which is a contradiction, since &1 # &. Therefore, our map is injective. Moreover, the Jacobian
determinant of the transformation &, — ¢ is simply

o
I

)

(ot er e e wle)
Vor(m+&) - Von1(-1+&) Vou(én)
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which does not vanish on the support of G. It follows that

/ Erg1(20)]? - | Engn(za)|2da
1+ 4xn=0

:(27{)(’”’_1)2/‘/ei(t1x1n+"‘+tn—1$(n1)n)

ot
G nys-syIn— nsSn A~
x G(m +¢€ -1+ & §><8§n
which by Plancherel’s theorem again, becomes
2
_ ot \ "
(27’[’)n(n 1 / G(nl + & M1+ &n, gn) <a€>

Undoing both of the changes of variables above, this expression becomes

6 —1
(2D /|G € ) (a;)

dg
_ (27r)n(n—1) |91(§1)|2 e ’gn(gn)|2 — de,

1 9
> dt’ dzin - dx(n—l)ndnl te dnn—lv

dt dny - - - dnp—1.

o) Voo )

as claimed.

3. THE PROOF OF THEOREM 1.4

Following the proof of Theorem 1.3, we reach (2.1) and apply the same change of variables
&, — t, which, in this case, is explicitly given by

tj = 6;(1 + €n) — én(6n) = il + 20 - &n-
For every (n1,...,Mn—1) € (R”fl)nfl that span R"~! (that is, for almost every (n1,...,7,-1)),
the above affine transformation is globally injective, with Jacobian determinant

- B 1 1 1
2 771/\.../\77n1—det< v¢1(n1+§n) v¢n—1(nn—1+€n) v¢n(§n) ) # 0.

The proof now concludes as in the proof of Theorem 1.3.

4. VARIABLE COEFFICIENT GENERALISATIONS

It is natural to attempt to generalise Theorem 1.1 (at the level of an inequality) to encompass
families of more general oscillatory integral operators of the form

Tfa) = [ Mo fe)de,

where ® is a smooth real-valued phase function, 1 is a compactly-supported bump function,
and A is a large real parameter.

To this end, suppose that we have n of these operators, T j,...,T, » with phases ®1,...,®,
(and cutoff functions 1, ...,%,). An appropriate transversality condition is that the kernels of
the mappings d¢d; @1, ..., d¢d,; P, span R™ at every point. In order to be more precise let

n—1

D= g v
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for each 1 < j < n; by (Hodge) duality we may interpret each X (®;) as an R"-valued function
on R® x R""!. In the extension case where ®;(z,£) = x - ¥;(£), observe that X (®;)(z,¢) is
simply a vector normal to the surface S; at the point ¥;(£). A natural transversality condition
to impose on the general phases ®1,...,®, is thus

(4.1) det (X(®1)(x1,&1), ..., X () (2, &n)) =1
for all (x1,&1) € supp(¥1), ..., (zn, &) € supp(vy,). Under this condition it is shown in [5] that

n(n—1)

(4.2) Hjl;[lTj,AfjHLﬁ(Rn)g CA—"5 +sj1;[1\yfjHLz(RM),

generalising (1.8). Here we establish the corresponding generalisation of (1.6).

Theorem 4.1. Assuming (4.1)

(4.3) / . T fu(z) - T fu(@n) Pdz S XD 5 (1 fall3.
T1+ - +Tn=

Of course (4.2) with € = 0 is the same as (4.3) when n = 2. Theorem 4.1 is well-known for
n = 2, and this is a simple exercise using Hormander’s theorem for nondegenerate oscillatory
integral operators. More precisely, observe that when n = 2,

Tixfi(x)Toxfa(—) = /(R)2 e Yy (2, €)1, &) f1(61) f2(E2) dErdéo,

where ¥(z,§) := ®1(x,&1) + Pa(—x,&2), and notice that det Hess ¥ coincides with the nonzero
quantity in the hypothesis (4.1). Hence (4.3) holds for n = 2 by Hérmander’s theorem; see [9]
and [16] for further context and discussion. As may be expected from Section 2, the higher-
dimensional case of Theorem 4.1 will follow by a similar argument, although some additional
linear-algebraic ingredients will be required.

5. PROOF OF THEOREM 4.1

We begin by writing
Tl,)\fl (xl) e ’Tn—l)\fn—l(xn—l)Tn,Afn(_J:l — xn—l)

= /(Rn_l)n M@ (2, 61) -+ (2, E0) F1(EL) - - - fn(En)dE,

where ¥ : (R?)?~1 x (R*"~1)? — R is given by
(51) \Il($7€) = cbl(xlaél) + -+ (I)n—l(xn—17§n—1) + (Dn(_xl — xn—lvgn)

The difficulty now is that Hess ¥ is no longer an n X n matrix, and so some work has to be
done to see that its determinant coincides with that in the hypothesis (4.1). Once this is done
Theorem 4.1 follows by a direct application of Hérmander’s theorem as in the case n = 2. Thus
matters are reduced to showing the following.

Proposition 5.1.

n—14@=D2(n=2)

det Hess U(z, &) = (—1) det (X(<I>1)(;1:1,£1) ey X(Pp) (e — - — xn—hfn))%

the coefficient above equals 1 for n = 0,1,3 (mod 4), and —1 for n =2 (mod 4).
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Note that Hess ¥(z, ) is of the form

o )
A (n-1) 0 0 e 0 AT
(2) (n)
0 Amoy o ... o AW
0 0 nx(n—1) *°° 0 Anx(n—l) )
' . ) (n)
0 0 o A Aln
where
Ag)x(n_n = Hess ®;(z;,&;) fori=1,...,n—1
and
Aglnx)(n_l) = —Hess &, (—z1 — -+ — xpn—1,&n).

Proposition 5.1 is therefore a special case of Lemma 5.2 that follows, for k =n — 1.

Lemma 5.2. Forn > 2 and 1 <k <n-—1, let A;lx)(nil),...,AglkX)(nil) be n x (n — 1)-block

matrices, and Aglk;kl) be an n X k-block matrix. Let

(1) (k+1)
Ay O 0 o o A
() (k+1)
0 AV 0 o o AN
= (3) (k-t1)
My 0 0 ATy - o AN
(k) (k+1)
0 0 o 0 AT ANk

Then,
det My i = (1) D™ 52 AT A A AT AAL
where A} is the (Hodge) dual of the wedge product A; of the columns of AS)X(n_l), for all i =

L,...,k, and A} is the dual of the wedge product A1 of the columns of Aglkjkl).

Proof. For any 1 < k <n — 1, we denote by C; the i-th column of A&k;kl). By definition,

AfA AN AN, =

(A1, Cr) (AL, Co) o (A],Ch)

| Aney ey sy

(A7, C1) (AL, Co) oo (AL, Cy)

A ANCY A N Cy o M AC

det Ay A CY Ay A Co oo A NG
= e .

A ANCY Ap AN Cy oo A NG
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It thus suffices to show that, for any n > 2 and k& < n,

A NANCY A N Cy . M ANC

_ A NC A N C . Ao ANC

(52) det Mn,k _ (71)(11—1) k(kQ 1) det 2 1 2 2 . 2 k
A NCq A N Co oo A ANC

We prove (5.2) by induction on k.
Indeed, (5.2) clearly holds for & = 1; in that case,

det My, 1 = det ( AW oy ) = Ay ACY.

nX(n—1)

Let k > 2, and let us assume that (5.2) holds for k£ — 1; we now deduce it for k. We first observe
that

k
det My = > _ det B,
=1
where
6
ALY 0 0 0 O ... 0 C 0 0
o A®., 0o ... 0 Ci ... Cii 0 Cipx Gy
B, = 0 o AY 0 Ci ... Cioi 0 Cipn Gy
' ' e C o Civ1 C
0 0 0 nx(n—1) 1 i1 0 i+1 k

Indeed, let us focus on the last k columns of M,, .. By writing the i-th of these columns in the
form (C;,0,...,0)4+(0,C;,...,C;), for all i = 1,. .., k, multilinearity of the determinant implies
that

k
det Mn,k = Z det B; + Z det Fi,j7
i=1 i#j
where I'; ; is an nk x nk matrix with (C;,0,...,0) and (C},0,...,0) as the i-th and j-th column
(1)

nX(n—1)’
n 4+ 1 vectors in R”~!, and are thus linearly dependent, forcing the determinant of I'; j to be
Z€ro.

of its right nk x k block. These columns, together with the columns of A form a set of

We now swap the column (C;,0,...,0) consecutively with columns on its immediate left until
it becomes the n-th column; there are ¢ — 1 + (n — 1)(k — 1) such swaps involved, therefore

k
(5.3) det M, = (1) DE=D N " 1)1 det D,
=1

where D; is the matrix we get from B; by the above process; in other words,

1)

AN G (0 o ... o0 0
2 i

0 Anx(n—l) ( )0 0 An,k’—l
3 N

D; = 0 0 Anx(n—l) 0 An,k—l ’

C® i

0 0 o AW A,
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where ﬁi%k,_l denotes the n x (k — 1) matrix that we get from Aflk;kl) after deleting its i-th

column. Since ( A(l)

C; > is a square matrix, we obtain

nx(n—1)
Ay O 0 Ay
det D; = (A1 A C) - det 0 Af"ng)(n—l) 0 A;z,.kq
0 L0 AW A,
A ACL ... AgACisy A ACiyr ... Ay AGy
(R gy | WA A G e n G A Gy
AACE oo ARACi  AACit ... AAG

the last equality holds by the inductive hypothesis. Plugging this into (5.3), we obtain (5.2) for

this k.

1]

(18]
(19]

(20]

O
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