

University of Birmingham

Diagrammatic Semantics for Digital Circuits
Ghica, Dan R; Jung, Achim; Lopez, Aliaume

DOI:
10.4230/LIPIcs.CSL.2017.24

License:
Creative Commons: Attribution (CC BY)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Ghica, DR, Jung, A & Lopez, A 2017, Diagrammatic Semantics for Digital Circuits. in V Goranko & M Dam (eds),
26th EACSL Annual Conference on Computer Science Logic (CSL 2017). vol. 82, 24, Leibniz International
Proceedings in Informatics, vol. 82, Schloss Dagstuhl, pp. 24:1-24:16, 26th EACSL Annual Conference on
Computer Science Logic (CSL 2017), Stockholm, Sweden, 20/08/17.
https://doi.org/10.4230/LIPIcs.CSL.2017.24

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 20. Mar. 2024

https://doi.org/10.4230/LIPIcs.CSL.2017.24
https://doi.org/10.4230/LIPIcs.CSL.2017.24
https://birmingham.elsevierpure.com/en/publications/b9227d04-f8d9-44ef-be85-8446c290c85b

Diagrammatic Semantics for Digital Circuits
Dan R. Ghica1, Achim Jung1, and Aliaume Lopez2

1 University of Birmingham
2 ENS Cachan, Université Paris-Saclay

Abstract
We introduce a general diagrammatic theory of digital circuits, based on connections between

monoidal categories and graph rewriting. The main achievement of the paper is conceptual, filling
a foundational gap in reasoning syntactically and symbolically about a large class of digital
circuits (discrete values, discrete delays, feedback). This complements the dominant approach to
circuit modelling, which relies on simulation. The main advantage of our symbolic approach is
the enabling of automated reasoning about parametrised circuits, with a potentially interesting
new application to partial evaluation of digital circuits. Relative to the recent interest and
activity in categorical and diagrammatic methods, our work makes several new contributions.
The most important is establishing that categories of digital circuits are Cartesian and admit,
in the presence of feedback expressive iteration axioms. The second is producing a general yet
simple graph-rewrite framework for reasoning about such categories in which the rewrite rules
are computationally efficient, opening the way for practical applications.

1998 ACM Subject Classification B.6.3 Hardware description languages

Keywords and phrases digital circuits, string diagrams, rewriting, operational semantics

Digital Object Identifier 10.4230/LIPIcs.CSL.2017.24

1 Introduction

Of the many differences between the worlds of software and hardware design, a particularly
intriguing one is their prevailing modelling methodologies. The workhorse of software reas-
oning — operational semantics [28] — is syntactic and reduction-based. It is essentially an
abstract, entirely machine-independent presentation of a programming language which is
not required to be faithful to the execution model other than insofar as the final result is
concerned. On the other hand, reasoning about hardware relies on having an accurate exe-
cution model, akin to what we would call an abstract machine in programming languages,
usually some kind of automaton [21]. To reason about a circuit, it is translated so that
its execution is simulated by the automaton. The abstract machine approach is of course
established and useful in programming language theory as well [23], especially in compiler
design. But the operational semantics has several advantages over the abstract machine
approach, of which perhaps the most important is the ability to evaluate programs which
are specified only in part. This is useful because many front-end compiler optimisations are,
in one way or another, partial evaluations [8].

Broadly speaking, the main contribution of our paper is to provide an operational se-
mantics for digital circuits, based on diagram rewriting. Our methodology is influenced by
the interplay between graph rewriting and monoidal categories, which led in the last decade
to diagrammatic models for quantum computing [2], signal flow [5] and asynchronous cir-
cuits [13]. Algebraic specifications in the style of monoidal categories have been pioneered
by Sheeran in the 1980s [30] and a certain amount of algebraic reasoning about circuits

© Dan R. Ghica, Achim Jung, and Aliaume Lopez;
licensed under Creative Commons License CC-BY

26th EACSL Annual Conference on Computer Science Logic (CSL 2017).
Editors: Valentin Goranko and Mads Dam; Article No. 24; pp. 24:1–24:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2017.24
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

24:2 Diagrammatic Semantics for Digital Circuits

using such specifications has been attempted [25]. However, a full and systematic categor-
ical presentation of digital circuits has only been given recently by the first two authors of
the present paper [12]. Starting only from an equational specification of digital components
(“gates”) it shows that the free traced monoidal category, subject to certain quotients, is
Cartesian. Such categories, known as dataflow categories [29, Sec. 6.4] (or traced cartesian
categories [16]), have very useful equations for iterative unfolding of the trace [7, 16, 31],
offering a convenient way to model feedback.

The main theoretical contribution of this paper is providing a rewriting semantics for
dataflow categories with a discrete delay operator. It is well known that an algebraic se-
mantics does not automatically translate into an operational semantics, because distributive
laws (in particular the functoriality of the tensor product) are directionless. This is where
the diagrammatic approach can help when used as a graphical syntax, by avoiding the need
for such problematic laws [4] and leading to computationally efficient rewriting. The it-
eration axioms also raise difficulties, this time of identifying diagrammatic redexes. This
problem is compounded by the fact that choosing the wrong iterators to unfold can lead to
unproductive rewrites. Finally, the presence of delays raises yet a different set of technical
challenges because they cannot be rewritten out of a circuit but only moved around using
a retiming axiom [24]. We solve these problems by writing circuit diagrams in a particu-
lar canonical form, which we call global trace delay, for which we can provide effective and
efficient unfolding, with certain guarantees of productivity.

The main motivation of this work is to open the door to new optimisation techniques for
digital circuits, similar to partial evaluation. We will test our theory against a particularly
challenging class of circuits, so called circuits with combinational feedback [26]. These are
circuits which, despite the presence of feedback loops, behave just like combinational circuits,
i.e. they exhibit none of the effects associated with genuine feedback, such as state or
oscillation. As is the case with operational semantics, we will see how handling such circuits
is mathematically elementary and fully automated. This is indeed remarkable, because the
conventional automata-based reasoning method does not accept combinational feedback.
Denotational semantics can model such circuits [27] but using rather complex mathematical
machinery. Moreover, we will show how circuits with combinational feedback which are
parametrised by unspecified “black box” components can be just as easily handled by our
approach. As far as we know, there is no existing method for modelling such circuits (called
“abstract circuits”) in the design literature.

Note. A longer version of this including all proofs is available as a technical report [14].

2 Categorical semantics background

A categorical semantics of circuits was given by the first two authors in an earlier paper [12].
In this section we cover the essential results required to justify the diagrammatic semantics.

2.1 Combinational circuits
Let object variables, labelling (collections of) wires, be natural numbers and let morphism
variables be labels for boxes (e.g., gates and circuits). This is a category of PROducts and
Permutations (PROP) [22].

▶ Definition 1. Let Circ be a categorical signature with objects the natural numbers N and
a finite set of morphisms which may be grouped into the following three classes:

levels (or values) v : 0 → 1 forming a lattice (V, ⊑);

D. R. Ghica, A. Jung, and A. Lopez 24:3

gates k : m → 1; and
the special morphisms join ⋎ : 2 → 1, fork ⋏ : 1 → 2, and stub w : 1 → 0.

All circuit signatures include combinators for joining two outputs (join) and duplicating an
input (fork), as well as the ability to discard an output (stub). What varies from signature
to signature is the number of signal levels and the set of gates. Since levels form a lattice,
they must include a smallest element (⊥), corresponding to a disconnected input, and a
top element (⊤) corresponding to an illegal output (“short circuit”). In the simplest and
most common instance, the set of level has two other elements, high and low, but it can go
beyond that. For example, in the case of metal-oxide-semiconductor field-effect transistors
(MOSFET) it makes sense, in certain designs, to model the diode properties of the transistor
by taking into account four levels (strong and weak high and low voltage, cf. the relevant
IEEE standard for logical simulations [1]).

Circuits, in the sense of this paper, are the morphisms of a free categorical construction
over their signature. Beginning with combinational circuits, the free construction is as
follows:

▶ Definition 2. Let CCirc be the free symmetric monoidal category over Circ and monoidal
signature (N, +, 0), and equations:
Fork: ⋏ ◦ v = v ⊗ v.

Join: ⋎ ◦ (v ⊗ v′) = v ⊔ v′.

Stub: w ◦ v = id0,

Gate: k ◦
⊗

i=1,m vi = v, such that whenever vi ⊒ v′
i then k ◦

⊗
i=1,m vi ⊒ k ◦

⊗
i=1,m v′

i.

We will call morphisms in this category combinational circuits.
The first three equations model the fact that a fork duplicates a value, a join coalesces

two values, and a stub discards anything it receives. The gate equations must cover all
possible inputs to a gate k and their particular format entails that the output from a gate
is always one of the original levels in V. Since V is a lattice, the monotonicity requirement
is also expressible equationally.

It is known that, in a formal sense, the equality of morphisms in a free SMC corresponds
to graph isomorphisms in the diagrammatic language [18], where diagrams are created by the
operations of sequential composition (◦), parallel composition (⊗) and symmetry (xm,n, the
swapping of two buses with m and n wires, respectively), governed by coherence equations.
We will usually write composition in diagrammatical order f ·g = g◦f . We write the identity
(bus of width m) idm : m → m as simply m. For simplicity we also write

⊗
i=1,m f = fm,⊗

i=1,m fi = f and
⊗

i=1,m vi = v. For lack of space we will not enumerate the coherence
equations here, since they are standard.

The Gate axioms state that the behaviour of basic components is fully defined by their
inputs, i.e. they are extensionally complete. By simple inductive arguments on the structure
of morphisms we can establish that all circuits are in fact extensionally complete, i.e. for
any circuit (not just gates) f : m → n, for any values vi, 1 ≤ i ≤ m, there exist unique
values v′

j , 1 ≤ j ≤ n such that f ◦
⊗

i=1,m vi =
⊗

i=1,n v′
i. Intuitively this means that we

only model local interactions, abstracting away from global effects such as electromagnetic
interference or quantum tunelling etc.

We can further say that two circuits with the same input-output behaviour are exten-
sionally equivalent, and a simple inductive argument shows that this is a congruence, i.e. it
is an equivalence preserved by sequential and parallel composition. Therefore it makes sense
to quotient our category CCirc and create a new category ECCirc in which equivalent
circuits are made equal.

CSL 2017

24:4 Diagrammatic Semantics for Digital Circuits

ECCirc has interesting additional categorical properties which aid reasoning. Two are
of particular importance. The first one is that ECCirc is Cartesian. The diagonals are
defined by ∆0 = 0 and ∆n+1 = (∆n ⊗ ⋏) · (n ⊗ x(1,n) ⊗ 1), forks of width n. The diagonal
must satisfy two coherences: ⟨f, f⟩ = ∆n · (f ⊗ f) = f · ∆mand f · wm = wm.

Another useful property is that (⋏,⋎, w, ⊥) forms what is known as a bialgebra, i.e. an
algebraic structure in which (⋎, ⊥) is a commutative monoid, (⋏, w) is a co-commutative
co-monoid, such that ⋎ · ⋏ = ⋏2 · (1 ⊗ x1,1 ⊗ 1) · ⋎2. Finally, fork is a section and join a
retraction, ⋏ · ⋎ = 1, but are not generally isomorphisms. A convenient derived connector
is the join of width n, defined as ∇0 = 0 and ∇n+1 = (n ⊗ x1,n ⊗ 1) · (∇n ⊗ ⋎).

2.2 Circuits with discrete delays

▶ Definition 3. Let CCircδ be the category obtained by freely extending ECCirc with a
new morphism δ : 1 → 1 subject to the following equations:
Timelessness: For any gate or structural morphism k : m → n, δm · k = k · δn.
Streaming: For any gate k : m → 1 and levels v, (δm ⊗v) ·∇m ·k = ((δm ·k)⊗ (v ·k)) ·∇1.
Disconnect: ⊥ · δ = ⊥.

Unobservable delay: δ · w = w.

Timelessness means that compared to δ, all other basic gates and structural morphisms
compute instantaneously. An immediate consequence is that delays can be propagated
through combinational circuits, akin to retiming [24]. Disconnect means that the initial
conditions of circuits is ⊥, so that a wire that also promises to dangle later might as well be
considered dangling already. The last rule expresses the same for dangling output wires.

The Streaming axiom is more interesting, and it was one of the essential new axioms
proposed in [12]. It is key to capturing the intuition of δ as a delay operator. Mathematically,
first observe that there are infinitely many morphisms of type 0 → 1 in CCircδ, not just
the finitely many values. This is because expressions such as v · δ do not reduce to a
value. However, it can be shown that any expression built from values, δ, and the structural
morphisms can be transformed into a canonical form which may be viewed as a sequence of
values presented over time, something that is called a waveform in hardware design lingo.
We write a waveform consisting of n + 1 values as a list sn = vn :: vn−1 :: · · · :: v0 where
vn is the value that is currently visible, vn−1 becomes visible in the next step, and so on.
Formally, s0 = v0 and sn+1 = (sn ·δ⊗vn+1) ·⋎. For example, the expression v ·δ corresponds
to the waveform ⊥ :: v; a value v is equal to (any of) the waveforms v :: ⊥ :: · · · :: ⊥ which
means that it is only available now but no longer in the next time-step. As before, we write⊗

i=i,m s = sm and
⊗

i=i,m si = s.
The Streaming axiom now tells us how a gate processes a waveform: we create two

separate instances of the gate, one to process the immediate inputs and another to process
the subsequent inputs. Applying it repeatedly to a given circuit allows us to determine the
waveform that is produced at the output wires. We obtain:

▶ Theorem 1 (Extensionality). Given any morphism f in CCircδ, for any input waveform s
there exists a unique output waveform s′ such that s · f = s′.

As in the case of circuits without delays, we can show that extensionality is a congruence
and we can quotient by it, creating an extensional category of circuits with delays, ECCircδ.
It is then a routine exercise to show ECCircδ is Cartesian, with the diagonal and terminal
object defined the same way as in ECCirc.

D. R. Ghica, A. Jung, and A. Lopez 24:5

2.3 Circuits with feedback
▶ Definition 4. Let CCirc∗

δ be the category obtained from ECCircδ by freely adding a
trace operator.

Diagrammatically, the trace operator applied to a diagram f : m+k → n+k corresponds to
a feedback loop of width k, written Trk(f) : m → n. Symmetric traced monoidal categories
(STMC) satisfy a number of equations (coherences) which we will not enumerate for lack
of space [19]. As before, their interpretation coincides with equality of diagrams (with
feedbacks) up to graph isomorphism.

As before, we are committed to an extensional view of circuits where the only observable
is the input-output behaviour. In combinational circuits, with or without delays, the only
way we can create a circuit with 0 outputs is by explicitly composing a circuit f : m → n

with wn. However, 0-output circuits can arise in more complicated ways in the presence of
feedback, whenever all the outputs are fed back. It is convenient and reasonable to equate all
0-output circuits to wn, trivially a congruence. The new quotient category is called OCirc∗

δ .
In this category all diagrams of shape f : m → 0 are therefore equal which, categorically
speaking, makes 0 a “terminal object”.

In general, in programs feedback corresponds to recursion and iteration, and syntactic
models (operational semantics) of such programs involve creating two copies of the code
recursed over. For example, the operational semantics of the Y-combinator as applied to
some G is Y G = G(Y G). A similar rule does not exist in general for SMTCs unless the
category is also Cartesian. Such categories, also called data-flow categories [7], admit an
iterator defined for any f : m + n → n, itern(f) = Trn(f · (∆n ⊗ n)) : m → n, which satisfies
Naturality : iter((g ⊗ n) · f) = g · iter(f) for any g : k → m,
Iteration : iter(f) = ⟨m, iter(f)⟩ · f

Diagonal : itern(itern(f)) = itern((⟨n, n⟩ ⊗ m) · f).

We can use these equations because the category in which we operate is indeed Cartesian.

▶ Theorem 2 ([12]). The category OCirc∗
δ is Cartesian with diagonal ∆n.

To conclude the section, we discuss the existence of a concrete model for OCirc∗
δ which

will confirm the axiomatic framework is consistent. It needs to be Cartesian and support
the delay operator and iteration. The usual example of a traced SMC, sets and relations,
is not Cartesian so a slightly more complex construction is required. We start with a basic
model for combinational circuits based on the lattice V of values (Def. 1).

▶ Definition 5. Let V be the category whose objects are finite powers of V and whose
morphisms are monotone maps.

▶ Theorem 3 ([14]). There is a unique traced monoidal functor J·KS from CCirc∗
δ to S

mapping the object 1 of the former to V of the latter.

3 Diagrammatic operational semantics

The results of the previous section establish a powerful framework for algebraic reasoning
about circuits. However, this framework is not equally useful for automatic reasoning and
cannot implement a reasonable operational semantics.

The first obstacle is the functoriality property of the tensor, which lacks directionality.
Consider the circuit corresponding to the boolean expression t ∧ f ∧ t, where the constants
involved satisfy the obvious equations. This diagram can be specified in several ways. Some

CSL 2017

24:6 Diagrammatic Semantics for Digital Circuits

of the specifications, e.g. (((t⊗f)·∧)⊗t)·∧ have the immediately identifiable redex (t⊗f)·∧ =
f which reduces the overall expression to (f ⊗ f) · ∧, which reduces to f . However, the same
circuit can be equivalently written as (t ⊗ f ⊗ t) · (∧ ⊗ id) · ∧ which has no obvious redex.
Finding redexes in such structural diagram specifications is computationally prohibitive and
an unsuitable operational semantics. The alternative is to exploit the connection between
monoidal categories in general, and traced monoidal categories in particular, and certain
graphs. This idea has been analysed in depth recently [4].

We will give a concrete presentation of the graphs following Kissinger’s framed point
graphs, which are a free (strict) symmetric traced monoidal category [20, Thm. 5.5.10]. To
make the presentation more accessible we will elide some of the categorical technicalities in
loc. cit. and give a more direct presentation.

Let a labelled directed acyclic graph (LDAG) be a DAG (V, E) equipped with a partial
labelling function f : V ⇀ L. Let a labelled interfaced DAG (LIDAG) be a labelled DAG
with two distinguished lists of unlabelled nodes representing the “input" (I) and “output"
(O) interfaces, G = (V, E, f, I, O). We write the set of elements of a list L as |L|, and list
concatenation and cons both as − :: −. Let the zip operation on lists be defined as usual,
zip nil nil = nil, and zip x :: xs y :: ys = (x, y) :: zip xs ys.

Unlabelled nodes are called wire nodes and edges connecting them are called wires. A
wire homeomorphism [20, Sec. 5.2.1] is any insertion or removal of wire nodes along wires,
which does not change the shape of the graph. Two LIDAGs are considered to be equivalent
if they are graph isomorphic up to renaming vertices and wire homeomorphisms:

(V ⊎ {a, b, c}, E ⊎ {(a, b), (b, c)}, f, I, O) ≃ (V ⊎ {a, c}, E ⊎ {(a, c)}, f, I, O),

if and only if f(b) is undefined. The quotienting of LIDAGs by this equivalence gives us
framed point graphs (FPG) [20, Def. 5.3.1].

The algebraic specifications of the diagrams associated with the expression t ∧ f ∧ t

mentioned above all correspond to the (same) framed point graph with empty input interface

and 1-point output interface:

t

⋀
⋀

f
t

This representation solves the problem raised by the functoriality of the tensor, as redexes
can be detected in linear time in the size of the graph. Note that all wire nodes can also be
removed in linear time in terms of the size of the graph.

Sequential composition of two FPGs where the size of the output of the first matches the
size of the input of the second is defined by identifying the output list and the input list of
the two graphs. Since FPGs are equal up to renaming of vertices, the names of the wires can
be chosen so that the composition is well defined. The unlabelled input and output nodes
become wire nodes in the composition. The tensor is the disjoint union of the two graphs. It
is always well defined since graphs are identified up to vertex renaming. The trace operator
picks the head nodes of the input and output lists of points, makes them wire nodes, and
connects them. Formally, if Gi = (Vi, Ei, fi, Ii, Oi) and G = (V, E, f, a :: I, b :: O) then

G1; G2 = (V1 ⊎ V2, E1 ⊎ E2 ⊎ |zip O2 I1|, f1 ⊎ f2, I1, O2)
G1 ⊗ G2 = (V1 ⊎ V2, E1 ⊎ E2, f1 ⊎ f2, I1 :: I2, O1 :: O2)

Tr(G) = (V, E ⊎ {(b, a)}, f, I, O).

Constants are interpreted by the graphs below:

D. R. Ghica, A. Jung, and A. Lopez 24:7

c
i1
d
i2

e

k
f

a

b

c

d

b
⋏

a

k : 2 → 1 ⋏ : 1 → 2

A binary gate is shown, but n-ary gates and join are similar. The labels i1, i2 are required
to identify inputs on non-commutative constants but can be otherwise omitted (e.g. in the
case of join ⋎ : 2 → 1). If unambiguous we shall not display the node identities (a, b, . . .)
just their labels, if any.

The graph representation provides a solution for dealing with the functoriality of the
tensor, but the presence of feedback raises a new, additional problem. Suppose that we
deal with a graph which includes several iterations, e.g. iter(f) · iter(g). This graph raises
two computationally difficult questions. The first one is how we identify feedback patterns
efficiently so that we can apply the iteration axiom. The second one is, if there are several
instances of the iteration unfolding axiom that can be applied, what is the schedule of apply-
ing them? Without a good (linear time) solution to the first problem we cannot claim that
we have a genuine operational semantics. Without a good solution to the second problem
we run into technical problems of termination and confluence. Diagrammatic representation
alone is no longer the solution.

The main contribution of this section, and of the paper, is showing how to solve these
two problems.

Before we proceed, we will give a generalisation of the Streaming axiom which will aid
the formulation of the diagrammatic semantics, which relies in turn on a general property
which holds in all free symmetric monoidal categories which we call staging.
▶ Lemma 4 (Staging). Given a free SMC over a signature Γ, any morphism f can be written
as a sequence of compositions f = f0 · f1 · · · fn where fi is a tensor including exactly one
non-identity morphism, fi = m ⊗ k ⊗ n.

Let us call passive a circuit which has no occurrences of a value. Using the Staging
Lemma (4) we can show that:
▶ Lemma 5 (Generalised Streaming). For any passive combinational circuit f : m → n,
(δm ⊗ m) · ∇m · f = (f · δn ⊗ f) · ∇n.

Moreover, a diagram with feedback loops can always be rewritten as single, global,
feedback loop.
▶ Lemma 6 (Global trace form). For any morphism f in a free STMC there exists a trace-free
morphism f̂ such that Trn(f̂) = f for some n ∈ N.

This form can be maintained in the graph representation with constant overhead. In
the graph we can maintain a distinguished subset of known feedback wire nodes so that the
feedback loops can be immediately identified. This can be done compositionally just by
keeping track of the feedback wire nodes in sequential composition, tensor and trace. By
maintaining the feedback wire nodes explicitly we can ensure two useful invariants. First,
the rest of the graph is a DAG. Second, for each feedback wire node there is precisely one
incoming and one outgoing edge. We call these graphs trace-framed point graphs (TFPGs).
Note that feedback wire nodes must not be entirely removed as wire homeomorphisms are
applied. Feedback edges that bypass the set of feedback wire nodes are legal, but break the
TFPG form. Maintaining these restrictions is computationally trivial (constant overhead).

We are now in a position to define the diagrammatic semantics as a graph-rewriting
system in which each rule can be applied efficiently, in linear time as a function of the size

CSL 2017

24:8 Diagrammatic Semantics for Digital Circuits

i1

i2

k
v

v'
v"

v
v

v

i1

i2

k

v

δ

v'

δ

k

k δ

i1

i2

v

v'

i1

i2

i1

i2

k w
w

w

w

Constant

Fork

Streaming

Stub

Co-unit

Figure 1 Rewrite rules for combinational circuits.

of the graph.

3.1 Rewrite rules for combinational circuits
The categorical equations can be expressed as graph rewrite rules, summarised in Fig. 1.
We give the rules in an informal diagrammatic style, but a formalisation in an established
formalism such as DPO [9] is a standard exercise.

The Constant rule shown is for binary constants, but rules for constants of different arity
are similar. In the case of the Constant rule we require v′′ = (v ⊗ v′) · k.

Enhanced Constant Rules. Besides the basic equations for constants, more equations can
be proved by extensionality in which reductions can be carried out without all input values
being present. For example, true ∨ x = true or true ∧ x = x. These equations are admissible
in the rewrite system.

We call the rewrite rules above the local rewrite rules. A TFPG where no local rewrite
rules apply is in canonical form. The following basic properties of the rewrite system hold.
▶ Proposition 7. The local rewrite rules are sound relative to the categorical equations.
▶ Lemma 8. The local rewrite rules are strongly confluent.
▶ Lemma 9 (Progress). A circuit f : 0 → n, n ̸= 0 without traces or delays is either a value
or the TPFG associated with it has redexes.
From Lem. 8 and 9 it follows that
▶ Theorem 10. Given a circuit f : 0 → m, m ̸= 0 in ECCirc the local rules will always
rewrite its TPFG representation in a finite number of steps into a TPFG representation of
a value v such that f = v.

D. R. Ghica, A. Jung, and A. Lopez 24:9

Finally, it can be shown that the graph rewriting is efficient.

▶ Lemma 11. Any rule of the graph rewrite system is applicable in linear time (in the size
of the graph).

3.2 Feedback and delay

We now need to add rules for delays, which may occur in arbitrary places in the circuit, not
just in waveforms. For example, a circuit such as (t⊗f) ·(1⊗δ) ·∧, in TFPG representation,
does not have any redex because of the delay. Dealing with the delays requires a complex
rule which takes into account the presence of the trace. The trace and the delay must be
dealt with together because of the following result which allows us to write any circuit in
what we will call global-delay form. Note Lem. 5 does not hold for combinational circuits
with values. However, the following holds:

▶ Lemma 12. For any combinational circuit f : m → n there exists a passive circuit f̃ such
that f = (m ⊗ v) · f̃ for some v.

We call the application of the transformation in this lemma the passification of the circuit.

▶ Lemma 13. Any circuit f in OCirc∗
δ can be written as f = Trm((δn ⊗ p) · f ′) for some

trace-free, delay-free circuit f ′, m, n, p ∈ N.

Trace-Delay. The most complex rule is the unfolding of the global trace, which also handles
the delays. First, we need an unfolding axiom for trace from the unfolding axiom for
iteration, by expressing trace in terms of iteration. We have seen that the iterator can
be expressed in term of trace, but the converse is also possible.

▶ Proposition 14 ([16]). For any f : A ⊗ X → A ⊗ Y ,

TrA(f) = iterA⊗Y ((idA ⊗ wY ⊗ idX) · f) · (wA ⊗ idY).

Routine calculations give the following formula for unfolding the trace operator:

▶ Proposition 15. For any f : A ⊗ X → A ⊗ Y ,

TrA(f) = ∆X · (iterA(f · wY) ⊗ idX) · f · (wX ⊗ idY).

Using the above, and the fact that any circuit can be written as a passified (Lem. 12),
global-trace, global-delay circuit we can give the following global rewrite rule for circuits
with feedback and delays.

▶ Proposition 16. Given a graph representing a passified, global trace, global delay circuit,
f : m + n + p + q → m + n + r, the following rewrite rule is sound:

f
m
n
p
q

m
n

r

f
m
n
p
q

m
n

r

f
m
n
p
q

m
n

r

δ

v
⊥
⊥

⊥

v

w
w

δ

w
wf

m
n
p
q

m
n

r

δ

v

CSL 2017

24:10 Diagrammatic Semantics for Digital Circuits

Proof (sketch). This rewrite rule is a sequence of valid rewrites. Step (1) represents the
unfolding of the trace (Prop. 15). Step (2) uses ⊥ as the unit of the join-monoid along with
the Unobservable Delay axiom, to bring the circuit to a form where Generalised Streaming
(Lem. 5) can be applied, which is step (3). A final simplification removes redundant delays
which are not observable (step (5)). A final step (6) restore the global-delay form, using
Lem. 13. The resulting circuit can be represented as a TFPG. ◀

The unfolding rule is also efficient:

▶ Lemma 17. A passified, global-trace, global-delay circuit can be unfolded in a time linear
in the size of its graph representation.

We define the overall rewriting system as a cycle of local rewrites until canonical form is
reached, followed by trace-delay unfoldings. This system is obviously not terminating, which
is consistent with the fact that circuits with feedback can generate infinite waveforms. E.g.,
iter(v :: 1) = v :: iter(v :: 1) = v :: v :: iter(v :: 1) = · · · .

3.3 Productivity
In a circuit of the form v :: f = (v ⊗ (f · δ)) · ⋎ value v will be observed before whatever
the behaviour of f is, since v is instantaneous whereas f is guarded by a delay. We call
such circuits productive, and we add a labelled rewrite rule to simplify productive circuit by
removing the produced value: v :: f

v=⇒ f. This rule is sound because the sub-circuit v :: −
can never be part of any redex. So the example above can be written as: iter(v :: 1) = v ::
iter(v :: 1) v=⇒ iter(v :: 1).

However, we note circuits need not be productive in general. There exist circuits where
unfoldings never reduce to shape v :: f , e.g. t · iter(∧). This is a well known problem caused
by a genuine instant feedback loop between the output and one of the inputs of the gate. If
a circuit has no instant feedback loops, it is guaranteed to be productive.

▶ Definition 6. We say that a circuit has delay-guarded feedback if its global-delay form is
Trm(δm · f).

If a circuit has delay-guarded feedback loops then it is productive. In fact it implements a
Mealy automaton.

▶ Theorem 18. Closed delay-guarded circuits with no inputs are productive. Given the
TPFG representation of a delay-guarded feedback, the rewrite system will produce a TPFG
graph representing a circuit v :: g in a finite number of steps.

By closed above we mean that all inputs to the circuit are provided, i.e. it has type 0 → m.
Note that the delay-guarded feedback condition is sufficient but not necessary. An interesting
example of circuits with non-delay guarded feedback which are productive are the cyclic
combinational circuits which we discuss below.

To be able to use the diagrammatic semantics as an operational semantics, we also give
a necessary and sufficient non-productivity criterion.

▶ Theorem 19. If a closed, global-trace, global-delay circuit is unproductive after one un-
folding then it will always be unproductive.

3.4 Example: Cyclic combinational circuits
A challenging class of circuits, which are rejected by standard digital design tools, are
combinational circuits with feedback which is not delay guarded [26]. Consider Boolean

D. R. Ghica, A. Jung, and A. Lopez 24:11

circuits with and and or gates. Below is an example of such a circuit. Closing the circuit by
applying a boolean value at the input (e.g. t) makes it possible to apply the diagrammatic
semantics, using the enhanced equational rewrite rules:

⋁

⋀
t

⋁

⋀

t
t

t

There is no rule for “yanking” the superfluous trace, but unfolding the diagram again achieves
the same purpose. The circuit then reduces to the constant t, by applying the co-unit and
stub rules.

t t t w

w

t

4 Specialising open abstract digital circuits

If we are not using the rewrite rules as an operational semantics, and so are not concerned
with productivity issues, we can apply the reduction rules to open and to “abstract” circuits,
with unspecified components. This gives us a basis for powerful partial evaluation-like
optimisations of circuits. This is a new contribution with potentially interesting practical
applications.

Consider the circuit represented by the TFPG below, where the gate m : 3 → 1 is a
multiplexer and F, G are abstract circuits. For readability we omit the input labels of the
multiplexer. This circuit, presented in [26], implements the operation if x then F(G(y)) else
G(F(y)). The circuit has no delays so the feedback loops are combinational, so they are
rejected by conventional circuit analysis tools, which disallow instant feedback. However,
the multiplexers are set up so that no matter what the value applied at x, the residual circuit
is feedback-free. The false feedback loops in the circuit are only a clever way to reuse the
two abstract circuits F and G.

Consider the case when x becomes t, and y is left unspecified:

m F

m G m

t

Routine repeated application of the local rewrite rules for fork, m, and stub results in a
circuit which still has a residual feedback loop:

CSL 2017

24:12 Diagrammatic Semantics for Digital Circuits

F

G

This feedback loop can be yanked, and the circuit is just G · F . However, the system does
not have a yank rule as it would be too expensive to implement, so the unfolding rule is
applied again! The Stub rule will then remove the first occurrence of F and the second
occurrence of G, resulting, as expected, in G · F .

F

G

F

G

w

ww
G

F

To conclude, we would like to emphasise how a circuit that poses a triple challenge
to standard digital design tools (open, abstract, combinational feedback) can be partially
evaluated in completely automated fashion by our diagrammatic semantics, resulting in a
much simpler specialised circuit.

4.1 Pre-logical circuits

We can also model operationally transistor-level circuits, which is also a new capability
afforded by the diagrammatic semantics. The circuit framework is general enough to allow
operational reasoning about digital circuits at a level of abstraction below logical gates, for
example metal-oxide-semiconductor field-effect transistor (MOSFET) circuits. In saturation
mode such transistors can be considered to take on a discrete set of values which, depending
on the circuit and the analysis, can be four-valued (high impedance < high, low < unknown.)
or six-valued (high impedance < weak high, weak low; weak high < strong high; weak low <

strong low; strong high, strong low < unknown.). Unlike Boolean logic, where the wire-join
construct is not used, in a transistor circuit output wires are joined, and the semantics of
the wire-join is that of the value-lattice join operator.

We will work in the six-value lattice ⊥ (high impedance), h (weak high), H (strong
high), l (weak low), L (strong low), ⊤ (unknown). We will take the (idealised) nMOS and
pMOS transistors as the basic gates. The nMOS transistor (n : 2 → 1) works like a low-
activated switch, but it only allows low current to flow. High current can flow, but is much
diminished. The behaviour of the transistors can be defined equationally in this setting.
When implementing a logical gate in MOSFET we want H to correspond to true and L to
false. The correct behaviour of a gate must keep this representation without, e.g. producing
⊤ or weak output h, l.

Let us now revisit the example of the previous section, but with the multiplexer imple-
mented down to transistors. A very simple circuit is the inverter, with which we can build
a pass-through gate (pass), and the multiplexer (m):

D. R. Ghica, A. Jung, and A. Lopez 24:13

H P2

P

H P2

N

H

P1

H

P1

P1

H

P1

H

P1

P1

H P1

N

H

P1

P1

H P1

H

P2

P2

L P2

Z

P1

H P2

P

N

L P2

P1

BP1

P1

N

P

H

P2

P

N

L P2

P1

H P2

P

N

L P2

P1

P1

P1

N

P2

P2

P

H P2

P

N

L P2

P1

B

P1

P1

N

P2

P2

P

H P2

P

N

L P2

P1

P2

P2

H P2

P

N

L P2

P1

P1

P1

N

P

H P2

P

N

L P2

P1

P1

P1
N

P2

P2

P
H P2

P

N

L P2

P1

H P1

N

H P1

N

H B

P2

P2

P

L P1

B
Z P2

P2

P

L P1

Z

Figure 2 MOSFET circuit and the residual circuit after partial evaluation

inv = ⋏ · (1 ⊗ h ⊗ 1 ⊗ l) · (p ⊗ n) · ⋎
pass = ⋏2 · (inv ⊗ 3) · (1 ⊗ x ⊗ 1) · (p ⊗ n) · ⋎

m = (⋏ ⊗ 2) · (1 ⊗ x ⊗ 1) · (2 ⊗ inv ⊗ 1) · pass2 · ⋎.

The abstract circuit from the previous section is represented as a TFPG in the first graph
in Fig. 2, and is specialised relative to the abstract circuits (denoted as B in the graph) using
a prototype tool1. In this case both inputs are provided. The residual circuit is shown as
the second graph. It is interesting to note that the MOSFET version of the circuit leads to
a different residual circuit compared to the more high level circuit of the previous section.
The reason is that reducing the pass-through gates would require more complex rewriting,
which cannot be done efficiently in general.

5 Conclusion, related and further work

Some theoretical ingredients we have used in this work have been around for quite a while
and it is perhaps somewhat surprising that they have not been put together for a coherent
operational and diagrammatic treatment of digital circuits. Our Thm. 2 implies that OCirc∗

δ

is a Lawvere theory [10] with trace, also known as an iteration theory [11], a concept which
has been studied extensively [3], leading to recent connections with rewrite systems [15].
The relation between trace and iteration has also been studied before in a somewhat similar
categorical setting [17]. The connection between Lawvere theories and PROPS has also been
recently studied [6].

It is also quite surprising that despite major early progress in the algebraic treatment of
circuits, [30, 25], this line of work has not come earlier to a systematic conclusion. But the

1 https://github.com/AliaumeL/circuit-syntax

CSL 2017

https://github.com/AliaumeL/circuit-syntax

24:14 Diagrammatic Semantics for Digital Circuits

contribution of our work is not merely assembling off-the-shelf components. The Streaming
axiom is new, and the fact that it generalises to arbitrary passive combinational circuits
is a crucial ingredient for our work. To make the unfolding of iteration computationally
tractable, the diagrammatic representation required a non-obvious canonical form, which
must be easy to compute. Without it our earlier semantics [12] cannot be used as an
effective operational semantics.

We have been in particular inspired by the deep connections between monoidal cat-
egories and diagrams [29] which inter alia have been used in the modelling of quantum
protocols [2] and signal-flow graphs [5]. Some contrasts are quite interesting. Unlike in
quantum protocols, all digital circuits with no inputs and no outputs are equal whereas
in quantum computing they correspond to scalars, which allow quantitative aspects to be
expressed. Should we have taken a similar direction we could have included quantitative
aspects such as power consumption in our formalism, but we would have lost the diagonal
property. Obviously, two copies of a circuit will at least sometimes consume more power
than one copy.

The signal-flow graphs in [5] are linear and reversible, which is not the case for digital
circuits. Without elaborating the mathematics too much, a key difference between their
model and ours can be illustrated by the following equality, involving the interaction between
fork, join, and disconnected wires, as a trace can be created out of a fork and a join:

F = F⊥ w⋏ ⋎

Of course, by comparison, in our setting the directionality of the wires never changes, so the
correct equality for us is, in contrast:

F⊥ w = F w⊥⋏ ⋎

These two simple diagrammatic equations above truly capture the essential difference between
electric and electronic circuits!

Beyond the scholarly context and technical innovations, we are most excited about the
potential applications of our work. Cyclic combinational circuits are a litmus test for circuit
modelling theories and we hope the reader can appreciate that in our framework their model
is elementary. For comparison, there are few theories that can handle such circuits, and
they demand a significant level of mathematical sophistication [27]. The true potential of
our method should be the unleashing of symbolic, operational and syntactic methods, such
as partial evaluation, for reasoning about and optimising circuits, methods which proved so
effective in programming languages.

Acknowledgements. We thank George Constantinides and Alex Smith for feedback and
suggestions. This work has been supported in part by EPSRC grant EP/P004490/1.

References
1 IEEE standard multivalue logic system for VHDL model interoperability (std_logic_1164).

IEEE Std 1164-1993, pages 1–24, May 1993.
2 Samson Abramsky and Bob Coecke. A categorical semantics of quantum protocols. In

LICS, pages 415–425, 2004.

D. R. Ghica, A. Jung, and A. Lopez 24:15

3 Stephen L. Bloom and Zoltán Ésik. Iteration Theories: The Equational Logic of Iterative
Processes. Springer-Verlag New York, Inc., New York, NY, USA, 1993.

4 Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Pawel Sobocinski, and Fabio Zanasi.
Rewriting modulo symmetric monoidal structure. In LICS, pages 710–719, 2016.

5 Filippo Bonchi, Pawel Sobocinski, and Fabio Zanasi. Full abstraction for signal flow graphs.
In POPL, pages 515–526, 2015.

6 Filippo Bonchi, Pawel Sobocinski, and Fabio Zanasi. Lawvere categories as composed props.
In CMCS, pages 11–32, 2016.

7 Virgil Emil Căzănescu and Gheorghe Ştefănescu. Towards a new algebraic foundation of
flowchart scheme theory. Fund. Inf., 13(2):171–210, 1990.

8 Charles Consel and Olivier Danvy. Tutorial notes on partial evaluation. In POPL, pages
493–501, 1993.

9 Andrea Corradini, Ugo Montanari, Francesca Rossi, Hartmut Ehrig, Reiko Heckel, and
Michael Löwe. Algebraic approaches to graph transformation-part i: Basic concepts and
double pushout approach. In Handbook of Graph Grammars, pages 163–246, 1997.

10 Samuel Eilenberg and Jesse B. Wright. Automata in general algebras. Information and
Control, 11(4):452–470, 1967.

11 Calvin C Elgot. Monadic computation and iterative algebraic theories. Studies in Logic
and the Foundations of Mathematics, 80:175–230, 1975.

12 D. R. Ghica and A. Jung. Categorical semantics of digital circuits. In Formal Methods in
Computer-Aided Design (FMCAD), 2016.

13 Dan R. Ghica. Diagrammatic reasoning for delay-insensitive asynchronous circuits. In
Computation, Logic, Games, and Quantum Foundations, pages 52–68, 2013.

14 Dan R. Ghica, Achim Jung, and Aliaume Lopez. Diagrammatic semantics for digital
circuits. In Quantum Physics and Logic (QPL), 2017. forthcoming.

15 Makoto Hamana. Strongly normalising cyclic data computation by iteration categories of
second-order algebraic theories. In FCSD, pages 21:1–21:18, 2016.

16 Masahito Hasegawa. Models of Sharing Graphs: A Categorical Semantics of let and letrec.
Springer Verlag, 1999.

17 Masahito Hasegawa. The uniformity principle on traced monoidal categories. Electr. Notes
Theor. Comput. Sci., 69:137–155, 2002.

18 André Joyal and Ross Street. The geometry of tensor calculus, i. Adv. in Math., 88(1):55–
112, 1991.

19 André Joyal, Ross Street, and Dominic Verity. Traced monoidal categories. In Math. Proc.
of the Cambridge Phil. Soc., volume 119, pages 447–468. Cambridge Univ. Press, 1996.

20 Aleks Kissinger. Pictures of Processes. PhD thesis, University of Oxford, 2011.
arXiv:1203.0202v2.

21 Robert P. Kurshan and Kenneth L. McMillan. Analysis of digital circuits through symbolic
reduction. IEEE Trans. on CAD of Integrated Circuits and Systems, 10(11):1356–1371,
1991.

22 Stephen Lack. Composing PROPs. Theory and App. of Categories, 13(9):147–163, 2004.
23 Peter J Landin. An abstract machine for designers of computing languages. In Proc. IFIP

Congress, volume 65, 1965.
24 Charles E Leiserson and James B Saxe. Retiming synchronous circuitry. Algorithmica,

6(1-6):5–35, 1991.
25 Wayne Luk. Pipelining and transposing heterogeneous array designs. J. of VLSI Sig. Proc.

Sys., 5(1):7–20, 1993.
26 Sharad Malik. Analysis of cyclic combinational circuits. In Proc. IEEE/ACM Int. Conf.

on Comp. Aided Design, pages 618–625, 1993.

CSL 2017

24:16 Diagrammatic Semantics for Digital Circuits

27 Michael Mendler, Thomas R. Shiple, and Gérard Berry. Constructive boolean circuits and
the exactness of timed ternary simulation. Form. Meth. Syst. Des., 40(3):283–329, 2012.

28 Gordon D. Plotkin. A structural approach to operational semantics. J. Log. Algebr. Pro-
gram., 60-61:17–139, 2004.

29 Peter Selinger. A survey of graphical languages for monoidal categories. In New structures
for physics, pages 289–355. Springer, 2010.

30 Mary Sheeran. muFP, A language for VLSI design. In LISP and Func. Prog., pages
104–112, 1984.

31 Alex Simpson and Gordon Plotkin. Complete axioms for categorical fixed-point operators.
In Logic in Computer Science, 2000. Proceedings. 15th Annual IEEE Symposium on, pages
30–41. IEEE, 2000.

	Introduction
	Categorical semantics background
	Combinational circuits
	Circuits with discrete delays
	Circuits with feedback

	Diagrammatic operational semantics
	Rewrite rules for combinational circuits
	Feedback and delay
	Productivity
	Example: Cyclic combinational circuits

	Specialising open abstract digital circuits
	Pre-logical circuits

	Conclusion, related and further work

