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Measuring the statistical validity of
summary meta-analysis and
meta-regression results for use in
clinical practice
Brian H. Willisa*† and Richard D. Rileyb

An important question for clinicians appraising a meta-analysis is: are the findings likely to be valid in their own
practice—does the reported effect accurately represent the effect that would occur in their own clinical
population? To this end we advance the concept of statistical validity—where the parameter being estimated
equals the corresponding parameter for a new independent study. Using a simple (‘leave-one-out’)
cross-validation technique, we demonstrate how we may test meta-analysis estimates for statistical validity using
a new validation statistic, Vn, and derive its distribution.

We compare this with the usual approach of investigating heterogeneity in meta-analyses and demonstrate the
link between statistical validity and homogeneity. Using a simulation study, the properties of Vn and the Q
statistic are compared for univariate random effects meta-analysis and a tailored meta-regression model, where
information from the setting (included as model covariates) is used to calibrate the summary estimate to the
setting of application. Their properties are found to be similar when there are 50 studies or more, but for fewer
studies Vn has greater power but a higher type 1 error rate than Q. The power and type 1 error rate of Vn are
also shown to depend on the within-study variance, between-study variance, study sample size, and the number
of studies in the meta-analysis. Finally, we apply Vn to two published meta-analyses and conclude that it usefully
augments standard methods when deciding upon the likely validity of summary meta-analysis estimates in
clinical practice. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

Keywords: validity; meta-analysis; models; statistical; data interpretation; statistical; decision making

1. Introduction

The capacity to aggregate multiple studies and provide a summary estimate for translation into practice
was one of the motivations that drove the development of meta-analysis. In this regard, it has achieved
undoubted success; however, the blight of heterogeneity, which so often affects meta-analyses, can
potentially affect the applicability of results in individual clinical settings, such as individual practices,
hospitals, regions, or even countries.

Although methods have been developed to quantify and ascertain the effects of heterogeneity, more
recently, particularly in the field of predictive modeling, the focus has been on developing statistical
approaches that increase the validity of meta-analysis results when applied in new populations. When
evaluating diagnostic and prognostic tests, Riley and colleagues [1] examine approaches to translate test
accuracy meta-analysis results to a new population, and propose cross-validation and prediction intervals to
evaluate calibration performance of each approach. Debray and colleagues provide a framework for the use
of individual patient data (IPD) from multiple studies in prediction modeling using logistic regression, and
demonstrate that different model intercepts may be needed in new settings to ensure good predictive
performance [2]. Similarly, Snell et al. use IPD frommultiple countries to develop and validate a breast cancer
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prognostic model, and show that it calibrates far better in each country when the baseline hazard is recalibrated
(or ‘tailored’) to each country’s population [3]. A common theme to all of these approaches is the use of cross-
validation [4] where the k primary studies in the meta-analysis provide all the data used in the validation
process. The cross-validation process involves comparing the meta-analysis estimate from k � 1 studies
with that estimate from the omitted study; this is repeated k times, each time omitting a different study.

The need to examine and improve the validity of meta-analysis results should not be confined to the
prediction modeling field. Indeed, assessing whether meta-analysis results translate into practice should
be the concern of all reviewers and statisticians producing summary results from a body of evidence,
whether it is for the purpose of diagnosis, treatment, prognosis, or otherwise.

With this in mind, in this article we propose a general method for assessing the statistical validity of
meta-analysis results when applied in clinical practice. The predominant question we aim to address is
when should we apply a summary meta-analysis estimate to an independent setting? Specifically, if μma

is the parameter for the true summary effect of interest as estimated by the meta-analysis analysis model
and μsetting is the parameter for the true effect in an independent setting of interest, then does
μma = μsetting? When the two are equal, we propose that the summary estimate from the meta-analysis
model can be described as having statistical validity. However, if the two are not equal, then
meta-analysis results may need to be modified (or ‘tailored’) to the setting of interest in order to ensure
statistical validity. We will also examine statistical validity in the context of heterogeneity considering
some of the methods used to establish heterogeneity.

We develop this in the following sections. We describe the meta-analysis and tailored meta-regression
models in section 2. In section 3, we develop a new validation statistic, Vn, and derive its associated
distribution applied to meta-analysis and meta-regression models. We consider how statistical validity
relates to heterogeneity and compare Vn with Cochran’s Q statistic. The properties of Vn and Q are
examined more closely in a simulation study in section 4, and then application is made to two case
examples in section 5. In the discussion in section 6, we consider its use and shortcomings.

2. Meta-analysis and mixed-models

Supposing there are multiple studies that each evaluate a particular effect of interest (e.g. an intervention
effect, the sensitivity of a test, or the performance of a prognostic model). Of interest is the summary
(mean) effect across studies and, for the purposes of this paper, how to apply or tailor such summary
meta-analysis estimates to clinical practice. Given the potential variation in the true effects between
primary studies, we develop methods from the view point of a random effects model.

(i) Meta-analysis model

For the observed mean effect, yi, in a primary study, we use the following univariate random effects
model to aggregate the primary studies in the meta-analysis

yi ¼ μþ δi þ εi (1)

where μ is the mean (summary) effect across the studies and the key parameter to be estimated,
δi ~N(0, τ2) is the study-specific deviation from the overall mean effect with unexplained
between-study variance τ2, and εi ~N(0, vi) is the sampling error with variance vi assumed known
for each study i. This will be used as the base model in the meta-analysis, where the key result
for translation to clinical practice is the summary effect estimate, ŷ.

(ii) Tailored meta-regression model

Heterogeneity across settings may be explained by study-level covariates, and such covariates may be
important when applying summary meta-analysis results in clinical practice. We consider the effects of
covariates on the meta-analysis by incorporating these within a meta-regression model. When there are
p � 1 covariates, we have

yi ¼ X iβþ δi þ εi (2)

where Xi is the row vector with p elements (the first element is 1) associated with study i, β is the
p-vector of coefficients to be estimated (the first element being the intercept term), and δi and εi are
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defined as previously. This model allows us to obtain summary results ‘tailored’ for particular
populations of interest, defined by their set of covariate values and estimated by X iβ̂ �ið Þ where β̂ �ið Þ
denotes the estimate of β derived from (2) with the ith study omitted. Therefore, following estimation
of model (2), the key result for translation to clinical practice is X iβ̂ �ið Þ. The merits of using information
from the setting of interest have been recently described by Willis and Hyde [5,6] particularly in the case
of diagnosis. Essentially, it helps tailor the summary meta-analysis estimate to the setting for clinical
application, to potentially improve its validity.

Models (1) and (2) can be estimated using standard techniques, such as methods of moments and
restricted maximum likelihood (REML). All meta-analysis and meta-regression models in this article
are conducted in R using the package Metafor [7].

3. Examining summary meta-analysis estimates in clinical practice

3.1. Cross-validation approach

To evaluate whether meta-analysis results may be translated into practice requires the development of
methods that allow the cross-validation of the derived summary estimates in new independent settings.
In prognostic modeling, Royston and colleagues proposed what they called an ‘internal–external
cross-validation’ procedure to establish the generality of a prognostic model developed across different
studies [4]. More recently, this method has been elaborated upon by Riley [1] and Debray [2].
Essentially, the procedure bears similarity with the ‘Jack-knife method’ [8] by omitting each primary
study, in turn, from the meta-analysis and deriving a summary estimate from the remaining studies,
which is then compared with the observed estimate in the corresponding omitted study. When there
are k independent studies, the procedure generates k different meta-analysis estimates, and thus k
different validations. As such, the primary studies selected for the meta-analysis are themselves being
used as the basis for independent validation.

3.2. Validation statistic, Vn

In the remainder of this article, we focus on developing a statistic to test the validity of summary
meta-analysis estimates for clinical practice, within the context of the aforementioned cross-validation
approach. Let yi be the observed mean effect estimate of interest in the ith study, and ŷ �ið Þ be the
summary meta-analysis estimate (from either model (1) or model (2)) generated from using k� 1 studies
with the ith study omitted. Therefore, following the cross-validation exercise, we have a dataset
containing k values of yi and ŷ �ið Þ.

In this context, we propose the validation statistic, Vn

Vn ¼ ∑
k

i¼1

yi � ŷ �ið Þ
� �2

var yið Þ þ var ŷ �ið Þ
� � (3)

where var(yi) is the variance of yi and var ŷ �ið Þ
� �

is the variance of ŷ �ið Þ.

Assuming yi to be normally distributed, the Vn statistic may be used as an overall test of the null
hypothesis that μ(�i) =μi for all i, where μ(�i) is the parameter (true predicted effect) that underlies the
ŷ �ið Þ predicted by the meta-analysis model, and μi is the parameter (true effect) in the omitted study i.
By our definition, when the null hypothesis is true, the meta-analysis/regression estimate is a statistically
valid estimate for a new setting. Thus, if we define a p value <0.05 for Vn as significant, then a p < 0.05
implies that there is sufficient evidence to conclude the meta-analysis/regression estimate is not
statistically valid.

In section 3.3, the distribution for Vn is derived for meta-analysis/regression models.

3.3. Distribution of Vn for meta-analysis and meta-regression summary estimates

Here, we give an outline of the derivation of the asymptotic distribution of Vn recognising that Vn is a
quadratic form and using an approach described in previous studies [9,10]. A more detailed description
of the derivation is given in the appendix 1.
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Assuming a continuous outcome, let the ith study have observed mean effect yi and variance¼ σ2i =ni
where σ2i is the variance of the patient-level observations in each study with sample size ni. By writing

the weights, w�
i ¼ 1= σ2i =ni

� �
:þ var ŷ �ið Þ

� ��
, Vn may be written as

Vn ¼ ∑
k

i¼1
w�
i yi � ŷ �ið Þ
� �2

(4)

If we define the k x k matrix A appropriately (see appendix 1), the term inside the squared brackets
may be written as Ay, where y is the k-vector with elements (y1, y2, y3, … , yk), and Vn may be written
in the following matrix form

Vn ¼ yTATw�Ay (5)

The diagonal matrix w* has diagonal elements w�
1;w

�
2;w

�
3;…w�

k

� �
, and in general, the diagonal

elements of A are all 1. The advantage of writing Vn in this form is that the null hypothesis, μ(�i) =μi
for all i, is equivalent to Aμ=0.

By transforming y into a vector z of standard normal variables and applying the spectral
decomposition theorem, it may be shown that for eigenvalues λi of B=w�1/2ATw*Aw�1/2 where w is
the diagonal matrix with diagonal elements wi ¼ ni=σ2i

Vn∼ ∑
k

i¼1
λi χ21 (6)

Thus, Vn has a distribution which is a linear combination of χ2 variables of degree 1. This is an exact
distribution if the σ2i are all known. In practice, the σ2i are estimated from the sample data, so it is an
asymptotic distribution. Note that Vn has the same form of distribution for both the univariate random
effects meta-analysis and tailored meta-regression, but both A and B differ between the two cases
(see appendix 1).

3.4. Farebrother’s algorithm to implement Vn

To apply Vn, the distribution specified in (6) needs to be known. The distribution for a linear
combination of chi-square variables has received considerable attention over the years. In general, there
is no closed form to the distribution so that it has to be obtained numerically and a number of approaches
have been described. Sattherwaite in 1946 described an approximate method based on the observation
that when the non-zero eigenvalues all equal one the distribution simplifies to single chi-squared
distribution with k degrees of freedom [11]. This suggests that a single distribution with an ‘effective’
number of degrees of freedom may provide a suitable approximation. Other approaches include
inverting the characteristic function (Davies [12,13]) and applying numerical integration to a weighted
sum of chi-squared variables (Fleiss [14]).

Ruben made a notable development when he demonstrated that a linear combination of chi-square
variables could be written as an infinite series [15]. Importantly, he also showed that the truncation error
after n terms had an upper bound which was dependent on a chi-squared distribution, the coefficients of
the terms in the expansion, and n—all of which could be estimated accurately[15]. Thus, an estimate of
the exact distribution may be obtained for the truncated series with n terms, such that n is set to make the
truncation error arbitrarily small [9]. Ruben’s method is incorporated within Farebrother’s algorithm [16]
and it is this algorithm we use when estimating the distribution of Vn. The version of Farebrother’s
algorithm applied below is from the package CompQuadForm in R [10]. The R source code used to
estimate the distribution for Vn for a case example may be found in appendix 2.

3.5. Heterogeneity and statistical validity

The Vn statistic may be used as a test of the null hypothesis H0: μi=μ(�i) for all i. For the base meta-

analysis model (1) if we define w �ið Þj ¼ 1= σ2j =nj
� �

þ τ2�ið Þ
� �

for j ≠ i, then the null hypothesis is

equivalent to the following for each i
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μi �
∑k

j≠iw �ið Þjμj

∑k
j≠iw �ið Þj

¼ 0 (7)

It can be seen from this that the null hypothesis is only satisfied when μi=μj for all i≠ j, that is, when
there is no heterogeneity. In short, we have the intuitive result that the base meta-analysis model will
provide a summary estimate which is statistically valid to all clinical settings only when the studies
comprising the meta-analysis are homogeneous.

Writing Vn in matrix form is useful when considering the null hypothesis. As stated earlier, the null
hypothesis equates to Aμ=0 where μ is the k-vector of parameters; in other words, the above equations
are equivalent to the kernel or null space of A on μ. Using Gauss-Jordan elimination, A may be reduced
to echelon form, and the above result follows readily.

Heterogeneity is likely to exist in most meta-analyses, and thus, in general, individual clinical settings
will have a true effect that differs from the mean (summary) effect; thus, one would expect Vn to lead to
the null hypothesis being rejected in most applications of meta-analysis.

In contrast, Vn is likely to be more useful when considering the case of tailored meta-analysis results,
as derived from the tailored meta-regression model in (2) where covariates are included. Reducing A to
echelon form (see Appendix 1 for definition of A), it follows that if μ(�i) =μi for all i then for p � 1
covariates

μi ¼ ∑
p

j¼1
αijμk�pþj (8)

The dimension of the kernel of A, otherwise known as the nullity, is p—this follows from the rank-
nullity theorem, because the rank(A) = k � p. Therefore, if μk� p + 1 ,.., μk are all known, then this
constrains μi to values in p-space (equation (8)). The values of the coefficients αi1 , …αip depend on
the within-study variance, the between-study variance, and the values of the covariates for each study;
when the covariates are continuous, there are an infinite number of possible solutions. In summary,
within the k-dimensional space of all possible values of (μ1 ,μ2,…, μk), there is a p-dimensional
sub-space where the (μ1 ,μ2,…, μk) are statistically valid. Because in most cases, we expect to find
μi≠μj, that is, the primary studies are heterogeneous, there is still the potential for the meta-regression
model to provide predicted summary estimates that are statistically valid.

When the covariates are discrete, the possible values of (μ1 ,μ2,…, μk) that are statistically valid share
the same p-dimensional sub-space as continuous covariates. However, the number of possible values of
(μ1 ,μ2,…, μk) is constrained by the number of levels, contrasting a continuous covariate, which may be
thought of as having an infinite number of levels. Thus, for a meta-regression model that includes only a
single dichotomous covariate each of the μi∈ (μ1,μ2, … ,μk) can have only one of two values for them to
be statistically valid. For example, if μ1 = 2.5 and μ2 = 3.8, then the other μi will be either 2.5 or 3.8.
Although there is strict heterogeneity (not all the μi are equal), the data divide into two homogenous
sub-groups. Thus, similar to meta-analysis, statistically valid estimates arise when the sub-groups of
studies are homogeneous. In essence, the process of adding covariates to a meta-regression model in
order to ‘explain’ heterogeneity is a one of identifying homogenous sub-groups and this makes statistical
valid estimates more likely. In the limit, when the covariates are continuous, this is equivalent to there
being an infinite number of homogenous sub-groups.

3.6. Comparison of the Q statistic with Vn

In meta-analysis, Cochran’s Q statistic [17] is classically used to identify heterogeneity [18].
Specifically, Q is used to test the null hypothesis of homogeneity, namely, H0: μi=μj for all i≠ j [18]
or equivalently, H0: τ2 =0 where τ2 is the between-study variance.

For a meta-regression model, the use of the Q statistic may be extended to detecting residual
heterogeneity. In this instance, Q is used to test H0: τ2r ¼ 0 where τ2r is the residual between-study
variance and this corresponds to identifying homogenous sub-groups of studies. Thus, if a covariate
has m levels, then for each level the sub-group of studies corresponding to that level satisfy μi=μj for
all i≠ j.

B. H. WILLIS AND R. D. RILEY
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Whether the Vn statistic is applied to a meta-analysis or meta-regression model, it is a test of the null
hypothesis H0: μi=μ(�i) for all i, which we defined as statistical validity. However, as we have deduced
already, this is equivalent to testing H0: τ2 =0 in the case of meta-analysis and H0: τ2r ¼ 0 in the case of
meta-regression. In essence, Vn and Q test the same hypotheses but from different standpoints, one from
a direction of statistical validity of predictions, the other from homogeneity.

The key to our definition of statistical validity is the comparison of the parameter for the model
estimate with that of an independent study. This derives from our goal of determining whether the model
produces an estimate which accurately represents that seen in a new clinical population. Specifically, we
would like to know how close the meta-analysis/regression estimate of the effect is to the effect seen in
an independent study. By incorporating a leave-one-out cross validation approach, the Vn statistic
directly captures the out of sample prediction error.

In contrast, Cochran’s Q statistic measures the deviation of the studies from the overall summary
estimate or regression line. As all the studies are used to derive these summary measures, the Q statistic
does not directly quantify how well these summary estimates generalise to independent settings.

In the next section, the statistical properties of Vn are studied and compared with Cochran’s Q
statistic.

4. A simulation study

In order to study the properties of Vn and compare them with the Q statistic, meta-analyses and
meta-regression models were simulated for different values of the following parameters: τ2

(between-study variance), σ2i (variance of patient-level observations), n (sample size for each individual
primary study), and k (number of primary studies in each meta-analysis/meta-regression). The following
values were used: τ2 [0, 0.05, 0.1, 0.25, and 0.5]; σ2i [0.0001, 0.01, 0.1, and 1]; n, [50, 100, 250, 500,
and 1000]; and k [5, 10, 25, and 50]. The σ2i and n were varied between meta-analyses/regressions
but not between the primary studies within the meta-analysis/regression to allow us to study the
contributions of these separately.

In practice, Vn and Q are calculated using the asymptotic estimates σ̂2i and τ̂
2 for the parameters σ2i and

τ2, respectively. To simulate these for each primary study, yi was calculated by taking the mean of the n
simulated observations from ym;ieN μi; σ

2
i

� �
for m = 1,..,n. The σ̂2i was estimated as the variance of the

observations ym , i around yi, and τ̂2 was estimated using yi and σ̂2i to fit the meta-analysis/regression
models via the Metafor package [7]. The models were fitted using REML.

When evaluating the type 1 errors of Vn and Q using a meta-analysis model, we simulated a single
μk~N(0, 1) and set μ1 =μ2 = … =μk. The meta-regression models were simulated using a single
continuous covariate for each study xi~N(0, 1). Hence, when investigating the type 1 error of the
meta-regression models, two values of μi~N(0, τ2) for i = k � 1, k, were simulated, and the remaining
k � 2 values of μi were deduced as linear combinations of μk� 1 and μk as according to (8).

To evaluate the power of Vn and Q the true effect (parameter) for each primary study, μi was
simulated from a normal distribution according to μi~N(0, τ2) for i = 1,..,k. These were checked to
ensure that Aμ≠ 0 and rejected if otherwise.

For different combinations of (τ2, σ2i , n, k), the type I error rate and the power of Vn and Q were
determined for a critical value of p = 0.05. The rate of type I error and the power were estimated based
on 40 000 meta-analysis/meta-regression replications for each (τ2, σ2i , n, k) combination.

4.1. Type 1 error rates for Vn and Q

In Table I the rates of type 1 error for Vn and Q when applied to the meta-analysis model in (1) are given.
Here, there is no heterogeneity (τ2 = 0), that is, μi=μj for all i≠ j. In general, the type 1 error rate is
dependent on the average sample size, n, in the individual studies and the number of studies in the
meta-analysis, k. This reflects the estimates σ̂2i and τ̂2 being less prone to sampling error as n and k
increase, respectively.

When there are fewer studies k < 50, and smaller sample sizes, n, the type 1 error rate of Q is closer to
the threshold of 5% than Vn. The null distribution of Q applied to meta-analysis is a χ2 distribution of
degree k � 1 when σ2i is known exactly [19], and for n = 1000, where sampling error of σ̂2i is minimised,
the type 1 error rate for Q is consistently around the 5% mark across different numbers of studies.
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Table II provides the type 1 error rates for Vn and Q when applied to the meta-regression model in (2)
where one continuous covariate was included. As in the meta-analysis model, when compared with Vn,
Q has type 1 error rates which are closer to the 5% threshold. When n = 50 and k = 5, Vn has a type 1
error rate as high as 9.3% compared 5.3% for Q. In general, for both statistics when the sample size of
the individual studies is small (n = 50), the type 1 error rate increases with k.

4.2. Power of Vn and Q

In Figure 1 the power of Vn is plotted against τ/se (where se ¼ σi=
ffiffiffi
n

p
) for models (1) and (2). In both the

meta-analysis and meta-regression models, the power of Vn increases with increasing number of studies
for a given τ/se. Thus, heterogeneity and large meta-analyses increase the power of Vn.

Comparing the left and right panels, respectively, the power curves for Vn are shifted slightly to the
right in the meta-regression model when there are 10 studies or fewer. In short, the probability of
rejecting statistical validity when it is known to be false for a given τ/se is more likely when Vn is
applied to a meta-analysis model than in a meta-regression model with one covariate.

Table I. Rate of type 1 error for Vn and Q for meta-analysis.

n k = 5 k = 10 k = 25 k = 50

Vn Q Vn Q Vn Q Vn Q

50 0.083 0.061 0.075 0.065 0.078 0.075 0.088 0.085
100 0.080 0.058 0.066 0.056 0.066 0.060 0.065 0.064
250 0.073 0.052 0.062 0.052 0.056 0.054 0.057 0.057
500 0.076 0.052 0.060 0.052 0.052 0.051 0.055 0.054
1000 0.072 0.051 0.059 0.049 0.052 0.050 0.050 0.051

Probabilities are derived from simulations based on 40 000 meta-analysis replications with σ2i fixed at 0.1.
n = individual study sample size; k = number of studies.

Table II. Rate of type 1 error for Vn and Q for meta-regression (with one covariate).

n k = 5 k = 10 k = 25 k = 50

Vn Q Vn Q Vn Q Vn Q

50 0.093 0.055 0.084 0.064 0.079 0.071 0.085 0.085
100 0.090 0.053 0.073 0.055 0.065 0.061 0.066 0.065
250 0.085 0.054 0.067 0.051 0.057 0.053 0.057 0.055
500 0.087 0.051 0.069 0.051 0.058 0.053 0.053 0.051
1000 0.087 0.050 0.069 0.052 0.056 0.051 0.051 0.052

Probabilities are derived from simulations based on 40 000 meta-analysis replications with σ2i fixed at 0.1.
n = individual study sample size; k = number of studies.

Figure 1. Power of VnMeta-analysis in left panel and meta-regression in right. In both panels, we have τ varying,
σ = 1, and n = 100.
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In Figure 2, the power of Vn and Q are compared for each of the models when there are 5 and 25
studies, respectively. When there are 5 studies, Vn has greater power than Q for a given τ/se. This
difference is more pronounced in the meta-regression model. When there are 25 studies in the analyses,
the power curves for Vn and Q are closer, but Vn maintains greater power over Q for a wide range of τ/
se. In short, Vn is more useful if we may assume heterogeneity and that estimates are more likely to be
invalid.

Also of note is how the difference in type 1 error rates between the two statistics compares with the
difference in power. When a meta-analysis has 25 studies, the type 1 error rate of Vn is 0.001–0.006
higher than Q (this difference is 0.004–0.008 for meta-regression). Although power varies with τ/se,
for a similar-sized meta-analysis and τ/se< 1.5 the power of Vn is 0.002–0.014 higher than Q (difference
in meta-regression is 0.003–0.016). Essentially, the higher type 1 error rate of Vn compared with Q is
compensated by a corresponding increase in power.

4.3. Interpretation

Central to proposing Vn is its use in testing the null hypothesis of statistical validity, but its interpretation
has to involve weighing up the results in the context of other evidence. Before we interpret Vn, an
important consideration is to decide whether the null hypothesis (statistical validity) is likely to be true.
We know from 3.6 this is equivalent to deciding whether the studies are homogeneous and the
cumulative evidence provided by such measures as the Q statistic [18], I2 [18] and the width of
prediction intervals [19] contribute to this decision. However, we should also be aware that none of these
is without shortcomings when making such decisions [20,21].

Depending on whether statistical validity seems likely, we then interpret the results of Vn in
terms of the type 1 error rate or power (specifically the type 2 error rate). Here, the simulation
study which evaluated these for both Vn and Q may be used to inform decision-making when
interpreting results.

If Vn is significant (p < 0.05), then either the meta-analysis/regression estimates are invalid or
there is a type 1 error. For τ/se > 3 and a 5% level of significance, the power of Vn is above
85% when there are 5 studies and above 99% when there are 10 studies. Thus, if model estimates
are statistically invalid and τ/se is large enough, Vn will nearly always be significant. A type 1 error
arises when the estimates are valid but Vn is significant. When there are few studies (k = 5) and the
sample size is small (n = 50), Vn can have a type 1 error rate as high as 9% at a level of
significance of 5%. Because validity is dependent on homogeneity (as we showed in 3.5), we
may use the Q statistic in such instances as it maintains a type 1 error rate of around 5% even
when k and n are small.

If Vn is not significant but statistical invalidity seems likely, then we should consider the type 2 error
rate (1- power). The power of Vn is dependent on k and τ/se, and these are required for interpretation. We
may estimate τ̂ directly from the meta-analysis model and estimate the average standard error �se of
studies in the meta-analysis based on that proposed by Higgins and Thompson [18], namely

Figure 2. Comparison of power of Vn and Q for meta-analysis and meta-regression (with 1 covariate).
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�se ¼ k � 1ð Þ∑wi

∑wið Þ2 �∑w2
i

 !1=2

where wi ¼ ni=σ2i . Thus, any non-significant results should be interpreted by weighing up whether they
are consistent with the null hypothesis being true or there being a type 2 error given our estimate, τ̂=�se.

In order to gain some insight into the values of τ̂=�se that may be expected, we screened the Cochrane
database of Systematic Reviews for reviews published in September 2016. Including the two cases that
follow, we found 16 reviews which provided summary 2 × 2 table data and had 5 or more primary
studies (see Table III). The median number of primary studies was 7 [lowest = 5, highest = 19] per
review, and the median τ̂=�se was 1.00 [lowest = 0, highest = 3.44]. Cochrane reviews tend to be of
a higher quality than other reviews so they may not be representative—this may also account for the
median primary study count being only 7.

For four studies, τ̂ = 0 and hence τ̂=�se = 0 where both Vn and Q have low power. But in such
instances, the power becomes less relevant because τ̂ = 0 suggests homogeneity. This reinforces the need
to decide on whether statistical validity is likely to be true before interpreting the results.

When τ̂=�se = 1, the power for Vn is 37.5% for k = 5 and is 52% for k = 10. This rises to 62% and
83%, respectively, when τ̂=�se =1.5. There were four reviews in which τ̂=�se > 1:5, and two of these
had 6 studies. The lists of reviews are available in an online appendix.

We will now apply these principles to the following case examples.

5. Case examples

We now use two data sets to illustrate the use of Vn in testing the statistical validity of summary meta-
analysis results. In each case, we first fit the meta-analysis model then the tailored meta-regression
model. Note all parameters were estimated from fitting the models using REML.

5.1. Berkey

The first dataset is from Berkey et al. [22] who reviewed the primary studies which evaluated the
efficacy of the Bacillus Calmette–Guérin (BCG) vaccination in preventing tuberculosis (TB) [22]. For
both the meta-analysis model and the tailored meta-regression model, Vn is calculated as follows

Vn ¼ ∑
13

i¼1

log RRð Þi � dlog RRð Þ �ið Þ
� �2

var log RRð Þi
� �þ var dlog RRð Þ �ið Þ

� �
where dlog RRð Þ �ið Þ is the summary estimate from the meta-analysis/regression model fitted with the ith

Table III. Values for τ̂ and �se from a sample of meta-analyses.

Study k Outcome τ̂ se τ̂=se

Fraquelli 5 Log RR 0.000 0.440 0.000
Martineau 7 Log OR 0.000 0.637 0.000
Clarke 9 Log OR 0.000 1.394 0.000
Wong 10 Log OR 0.000 1.087 0.000
Sheppard 7 Log RR 0.204 0.329 0.620
Greenough 7 Log RR 0.263 0.410 0.642
Prabhakar 6 Log RR 0.304 0.425 0.716
Sng 7 Log RR 0.475 0.484 0.980
Chin 9 Log RR 0.470 0.462 1.018
van Driel 6 Log OR 0.328 0.315 1.040
Kakkos 11 Log OR 0.906 0.782 1.158
Leeflang 7 Logit PPV 0.494 0.409 1.209
Wilkinson 6 Log RR 0.296 0.180 1.649
Bighelli 6 Log RR 0.557 0.292 1.911
Theron 19 Logit sens 1.069 0.471 2.271
Berkey 13 Log RR 0.560 0.163 3.444

RR = relative risk; OR = odds ratio; PPV = positive predictive value; sens = sensitivity.
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study omitted and log(RR)i is the individual study estimate for study i. The individual study variance,
var(log(RR) = 1/tp + 1/cp – 1/(tp + tn) – 1/(cp + cn) where tp and tn are the number of TB positive
and negative patients in those who were vaccinated; cp and cn are the number of TB positive and

negative patients in those who were not vaccinated. The var dlog RRð Þ �ið Þ
�

is the model variance.

In Table IV the individual study estimates for log(RR)i are given alongside the corresponding

meta-analysis and tailored meta-regression estimates for dlog RRð Þ �ið Þ . This shows directly how well
the meta-analysis and tailored meta-regression estimate predicts that observed in the excluded study.

From Table V, Vn (59.96; p < 0.0001) is significant, and as τ̂=�se = 3.44, the power of Vn is likely to
be close to 100% at a 5% level of significance. This strongly suggests the meta-analysis estimate is
unlikely to be valid in a new setting. The other statistics in Table V also suggest that there is
heterogeneity which would be consistent with the estimate being invalid.

When undertaking a meta-regression, the reported efficacy in terms of the relative risk was associated
with the latitude of the setting in which the study was conducted [22]. Each fitted tailored
meta-regression equation with the ith study omitted took the form of:

dlog RRð Þ �ið Þ ¼ α̂ �ið Þ þ β̂ �ið Þ�latitudei (9)

Table IV. Meta-analysis and tailored meta-regression estimates with study estimates using data from Berkey
[22].

No. Study Year Lat Study estimate MA estimate TMR estimate

1 Vandiviere et al. 1973 19 �1.62 (�2.55, �0.70) �0.66 (�1.01, �0.30) �0.22 (�0.44, 0.00)
2 Ferguson & Simes 1949 55 �1.59 (�2.45, �0.72) �0.65 (�1.01, �0.30) �1.31 (�1.76, �0.85)
3 Hart & Sutherland 1977 52 �1.44 (�1.72, �1.16) �0.63 (�0.97, �0.28) �1.17 (�1.64, �0.70)
4 Rosenthal et al. 1961 42 �1.37 (�1.90, �0.84) �0.65 (�1.01, �0.29) �0.92 (�1.18, �0.65)
5 Rosenthal et al. 1960 42 �1.35 (�2.61, �0.08) �0.69 (�1.05, �0.32) �0.96 (�1.23, �0.69)
6 Aronson 1948 44 �0.89 (�2.01, 0.23) �0.71 (�1.08, �0.33) �1.04 (�1.33, �0.74)
7 Stein & Aronson 1953 44 �0.79 (�0.95, �0.62) �0.71 (�1.10, �0.32) �1.10 (�1.42, �0.79)
8 Coetzee & Berjak 1968 27 �0.47 (�0.94, 0.00) �0.74 (�1.13, �0.36) �0.55 (�0.81, �0.29)
9 Comstock et al. 1974 18 �0.34 (�0.56, �0.12) �0.76 (�1.14, �0.37) �0.27 (�0.64, 0.10)
10 Frimodt-Miller et al. 1973 13 �0.22 (�0.66, 0.23) �0.76 (�1.14, �0.39) �0.11 (�0.54, 0.31)
11 Comstock et al. 1976 33 �0.02 (�0.54, 0.51) �0.78 (�1.14, �0.41) �0.75 (�0.93, �0.57)
12 TPT Madras 1980 13 0.01 (�0.11, 0.14) �0.79 (�1.15, �0.44) �0.22 (�0.68, 0.25)
13 Comstock & Webster 1969 33 0.45 (�0.98, 1.88) �0.76 (�1.12, �0.40) �0.73 (�0.94, �0.52)

The study estimate is the log(relative risk) for the individual study. The meta-analysis (MA) estimate for a study is that
derived from aggregating the remaining studies. The tailored meta-regression (TMR) estimate for a study is derived
from regressing the remaining studies with the covariate Lat but inserting the Lat value for the excluded study. For
example, the MA estimate for study 1 is derived from aggregating studies 2–13. The TMR estimate for study 1 is
derived from regressing studies 2–13 but inserting Lat = 19.
All estimates are for the log(RR) with 95% confidence intervals in brackets. Lat = latitude.

Table V. Comparison of Vn with Q and I2 when applied to two case examples.

Cases Outcome 95% PI Vn p-Value Q p-Value I2

1—MA Log(RR) (�1.87, +0.44) 59.96 <0.0001 152.23 <0.0001 92.2%
1—MR* Log(RR) (�1.67, �0.45)† 25.77 0.0037 30.73 0.0012 68.4%
2—MA Logit(PPV) (�1.84, +0.33) 16.76 0.0083 15.39 0.0175 59.75%
2—MR# Logit(PPV) (�1.19, �0.58)‡ 6.04 0.484 4.86 0.433 0%

Case 1 (Berkey et al. [22]) and Case 2 (Leeflang et al. [23]). The results are given for the meta-analysis (MA) and
meta-regression (MR) (with 1 covariate). k = the number of studies;
*Includes 1 covariate (the latitude)
#Includes 1 covariate (the logit(prevalence)); PPV—positive predictive value; RR—relative risk; 95% PI—95%
prediction interval.

†Prediction interval estimated for a latitude of 45°.
‡Prediction interval estimated for a prevalence of 10%.
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where α̂ �ið Þ and β̂ �ið Þ are estimated from fitting the model. It is of interest to know if the summary
estimates from this tailored meta-regression are valid in particular countries. Therefore, the
cross-validation approach is useful, with Vn used to test the calibration of the meta-regression predicted
effects and the actual study effects.

Although including the latitude as a covariate in the model has helped explain some of the
heterogeneity (both Q and I2 have decreased), Vn (25.77; p = 0.0037) remains significant. As noted
above τ̂=�se = 3.44, and for a tailored meta-regression model, the power of Vn is still around
100%—this points strongly to the tailored meta-regression estimate being invalid.

For the estimate to be statistically valid, we would need to interpret the significant result for Vn in the
context of the probability of a type 1 error. Notwithstanding that Table II shows for a level of
significance of 0.05 the true type 1 error rate of Vn can be higher than this, a p value of 0.0037 suggests
a type 1 error is still very unlikely. This supports our judgment that the tailored meta-regression
estimates are likely to be statistically invalid.

5.2. Leeflang

The second dataset is derived from a Cochrane systematic review which appraised studies that had
evaluated the Galactamannan assay for diagnosing invasive aspergillosis in immunocompromised
patients [23]. Here, we use the dataset with the threshold for a positive test result set at an optical density
index (ODI) of 0.5. As in general, it is the probability of disease/non-disease given the test result which
is most useful to clinicians, the outcome of interest chosen in this example was the positive predictive
value (PPV). Thus, the Vn statistic for both the meta-analysis and meta-regression model is calculated
as follows

Vn ¼ ∑
7

i¼1

logit PPVð Þi � dlogit PPVð Þ �ið Þ
� �2

var logit PPVð Þi
� �þ var dlogit PPVð Þ �ið Þ

� �
The individual study variance var[logit(PPV)i] = 1/[(tp + fp)PPV(1-PPV)] where tp and fp are the

number of true and false positive patients. The individual study estimates for log(PPV)i with the

corresponding meta-analysis and tailored meta-regression estimates for dlog PPVð Þ �ið Þ are given in
Table VI.

From Table V, for the meta-analysis model, Q (15.39; df = 6; p = 0.0175), I2 = 59.75% and the 95%
prediction interval for the summary logit (PPV) is (�1.84, +0.33) (this is equivalent to a PPV of
14–58%)—these all suggest the studies are heterogeneous. As might be expected, Vn (16.76;
p = 0.0083) is also significant which leads to the conclusion that any summary estimates are unlikely
to be valid.

Table VI. Meta-analysis and tailored meta-regression estimates with study estimates using data from
Leeflang [23]

Author Year lgtprev Study estimate MA estimate TMR estimate

Allan 2005 �4.82 �3.09 (�5.93, �0.26)# �0.69 (�1.18, �0.20) �2.65 (�4.06, �1.24)
Florent 2006 �2.56 �1.58 (�2.34, �0.82) �0.59 (�1.02, �0.15) �0.99 (�1.42, �0.56)
Kawazu 2004 �2.53 �0.74 (�1.46, �0.02) �0.77 (�1.38, �0.15) �1.25 (�1.68, �0.82)
Foy 2007 �2.21 �0.15 (�1.24, +0.94) �0.84 (�1.38, �0.29) �0.95 (�1.27, �0.63)
Yoo 2005 �2.10 �0.73 (�1.42, �0.05) �0.77 (�1.39, �0.15) �0.81 (�1.19, �0.43)
Weisser 2005 �1.95 �0.94 (�1.52, �0.36) �0.72 (�1.34, �0.10) �0.62 (�0.98, �0.26)
Suankratay 2006 �0.66 +0.21 (�0.52, +0.94) �0.93 (�1.27, �0.59) +0.26 (�1.20, +1.73)

The study estimate is the logit(PPV) for the individual study. The meta-analysis (MA) estimate for a study is that
derived from aggregating the remaining studies. The tailored meta-regression (TMR) estimate for a study is derived
from regressing the remaining studies with the covariate lgtprev but inserting the lgtprev value for the excluded study.
For example, the MA estimate for study 1 is derived from aggregating studies 2–7. The TMR estimate for study 1 is
derived from regressing studies 2–7 but inserting lgtprev = �4.82.
All estimates are for the logit(PPV) with 95% confidence intervals in brackets.
PPV = positive predictive value; lgtprev = logit(prevalence)
#Estimate includes continuity correction of 0.5.
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From Bayes’ theorem, the PPV is known to depend on the disease prevalence. We implemented a
tailored meta-regression approach in which the prevalence of disease was assumed to be known for each
primary study [5,6], to study the effects of such information on the potential validity of any estimates.
Thus, for the Vn statistic, each fitted tailored meta-regression model took the form:

dlogit PPVð Þ �ið Þ ¼ α̂ �ið Þ þ β̂ �ið Þ�logit prevalenceð Þi (10)

where α̂ �ið Þ and β̂ �ið Þ are estimated from fitting the model with the ith study omitted.
In contrast to the first example, Vn (6.04; p = 0.484) is non-significant. Should this be considered as

consistent with the null hypothesis of statistical validity or is it a type 2 error? When there are few studies
(k = 7), Vn has greater power and therefore a lower type 2 error rate than Q. From Table V, τ̂=�se = 1.21
and inspecting the power curves in Figure 2 we see the power is around 58% (a type 2 error rate of 42%)
for a level of significance of 0.05. However, in this instance, the power for Vn will be much higher
because p = 0.484. (A simulation study based on τ̂=�se = 1.21 and an average sample size per study
of 128 for the 7 studies demonstrates the power to be 90.0% giving a type 2 error rate of 10%). This
would suggest that estimates are likely to be valid.

This is also supported by the other measures, as I2 = 0%, and the prediction interval has narrowed to
(�1.19, �0.58) equivalent to a PPV of 23–36% suggesting that the heterogeneity has been explained by
the addition of the covariate to the model. Based on this evidence, it would be reasonable to implement a
PPV estimate from this model in an independent setting and hence practice.

Both of these examples demonstrate why clinicians should not automatically assume summary meta-
analysis results are applicable to their population and that even when a summary estimate appears valid
this should be judged in the context of the properties of the statistic and other evidence used to make that
decision.

6. Discussion

One of the issues facing medical research in general is determining how well the research results
translate into practice. To truly address this, we need a separate evaluation of the research in practice
settings which are independent from the research settings. The terms validity or external validation
are often reserved for when the research findings may be generalised or translated into clinical practice.
With regard to meta-analysis results, however, it is often impractical to conduct further independent
studies to assess whether the aggregate estimates are valid. Judgments on validity are therefore generally
based on an assessment of quality, in which a combination of qualitative and quantitative characteristics
of the comprising studies is weighed up.

Yet the need for further studies is partly circumvented in meta-analysis by making use of the existing
studies in a similar way to the Jack-knife method [7]. Such ‘cross-validation’ is not new and was
implemented by Lachenbruch [24] and Stone [25] but has only recently gained some traction in meta-
analysis. However, to date, its main use in meta-analysis has been in prediction modeling to evaluate
predictive performance and for model recalibration [2–4].

To address this, we considered the concept of statistical validity in relation to estimates generated by
meta-analysis and meta-regression models. In particular, we defined it as when the model parameter for
the effect measure of interest equates to that in an independent setting. From this, and using the
previously described cross-validation procedure, we derived a statistic, Vn, and its asymptotic
distribution to test the viability of statistical validity.

Homogeneity plays a central role and is integral to statistical validity when evaluating meta-analysis
or meta-regression models with discrete categorical covariates. As part of the derivation of Vn, it was
demonstrated that in meta-analysis statistical validity follows only when the studies are homogenous.
Furthermore, when meta-analysis is extended to include discrete covariates in a tailored meta-regression
model, statistical valid estimates arise when the individual sub-groups of studies are homogeneous,
equivalent to the covariates being used to ‘explain’ the heterogeneity.

However, the more general case is when the p covariates are continuous in which case the set of
statistical valid estimates spans a p + 1 dimensional sub-space of the k-space of parameters (μ1 ,μ2,
…, μk). Here the individual parameters, μi, may all have different values (by definition heterogeneity),
but the model still provide statistically valid estimates.

Owing to the link between homogeneity and statistical validity, it reinforces the need to explore
meta-analyses/regressions for heterogeneity using standard methods [17,18]. As such, Cochran’s Q

B. H. WILLIS AND R. D. RILEY

© 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2017



statistic, a measure often used to identify heterogeneity, was compared with Vn. There are clear
similarities in that they are both a ‘weighted sum of squares’ statistic. Because Vn is estimated using
cross validation it directly measures the out of sample prediction error which is important to statistical
validity and contrasts Q.

In terms of the type 1 error rate and power, they are similar when then are 50 or more studies.
However, when there are fewer studies, Vn has greater power and Q has a lower type 1 error rate. Clearly
defining the power and type 1 error rates is important as both these statistics are being used to test
hypotheses. Furthermore, they provide a basis for recommendations on the use of Vn (and Q) when
making decisions on the validity of meta-analysis/regression estimates.

The power of Vn not only depends on the number of studies but also on τ/se, so there is a trade-off
between the level of heterogeneity and the average precision of the studies. Thus, when the meta-
analysis consists predominantly of high precision studies, Vn may detect differences between the model
estimate and those observed which may be too small to be clinical relevant but are, nonetheless,
statistically significant. However, our overview of Cochrane reviews showed this not to be a large
problem.

As in previous studies [20,26], similar shortcomings were demonstrated here with the Q statistic. This
motivated the proposing of statistics, such as the I2 statistic, that are aimed at measuring the extent of
heterogeneity rather than its presence [27]. However, this too is similarly affected by study precision
and the number of studies in the meta-analysis [20,27,28]. Such drawbacks should inform the
interpretation of these statistics and also suggest that they should not be used in isolation when
evaluating heterogeneity or statistical validity.

Like many statistics, Vn provides little information when used in isolation; its usefulness depends
upon the context in which it is applied. As statistical validity is intrinsically linked to homogeneity if
homogeneity seems likely then a significant Vn result should be interpreted in terms of its potential type
1 error rate. In such an instance, the Q statistic, with its lower type 1 error rates, is likely to be the more
informative of the two.

However, if heterogeneity is considered to be likely at the outset (as with many meta-analyses), then
Vn’s greater power means that it could be more useful than the Q statistic particularly for τ/se < 1.5. In
this context, reviewers may be able to use Vn as support for a recommendation which discourages the
wider application of the meta-analysis results.

But how should Vn be interpreted when the inclusion of covariates in meta-regression analyses seems
to ‘explain’ the between-study heterogeneity? One of the risks in this instance is that legitimate
exploratory analyses could lead to recommendations on validity. When the objective is to determine
potential sources of variation and not make assertions on the ‘applicability’ of results, then the Q statistic
and I2 can be used to inform such analyses. Although in any event, a non-significant Vn should be
interpreted against the likelihood of a type 2 error, it should not be used to assert statistical validity in
meta-regression analyses when the covariates were identified as part of an exploratory phase. The risks
of such data fishing or dredging are well documented [29] but are particularly apposite here where the
results could be applied in clinical practice as a result. The best way to mitigate this risk is to pre-specify
the covariates that are likely to be causal before embarking upon any meta-regression analyses. In this
context, the assertion of statistical validity is more likely to be justified.

As an alternative to the hypothesis testing approach of the Vn statistic, Riley et al. propose
using 95% prediction intervals to quantify the potential error in the predictions of true study
values from applying meta-analysis/regression models to new settings [1]. This allows the
magnitude of error to be examined, which may inform clinical relevance. Indeed, the issue of
clinical relevance is pertinent to any methods used to assess validity. Altman and Royston allude
to this when they express the importance of differentiating between statistical and clinical validity
[30]. In the latter case, biased estimates (which are statistically invalid) may be acceptable to
clinicians under certain clinical conditions. However, there are potential limitations to the Riley
et al. [1] approach, too. Prediction intervals are not universally accepted in the meta-analysis field,
and recent work suggests frequentist equations for the prediction interval have poor coverage [31].
Furthermore, unlike the Vn statistic, the ‘error’ in the proposed prediction interval, as estimated
using Riley’s method [1], does not account for the variance of the meta-analysis model’s predicted
summary estimate.

In this study, we confined our investigations to using study-level data either as part of meta-analyses
or as covariates included in meta-regression analyses. As IPD or patient-level data become increasingly
available, there is the potential to use IPD meta-analyses to improve the summary estimates translated
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into practice. An important part of this process would be to evaluate their statistical validity and is
worthy of future research.

In conclusion, for summary estimates from meta-analysis to be useful in practice, they need to be
statistically valid. As a direct measure of statistical validity, we have proposed the Vn statistic, and it
is applicable whenever the meta-analysis model (1) or the tailored meta-regression model (2) is applied
to combine effect estimates from multiple studies. It does have limitations as a hypothesis test, and these
should be noted. However, as statistical validity relates to identifying homogenous sub-groups of
studies, these limitations may be partly circumvented by using it alongside other statistics such as the
Q statistic. As such, Vn provides a useful summary of the likely statistical validity of results from
meta-analysis/regression models when applied to clinical practice.

Appendix 1: Distribution of Vn

(i) Random effects meta-analysis model (1)

For the estimation of the univariate random effects meta-analysis (1), we derive the asymptotic
distribution of Vn by noting Vn is a quadratic form and applying results from linear algebra using an
approach similar to Biggerstaff and Jackson [9] and Duchesne and Lafaye De Micheaux [10].

Let the ith study have observed mean effect yi and variance ¼ σ2i =ni where σ
2
i is the variance of the

patient-level observations in each study with sample size ni. Let τ2�ið Þ be the between-study variance

when the ith study is excluded then we can then re-write Vn as

Vn ¼ ∑
k

i¼1
w�
i yi � ŷ �ið Þ
� �2

¼ ∑
k

i¼1
w�
i yi �

∑k
j≠iw �ið Þjyj

∑k
j≠iw �ið Þj

" #2

where w �ið Þj ¼ 1= σ2j =nj
� �

þ τ2�ið Þ
� �

for j ≠ i,w�
i ¼ 1= σ2i =ni

� �þ var ŷ �ið Þ
� �

¼ 1= σ2i =ni
� �þ 1

�
W �ið Þ

� ��
and W �ið Þ ¼ ∑k

j≠iw �ið Þj:
This is more easily dealt with using a matrix formulation. Define Aij by the following

Aij ¼
1 if i ¼ j

�w �ið Þj
W �ið Þ

if i≠j

8<: (A1)

Let A be the matrix with elements Aij, then A has rank = k� 1 (the entries in each row sum to zero). If
w* is the diagonal matrix whose diagonal elements are w�

1;w
�
2;w

�
3;…w�

k

� �
, and y is the k-vector with

elements (y1, y2, y3, … , yk), then Vn may be written as the following

Vn ¼ yTATw�Ay

Let z=w1/2y, where w is the diagonal matrix with diagonal elements wi ¼ ni=σ2i then we may write
B=w�1/2ATw*Aw�1/2, hence

Vn ¼ zTB z

B is a symmetrical matrix, and we may apply the spectral decomposition theorem to express Vn in
terms of the eigenvalues and eigenvectors of B as previously reported [9,10], namely

Vn ¼ ∑
k

i¼1
λi vTi z
� �2

where λi is the ith eigenvalue, vi is the corresponding eigenvector with k components, and the
eigenvectors are orthonormal. Let μ(�i) =μi for all i, then Vn is invariant to centring around μi, ; thus,
the distributions of Vn when z=w1/2y and when z=w1/2(y�μ) are equivalent. In the latter case, for
z= (z1, z2, z3,…,zk) each zi~N(0, 1) and is independent.

Because vi are orthonormal, they form an alternative basis that is a rotation of the usual standard basis
in Euclidean space. Supposing vTi ¼ vi1; vi2;…; vikð Þ, then vTi z ¼ vi1z1 þ vi2z2 þ…þvikzk. Thus, vTi z is a
linear combination of standard normal variables and, as a result, has a normal distribution. Furthermore,
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the expectation, E vTi z
� � ¼ 0 because E(zi) = 0 and the variance, var vTi z

� � ¼ 1, because var(zi) = 1 and

‖vTi ‖ ¼ 1. Hence, vTi z ~N0 , 1, and thus vTi z
� �2

~ χ21. So we have

Vn∼ ∑
k

i¼1
λi χ21 (A2)

and therefore Vn has a distribution which is a linear combination of χ2 variables of degree 1 where the
coefficients are the eigenvalues of B. This is an asymptotic distribution because σ2i and τ2 are estimated
from the sample data. We note the property that the entries of each row of A sum to zero persists in
ATw*A. Furthermore, because this matrix is symmetrical, the entries of each column also sum to zero.
B=w�1/2ATw*Aw�1/2 is symmetrical, and if we multiply each row i, by a factor (w1w2. .wi� 1wi + 1 . .
wk)

�1/2 where wj is the jth element on the diagonal of w, the column entries also sum to zero; thus, B
has rank = k � 1. Because Vn is non-negative, B is positive semi-definite and has k � 1 positive
eigenvalues, where the kth eigenvalue, λk=0. Furthermore, when the non-zero eigenvalues all equal
one, Vn has a χ2 distribution of k � 1 degrees of freedom.

(ii) Tailored meta-regression model (2)

To validate the summary estimateXiβ̂ �ið Þ from the meta-regression model in (2), it is again of interest
to formulate Vn in matrix form. Note Xi is the row vector for the ith study with 1 as the first element and

each of the p � 1 covariates as the other elements. Let θ �ið Þ ¼ XT
�ið Þw

�
�ið ÞX �ið Þ

� ��1
XT

�ið Þw
�
�ið Þ,

where X(�i) is the matrix of row vectors Xj with the ith study excluded. Thus, θ(�i) is a p × (k � 1)
matrix for p� 1 covariates, and β̂ �ið Þ ¼ θ �ið Þy �ið Þ. Suppose we partition θ(�i) into the first i� 1 columns,

append an ith column of zeros, then re-append the remaining k � i columns to produce M̂ �ið Þ a p × k
matrix.

We define the matrix A as having elements

Aij ¼
1 if i ¼ j

�X iM̂ j �ið Þ if i≠j

(
(A3)

where M̂ j �ið Þ is the jth column of M̂ �ið Þ of length p. As a result, Vn may be written in the quadratic form

Vn ¼ yTATw�Ay

where w* is defined as previously and ATw*A is symmetrical. By similar arguments to those made in
Section 3.3(i), we may again define z=w1/2y and write B=w�1/2ATw*Aw�1/2 in order to deduce that

Vn∼ ∑
k

i¼1
λi χ21 (A4)

The matrix θ(�i) has rank p because X(�i) has rank p. The k-vector Ay is analogous to (I�H)y the
vector of residuals (yi � ŷ) where H is the hat matrix. Ay represents the vector of predictive residuals

yi � ŷ �ið Þ
� �

across all Xi and yi. Thus, A spans the same sub-space as I�H and has rank k-p.

The rank of w*Aw�1/2 is the same as A because both w* and w�1/2 are diagonal and the transpose, AT,
also has the same rank as A. Thus, B=w�1/2ATw*Aw�1/2 has rank k-p. Again, B is positive semi-definite
and has k-p positive eigenvalues, where λk� p + 1 = … = λk=0 for p < k.

Appendix 2: R source code to estimate Vn for Berkey et al.

This estimates Vn for meta-analysis and tailored meta-regression with 1 covariate

library(metafor)
library(CompQuadForm)
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c<-read.csv("Berkey file.csv")

total<-data.frame(total1P=numeric(), exact_p1=numeric(),total2P=numeric(),
exact_p2=numeric())

n<-nrow(c)

A1<-A2<-0
wt1<-wt2<-0
B1<-B2<-0
Vn1<-Vn2<-0

for (i in 1:n)
{

a <- c[i,]
b <- c[-i,]

##################################################################################

## Study RR, yi and variance
RRi<-(a$tpos/(a$tpos+a$tneg))/(a$cpos/(a$cpos+a$cneg))
yi<- log(RRi)
varyi<-1/(a$tpos) + 1/(a$cpos) - 1/(a$tpos+a$tneg) - 1/(a$cpos+a$cneg)

##################################################################################
# Estimate the y(i)=RR(i) when no covariates

estim1 <- rma(ai=b$tpos, n1i=b$tpos+b$tneg,ci=b$cpos, n2i=b$cpos+b$cneg, data=b, add=1/2,
to="only0",method ="REML", measure="RR", control=list(stepadj=.5))

PredYib <- predict(estim1, addx=TRUE)
Yib<- PredYib$pred
varYib1<- (PredYib$se)^2

Vn1[i]<-((yi-Yib)^2)/(varyi+varYib1)

t1<-estim1$tau2
tau1<-c(rep(t1,n-1))

varY1<-1/(b$tpos) + 1/(b$cpos) - 1/(b$tpos+b$tneg) - 1/(b$cpos+b$cneg)
weight1<-1/(tau1+varY1)
W1<-sum(weight1)
weight1<–weight1/W1
wt1i<-1/((1/W1)+varyi)

if (i==1) x<-c(1,weight1)
if (i>1 & i<n)
{
x1<-weight1[1:(i-1)]
x2<-weight1[i:(n-1)]
x<-c(x1,1,x2)
}
if (i==n) x<-c(weight1,1)
wt1<-c(wt1,wt1i)
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A1<-c(A1,x)

########################################################################
# Estimate the y(i)=RR(i) when 1 covariate (LATITUDE)
estim2 <- rma(ai=b$tpos, n1i=b$tpos+b$tneg,ci=b$cpos, n2i=b$cpos+b$cneg, data=b, add=1/2,
to="only0",mods=~b$Lat, method ="REML",measure="RR", control=list(stepadj=.5))

PredYib2 <- predict(estim2,newmods=a$Lat, addx=TRUE)
Yib2<- PredYib2$pred
varYib2<- (PredYib2$se)^2
Vn2[i]<-((yi-Yib2)^2)/(varyi+varYib2)

t2<-estim2$tau2 # Between study variance
tau2<-c(rep(t2,n-1)) #Vector of n-1 between study variances

weight2<-1/(tau2+varY1) #within-study variances already estimated above

w<-diag(weight2)
X2<-matrix(c(rep(1,n-1),b$Lat),n-1,byrow=F)
xi2<-matrix(c(1,a$Lat),1,byrow=F)

inv<- solve(t(X2)%*%w%*%X2)
temp<-xi2%*%inv%*%t(X2)%*%w
temp<–1*temp

if (i==1) dum<-matrix(c(1,temp),1,byrow=F)
if (i>1 & i<n)
{
temp1<-matrix(temp[1:(i-1)],1,byrow=F)
temp2<-matrix(temp[i:(n-1)],1,byrow=F)
dum<-matrix(c(temp1,1,temp2),1,byrow=F)
}
if (i==n) dum<-matrix(c(temp,1),1,byrow=F)

if (i==1) A2<-dum
else A2<-rbind(A2,dum)

wt2i<-1/(varYib2+varyi)
wt2<-c(wt2,wt2i)
##################################################################################

}

## Distribution of Vn
## Case - no covariates
SEc<-(1/(c$tpos) + 1/(c$cpos) - 1/(c$tpos+c$tneg) - 1/(c$cpos+c$cneg))^0.5
YiF<-log((c$tpos/(c$tpos+c$tneg))/(c$cpos/(c$cpos+c$cneg)))
y<-matrix(YiF,nrow=n,ncol=1)
wt1<-wt1[-1]
wt1<-diag(wt1)
zwt<-diag(SEc)

A1<-A1[-1]
A1<-matrix(A1,nrow=n,ncol=n,byrow=TRUE)#Note byrow if FALSE by default
B1<-t(zwt)%*%t(A1)%*%wt1%*%A1%*%zwt
e_values1<-eigen(B1,symmetric=TRUE)
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eval1<-e_values1$values
eval1<-eval1[-n]

total1<-sum(Vn1)

## To estimate the distribution of Vn
chis1<-c(rep(1,n-1))
cents1<-c(rep(0,n-1))
exact1<-farebrother(total1,eval1,chis1,cents1) #Vn, vector of e-values, vector of DOF for chi, vector of
zeros for centrally distributed chi
exact_p1<-exact1$res

##############################################

## Distribution of Vn
## Case - 1 covariate (LATITUDE)

wt2<-wt2[-1]
wt2<-diag(wt2)
temp4<-t(A2)%*%wt2%*%A2

B2<-t(zwt)%*%temp4%*%zwt
total2<-sum(Vn2)

e_values2<-eigen(B2,symmetric=TRUE)
eval2<-e_values2$values
eval2<-eval2[-((n-1):n)]

## To estimate the distribution of Vn
chis2<-c(rep(1,n-2)) #
cents2<-c(rep(0,n-2))
exact2<-farebrother(total2,eval2,chis2,cents2) #Vn, vector of e-values, vector of dof for chi, vector of
zeros for centrally distributed chi
exact_p2<-exact2$res

total<-data.frame(total1,exact_p1,total2,exact_p2)

total
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