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Abstract 

Macroalgae  (seaweeds)  are  the subject  of  increasing  interest  for  their  potential  as  a  source of

valuable, sustainable biomass in the food, feed, chemical and pharmaceutical industries. Compared

to microalgae, the pace of knowledge acquisition in seaweeds is slower despite the availability of

whole-genome sequences and model organisms for the major seaweed groups. This is partly due to

specific hurdles related to the large size of these organisms and their slow growth. As a result, this

basic  scientific  field  is  falling  behind,  despite  the  societal  and  economic  importance  of  these

organisms.  Here,  we  argue  that  sustainable  management  of  seaweed  aquaculture  requires

fundamental understanding of the underlying biological mechanisms controlling macroalgal life

cycles - from the production of germ cells to the growth and fertility of the adult organisms - using

diverse  approaches  requiring  a  broad  range  of  technological  tools. This  viewpoint  highlights

several examples of basic research on macroalgal developmental biology that could enable the

step-changes which are required to adequately meet the demands of the aquaculture sector.

Ecological and societal position of macroalgae

Macroalgae are macroscopic aquatic organisms belonging to three distinct and distantly-related

eukaryotic lineages (commonly named green, red, and brown algae). Their unicellular ancestors

diverged more than 1.6 billion years ago (Parfrey et al., 2011) implying independent acquisitions of

multicellularity, and leading to a bewildering diversity of life cycles, fertilization processes and

morphogenetic strategies. At the ecological level, macroalgae fulfil important roles as key habitat-

structuring agents and primary producers in coastal ecosystems. The goods and services seaweeds

(marine macroalgae) support are varied (Figure 1),  and include  elevated secondary production,
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nutrient cycling, energy capture and flow, and coastal defence (Steneck et al., 2002). They can also

significantly  contribute to carbon sequestration at  a level exceeding that of angiosperm marine

coastal vegetation (up to 1.5 times as much as seagrass meadows, salt marshes and mangroves and

up to 2% of the annual anthropogenic emission; Krause-Jensen & Duarte, 2016 and references

therein). In addition, macroalgae support complex food webs in coastal zones and provide habitats

and food for associated organisms, from apex predators to invertebrates (Reisewitz  et al., 2006).

Macroalgal  communities  also  enable  transfer  of  biomass  between  ecosystems  (Krumhansl  &

Scheibling, 2012), removal of dissolved nutrients from coastal waters and coastal protection from

erosion (Arkema  et al., 2013). De Groot  et al. (2012) estimated the  value of coastal ecosystem

services provided by macroalgae to be over 28,000 intl.$·ha-1·year-1.

Seaweeds are also an alternative/additional source of food, feed, fuel, biomolecules and livelihood

for humans. Over 80% of macroalgal production and harvesting is at present destined for human

consumption  directly  (Abreu  et  al.,  2014)  or  as  hydrocolloids  (thickeners,  gelling  agents,  etc)

(Rebours  et al.,  2014). Macroalgae are also used as fertilizers and animal feed (Makkar  et al.,

2016). In  addition,  the  industrial  sector  uses  seaweed  biomass  for  nutraceuticals,  cosmetics,

biotechnological  and  pharmaceutical  applications,  thus  propelling  the  growth  of  seaweed

biotechnology (Mazarrasa  et al., 2013).  Currently, ~28 million tonnes of seaweeds per year (wet

weight)  are produced and,  as a proxy for the growth of the biotechnology-market of seaweed-

derived products, seaweed-related patent applications increased at a rate of 11% per year since

1990 (Mazarrasa et al., 2014). 

While in Asia 99% of seaweed production is sourced from cultivation (accounting for 93% of the

global  production in  2013) (FAO, 2016),  the  dominant  practice  of  non-Asian  countries  is  still

harvesting natural stocks. However, the availability of wild stocks under the current scenario of

global change needs to be assessed, while management plans for seaweed exploitation must be

adapted to the natural population dynamics of commercially important species. Increasing demands

for  high-quality  seaweed biomass  may therefore affect  the long-term sustainability  of  seaweed
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exploitation.  Seaweed cultivation is the alternative to cope with industry’s demand for biomass,

concomitantly protecting natural resources (Fig. 1). Unlike terrestrial crops, they do not compete

for arable land, fertilizer and freshwater resources. Furthermore,  the development of Integrated

Multi-Trophic  Aquaculture  (IMTA:  co-cultivation  of  seaweeds  with  fin/shell  fishes)  enables

recapture  of  excessive  inorganic  nutrients  released  in  coastal  areas  by  fish  farms,  thereby

improving  their  sustainability  (Holdt  &  Edwards,  2014).  Beyond  aquaculture  proper,  seaweed

cultivation could also function as a general instrument for circular resource management (Seghetta

et al., 2016), treatment of waste-water produced by land-based farming and municipal treatment

plants (Neveux  et al., 2016), heavy metal biosorption (He & Chen, 2014) and recolonisation of

artificial reefs (Fig. 1). As a response to this assessment, the European seaweed aquaculture sector

has progressively expanded, accounting for 12% of total European biomass production in 2013

(FAO, 2016). Further expansion calls for advances in seaweed production technology, which rely

on  a  better  knowledge  of  both  the  environmental  and  the  intrinsic  factors  controlling  the

development of macroalgae.

How could developmental biology help solve bottlenecks in seaweed aquaculture?

Mastering genetics through the control of the life cycle

Most seaweeds have complex, biphasic life cycles, involving free-living haploid gametophyte and

diploid sporophyte generations (Coelho et al., 2007) (Box 1). Either phase of the life cycle can be

exploited,  depending  on  the  seaweed  species.  The  harvestable  biomass  of  kelps  consists  of

sporophytes  up  to  several  meters  long  (45  m  in  Macrocystis),  while  in  nori  (Pyropia  and

Porphyra),  the life stage of interest  is  the haploid gametophyte.  Other exploited seaweeds e.g.

Gracilaria and  Chondrus (red  algae)  have  isomorphic  life-cycles,  with  both  sporophyte  and

gametophyte developing macroscopic exploitable thalli. Currently, clonal propagation (e.g. red alga
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Kappaphycus) and  recourse  to  a  limited  number  of  parent  genotypes  (kelp)  account  for  the

production  of  most  commonly  cultivated  seaweeds.  The  resulting  impoverishment  of  genetic

diversity  increases  seaweed  susceptibility  to  diseases  and  decreases  their  fitness  within  their

cultivation  environment  (Loureiro  et  al.,  2015).  For  example,  the  continuous  vegetative

propagation of the carrageenophyte Kappaphycus in intensively cultivated areas has increased its

vulnerability to diseases (e.g. bacterial mediated “ice-ice” disease), thereby dramatically impacting

the production in various countries (Largo et al., 1995). This problem requires counteraction by the

selection of new breeding strains, potentially through artificial hybrids (Gupta  et al., 2015), but

more optimally through crossings, as somatic hybridisation usually results in severe and unstable

phenotypic alteration (Charrier et al., 2015). However, whilst in some seaweeds the promotion of

sexual reproduction still requires development (e.g. Gracilariopsis; Zhou et al., 2013), the loss of

the genetic patrimony resulting from cross-fertilisation might be detrimental to maintaining specific

and valuable genotypes resulting from decades of selection.  Therefore, manipulating the different

steps  of  the  seaweed  life  cycles  would  allow  a  balance  between  the  maintenance  of  given

genotypes of interest and controlled breeding. Progress in basic research opens possible paths to

bypass steps of the life cycle, thereby allowing to reach this goal (Box 1). 

Manipulating the sexual life cycle. 

Most cultivated seaweeds reproduce sexually (kelps, red algae  Porphyra ssp.), placing both time

and genetic  constraints  on seaweed farmers.  Physiological  studies  have long been establishing

protocols for maintaining seaweeds in a vegetative stage or shifting them to the next phase using

specific  temperature  and  light  conditions,  or  even  by  tissue  ablation.  This  allows  year-round

production of juveniles and increases the cultivated net biomass (Pang & Lüning, 2004). Several

illustrations  of  these  practices  applied  to  exploited  seaweeds  are  displayed  in  Box  1.  Recent

fundamental studies propose potential alternatives. Treatments with algal phytohormones could be

used to control the vegetative-to-reproductive transition and speed up reproduction, as illustrated in
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the  red alga  Grateloupia  imbricata upon addition  of  methyl  jasmonate (García-Jiménez  et  al.,

2016). 

Promoting parthenogenesis.

Other seaweeds propagate vegetatively from a single life phase through parthenogenesis, mainly by

apogamy but also by apomeiosis. The flexibility is high and is a valuable feature for aquaculture, as

it allows the maintenance of a specific genotype in potentially morphologically different organisms

(Box  1,  left  side).  Parthenogenesis  can  be  induced  by  hybridisation  (e.g.  Caloglossa

tetrasporophytes;  Kamiya  &  West,  2008)  or  through  chemical  treatments  preventing  gamete

motility  (e.g.  formaldehyde in  brown algae  Ectocarpales;  Gwo & Chen,  1999).  The lab-based

identification  of  endogenous  factors  controlling  seaweed  parthenogenesis  might  provide  more

natural alternatives to regulate or manipulate parthenogenesis in aquaculture. Recently, Han et al.

(2014)  identified  three  mitochondrial  proteins  involved  in  the  control  of  parthenogenesis  in

Scytosiphon lomentaria (brown alga Ectocarpales). In parallel, Arun et al. (2013) showed that algal

chemical factors (so far unidentified) secreted by the parthenosporophyte of Ectocarpus siliculosus

(brown alga Ectocarpales) control the fate of the released zoospores (Box 1). Coelho et al. (2011)

showed that the whole parthenosporophytic stage itself was controlled by a single genetic locus.

The characterisation  of  these  factors  could  lead  to  the  development  of  additional  strategies  to

control parthenogenesis.

Finally, Li et al., (2014) produced Undaria pinnatifida (brown alga) gametophytes that made only

male gametes from both oogonia and antheridia (Shan et al., 2015). These gametes are able to self-

cross and to produce homozygous male diploid sporophytes. This example illustrates that crosses

are  controlled  by  the  morphological  identity  of  the  reproductive  organs  rather  than  by  their

genotypes, emphasizing the importance of a control over morphogenesis.

In  parallel  to  these  improvements  for  seaweeds  cultivated  off-shore  (Fernand  et  al.,  2017),

standardized  protocols  should  also  be  developed specifically  for  not-yet  cultivated,  high-value

seaweeds  amenable  to  on-shore  cultivation.  This  includes  seaweeds  producing  high-value
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chemicals, or seaweeds in high demand on the food market, such as  Ulva, Palmaria, Porphyra,

Cystoseira, Himanthalia, Codium, Polysiphonia and Asparagopsis (Abreu et al., 2014), as well as

the  red  macroalgae  Ochtodes and  Portieria  cultivated  in  photobioreactors  (Rorrer  &  Cheney,

2004).

Altogether, basic research into the development and reproduction of macroalgae will likely provide

alternative means of manipulating seaweed reproduction, which will be very valuable for future

breeding programmes and aquaculture practices (Cottier-Cook et al., 2016).

Early and microscopic stages of development 

Seaweed growth starts with the formation and development of juveniles, which originate from the

release and germination of single cells (zygotes or spores). They subsequently attach to marine

substrata  to  initiate  their  sessile  development  (bloom-forming  algae  are  usually  free-living).

Deciphering  the  early  and  microscopic  developmental  stages  of  seaweeds  is  an  important

requirement for future integrative management of their cultivation (Fig. 2). Exploitation of seaweed

biomass concentrates on the macroscopic life-cycle stage,  which is the sporophyte in the most

predominantly exploited brown algae (Ecklonia,  Laminaria, Saccharina, Undaria), together with

the gametophyte in red seaweeds (Gracilaria, Kappaphycus, Euchema) and in some isomorphic

green (Ulva) seaweeds. Optimizing fertilisation success could help control the rate of production of

seaweed embryos in hatcheries, which, when too high, impedes the quality of sporophyte juveniles

(Fig.  2  and  3).  Environmental  cues  inducing  fertility  and  spore/gamete  release  have  been

determined  for  tens  of  seaweed  species  (photoperiod,  irradiance,  temperature  and  nutrient

concentration; previous section and Box 1). However, the paucity of molecular studies regarding

e.g. the periodicity of gamete release, attraction of gametes to opposite sex or mating type, and

cell-cell  recognition  (Fig.  3)  stands  in  a  stark  contrast  to  the  wealth  of  eco-physiological  and

biochemical  studies  that  predate  the molecular  era.  As an  illustration,  in  certain  Ulva species,
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gametogenesis and subsequent gamete release can be artificially induced by removal of sporulation

and  swarming  inhibitors  (Vesty  et  al.,  2015  and  references  therein),  but  so  far,  neither  these

inhibitors nor  the signalling pathways inducing gametogenesis have been characterised. Similar

cases could be made for pheromone signalling in brown seaweeds (Boland, 1995) and glycoprotein

recognition between opposite-sex gametes (Schmid et al., 1994).

Many macroalgal  zygotes  experience  polarisation  prior  to  the  growth and development  of  the

embryo (Fig.  3),  similarly to land plants and metazoans.  Whether polarisation is  necessary for

proper development, and the identity of polarisation cues and regulatory factors, are unknown for

most  macroalgae:  only  Fucales  and  Dictyotales  (brown  algae)  zygotes  have  allowed  the

identification of detailed polarisation cues (light direction and location of sperm entry; Brownlee et

al.,  2001;  Bogaert  et al.,  2017) and of specific cell  cycle checkpoints (Bothwell  et al.,  2008).

Bogaert  et al.  (2017) recently described in  Dictyota  a unique two-phase polarisation mechanism,

thereby illustrating the importance of seaweeds to decipher fundamental developmental processes

in the tree of life. 

Controlled growth and organogenesis factors: towards biomass production monitoring,

Production of large seaweed biomass with specific features of industrial interest (polysaccharides,

proteins and pigments) depends both on seaweed net growth and seaweed capacity to grow organs

and tissues  with  specific  structures  and compositions.  Indeed,  the  quantity  and quality  of  key

compounds  vary  within  the  algal  body  (beta-glucan  in  Durvillaea:  Bobadilla  et  al.,  2013;

phytohormones in Sargassum: Li et al., 2016), and cells with thicker walls, storage organelles and

vacuoles might be more resistant to dehydration, chemical exposure, eutrophication, and pathogen

attacks, and hence be of high interest. Unfortunately, macroalgal cell fate specification is one of the

least-understood  areas  of  macroalgal  biology.  Undoubtedly,  both  endogenous  (e.g.  bacteria:

Spoerner  et al., 2012; circadian rhythm: Cunningham & Guiry, 1989) and abiotic environmental
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factors (light, temperature, sea currents) are required (Fig. 3), but the intrinsic signalling pathways

are  largely  unknown.  To  understand  how  to  manipulate  hatchery  culture  conditions  to  give

juveniles the best start in life in tune with aquaculture demands, additional studies assessing the

molecular impact of the surrounding physical and chemical environment (light, nutrients, salinity,

water  movement)  are  required.  In  some  seaweeds,  complex  interactions  with  bacteria  are  a

prerequisite for proper cell growth and differentiation into specific tissues (Goecke  et al., 2010).

This has been well-illustrated in green seaweeds (Ulva and  Monostroma - Matsuo  et al., 2005;

Spoerner  et al., 2012), as well as in brown algal species where bacteria might control their  life

cycle (Tapia et al., 2016) and their morphology in waters with different salinities (Dittami et al.,

2014). It is tempting to hypothesize that controlling macroalgal development with bacteria will

direct the chemical composition of the macroalga and its value as cash crop. This is mainly relevant

for land-based aquaculture starting with a defined seed-stock (axenic germlings) and a synthetic

microbiome,  which  could  influence  the  production  of  primary  and  secondary  metabolites.

However, further work determining macroalgal-bacterial interactions throughout algal life-cycles is

necessary to discriminate between mutualistic, beneficial or pathogenic interactions.

Current technological requirements 

Reliable, cost-effective and long-term maintenance of genetic resources is a major requirement to

ensure the sustainability of the quality of the exploited traits (biomass yield, quality of extracted

polysaccharides, texture and taste of species for human consumption; Chapman et al., 2015). Both

sub-culturing  of  macroalgal  explants  and  cryopreservation  of  macroalgal  omnipotent  cells  are

current techniques to vegetatively propagate macroalgae over time. However, sub-cultivation is

time-consuming  and  re-iteration  of  the  protocol  over  years  is  a  source  of  bacterial  or  fungal

contamination.  Long-term  preservation  (through  refrigeration  or  liquid-nitrogen  freezing)  of

commercially important seaweed explants has therefore received increasing attention and several
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protocols are now available.  Techniques depend on the species (e.g.  gametophytic filaments of

Macrocystis; Barrento et al., 2016; pieces of Ulva thalli; Lee & Nam, 2016; and apical meristems

of Gracilaria: Lalrinsanga et al., 2009) and a better knowledge of both the mitotic activities within

the  thallus  and  the  underlying  molecular  mechanisms  governing  cell  proliferation  versus cell

differentiation would accelerate the assessment of the regenerative potential of these seaweeds and

the necessary development of adequate protocols (Stacey & Day, 2014) (Fig. 3). Basic research has

revealed specificities in brown seaweeds, specifically in the Fucus embryo, where cell division is

subject to distinct control mechanisms compared to other eukaryotes (Corellou  et al., 2001). As

bacteria  play  a  crucial  role  in  many  algal  developmental  processes  (Goecke  et  al.,  2010),

macroalgal  preservation  should  also  consider  cryopreservation  of  algae  with  their  natural

microbiome  rather  than  axenic  explants.  Therefore,  development  of  seaweed  biobanking

procedures may be pivotal to meet future aquaculture demands.

Beyond  cryopreservation,  while  some  techniques  are  easily  transferable  from  land  plants  to

macroalgae, others require species-specific optimization. The impact of the sea water medium on

the ionic concentration of buffers used in standard lab protocols and the different polysaccharide

compositions of red and brown algal cell walls (Deniaud-Bouët et al., 2014; Popper et al., 2011)

require  different  cell  wall  enzymolytic  treatments  in  cytology  protocols  (Joubert  & Fleurence,

2008). At the genetic level,  the sequence of reporter genes commonly used in other organisms

require modification for transgene expression, because of differing codon usages, as shown in red

and green seaweeds (Uji et al., 2014; Oertel et al., 2015). The growing interest of the evolutionary

developmental biology (“evo-devo”) community in macroalgae would help phycologists develop

these techniques further.

In addition to the requirement for cell biology and genetic adjustments, ‘OMICS’ technology must

be adapted to the level of analysis required to tackle developmental mechanisms taking place at the

microscopic and early developmental stages (Fig. 2 and 3). Several transcriptomic (Wang  et al.,

2015), proteomic (Qian et al., 2016) and metabolomic (Kumar et al., 2016 and references therein)
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studies have been reported in both model and exploited macroalgae. In addition, exo-metabolomic

profiling in standardized  Ulva cultures with a designed microbiome have shown growth phase-

dependent  biomarkers  that  might  be  relevant  for  aquaculture  (Alsufyani  et  al.,  2017).  Such

analyses are assisted by an increasing number of sequenced macroalgal genomes. Currently 18

public algal nuclear genomes have been sequenced, including four seaweeds. However, “-OMICS”

studies at early developmental stages are hampered by a scarcity of tissue. While proteomics and

metabolomics still require a significant biomass, transcriptomics can bypass this handicap through

RNA  amplification.  Cell-specific  expression  patterns  were  thereby  obtained  using  laser

microdissection  prior  to  RNA amplification  on  the  model  brown  seaweed  Ectocarpus (Saint-

Marcoux et al., 2015), and this technology is easily transferable to larger seaweeds.

Finally,  transgenesis  will  be  a  highly  valuable  tool  to  discover  how  molecular  processes  are

regulated  in  seaweeds,  and  to  interfere  with  these  processes  by  knocking  down/upregulating

endogenous genes. So far, only four multicellular algae, namely Ulva, Pyropia (Porphyra), Volvox

and Gonium are genetically transformable (Schiedlmeier et al., 1994; Oertel et al., 2015; Mikami,

2014; Lerche & Hallmann, 2009), and Ulva is the only stably transformable seaweed (Oertel et al.,

2015). These first successes must now be replicated in additional, diverse species, via investment

of time and expertise.

Conclusion

A range of protocols are available to cultivate seaweeds, thanks to previous physiological studies

carried out in an applied phycological context. Building on this key achievement, practices must be

refined and developed with a more focused and on-demand approach. Indeed, demand from end-

users is rising for new, high-commercial potential (mainly for food) seaweeds. However, because

of their low production level, these seaweeds  have not received high investment so far, and as a

result, no standardised cultivation and preservation protocols exist. This second big step is much
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more delicate, because of the greater number of species and of their reluctance to respond to the

simplest, classical protocols. The time has come, now that the first empirical studies have been

carried out, to engage the community in an in-depth study of the biological processes driving the

whole macroalgal life-cycle, from fertilization to the production of organisms. This must respond

to end-users' expectations of robustness against environmental constraints (e.g. climate, infection,

mechanical  strain),  biochemical  composition  and  also  natural  and  nature-friendly  production

increasingly favoured by the consumers. This is even more necessary since, despite the benefit that

the development of cutting-edge technologies in animals and plants can bring to the sector, many of

these technologies need to be adapted to macroalgae because of their specific ecological niche

(highly saline) and their  biology (in part  due to their  phylogenetic distance from better-known

organisms). Therefore, efforts must be intensified to fill the gaps in our fundamental knowledge of

macroalgal developmental mechanisms. We also believe that the scientific community of land plant

researchers will benefit from a deeper understanding of seaweed developmental biology.
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Box and Figure legends

Box 1: Life cycle stages in seaweeds and possible manipulations

Seaweed life cycles comprise several (usually 4) multicellular phases, including vegetative and

fertile sporophytes and vegetative and fertile gametophytes (grey boxes). On the left, grey arrows

indicate the different natural alternatives that seaweeds can use to reproduce (either sexually or

asexually). On the right, brown, red and green horizontal lines represent the 3 groups of seaweeds.

Transition between two successive phases, and bypassing or maintenance of one phase (either by

delaying the maturation of the organism or by asexual looping) are ways to exert a tight control on

the life cycle. Straight arrows indicate controls over a given phase of the life cycle (maintenance,

induction  or  inhibition).  Dashed arrows indicate  asexual  looping.  A few specific  examples  are

represented by the numbers that follow.  [1] vertical arrow: maintaining vegetative growth of the

brown seaweed Saccharina latissima gametophytes under red light or by sub-culturing (grinding)

filaments; horizontal arrow: induction of gametophyte fertility under blue light (Luning & Dring,

1975).  [2]  sporulation maintenance by removal  of the basal  meristem of  S.  latissima (Pang &

Lüning, 2004). [3] maintenance of the vegetative stage of the sporophyte: in Porphyra conchocelis

by temperature, photoperiod and irradiance (He & Yarish, 2006); of the reproductive stage of the
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sporophyte: in Palmaria tetrasporophytes by short daylength (Pang & Lüning, 2006). [4] control of

the shift to the reproductive phase of the vegetatively propagated  Gracilariopsis gametophyte by

temperature optimisation (Zhou  et al.,  2013).  [5] identification of sporulation-inhibiting factors

(Glycoprotein  SP-1  and  low  molecular  weight  factor  SP-2)  from  Ulva gametophytes  and

sporophytes (Wichard & Oertel,  2010; Vesty  et al.,  2015).  [6] parthenogenesis in  brown algae

(Nakahara, 1984) and red algae (Undaria female spore seeding; Shan et al., 2013). [7] production

of  gametophytes  from gametes  of  the  Ectocarpus siliculosus mutant  ouroboros  (Coelho  et  al.,

2011).  [8]  production  of  Ulva  gametophytes  from  the  germination  of  its  own  gametes  when

separated  from  another  mating  type  (Wichard  &  Oertel,  2010). [9]  germination  of

parthenosporophytes (instead of gametophytes in  this  strain)  from  Ectocarpus zoospores by an

inhibiting factor produced by the parthenosporophyte (Arun et al., 2013). 

Figure 1: Position of macroalgae in the scientific and societal landscapes.

Macroalgae grow rapidly in a wide range of temperatures, using only sunlight, atmospheric carbon

and naturally nutritious coastal waters. They are therefore valuable feedstock for the production of

food,  feed,  biofuel,  hydrocolloids,  fertilisers,  cosmetics,  probiotics,  biodegradable  packaging

through  aquaculture  and  IMTA (see  text  for  details).  They  provide  curative  ecological  roles

necessitated by human activities (waste-water treatments and seabed recolonisation). Ecology also

benefits from a knowledge of macroalgal reproductive mechanisms via a better understanding of

dispersion  and persistence  of  both natural  and exotic  populations.  This  also contributes  to  the

development of conservation protocols for threatened or susceptible populations. Because their  life

histories differ from land plants, macroalgae also inspire molecular evo-devo studies involving the

whole green lineage.
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Figure  2:  Importance  of  the  microscopic  early  developmental  stages  in  the  life  cycle  of

exploited seaweeds: Example of the kelp Saccharina latissima.

Production of kelp (large brown macroalga) sporophyte juveniles takes place in hatcheries under

controlled growth conditions. Cultures of microscopic male and female gametophytes are produced

from spores of macroscopic, mature plants collected from the sea. Gametophyte cultures are grown

to fertility under controlled temperature and light conditions (see Box 1 for details). Microscopic,

fertile,  recently  fertilised  gametophytes,  or  (in  turn)  juvenile  sporophytes  are  spread  onto

cultivation support materials (ropes or 2D substrates), which are subsequently deployed into the

sea.  Photos  kindly  provided  by  Teis  Boderskov  (Aarhus  University,  Denmark)  and  Eric

Tamigneaux (Merinov, Canada).

Figure 3: Scope of beneficial outflow from basic research to seaweed aquaculture. 

Sexual reproduction (top right) gives rise to polarised embryos (left), which progressively grow

and differentiate, giving tissues and organs with specific shape and cellular functions (e.g. blade,

stipe,  holdfast,  reproductive  organs).  The  study  of  the  different  steps  of  the  life  cycle  (here

simplified, with adult representing either the sporophyte or the gametophyte) at the basic level (in

blue) can lead to the control and improvement of key processes in seaweed aquaculture (in green). 

In  hatcheries,  density  of  juveniles  on  the  cultivation  support  material  depends  on  both  the

fertilisation rate and the adhesive potential of the embryos. Fertilisation rate itself depends on the

physical interactions between the two gametes (taxis, specific recognition and membrane fusion).

Better knowledge of the cell cycle and characterisation of the pluripotent cells (zygotes, meristems)

will both contribute to develop cryopreservation protocols. Metabolic patterning of seaweed organs

and  tissues,  mediated  by  molecular,  biochemical  or  cellular  markers,  will  assist  farmers  in
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monitoring seaweed growth and fitness both in hatcheries and in the field. All these processes are

under the control of abiotic and biotic factors (see text and Box 1 for references).
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Box 1: Life cycle stages in seaweeds and possible manipulations  
 

Seaweed life cycles comprise several (usually 4) multicellular phases, including vegetative and fertile 
sporophytes and vegetative and fertile gametophytes (grey boxes). On the left, grey arrows indicate the 
different natural alternatives that seaweeds can use to reproduce (either sexually or asexually). On the 
right, brown, red and green horizontal lines represent the 3 groups of seaweeds. Transition between two 
successive phases, and bypassing or maintenance of one phase (either by delaying the maturation of the 

organism or by asexual looping) are ways to exert a tight control on the life cycle. Straight arrows indicate 

controls over a given phase of the life cycle (maintenance, induction or inhibition). Dashed arrows indicate 
asexual looping. A few specific examples are represented by the numbers that follow. [1] vertical arrow: 

maintaining vegetative growth of the brown seaweed Saccharina latissima gametophytes under red light or 
by sub-culturing (grinding) filaments; horizontal arrow: induction of gametophyte fertility under blue light 

(Luning & Dring, 1975). [2] sporulation maintenance by removal of the basal meristem of S. latissima (Pang 
& Lüning, 2004). [3] maintenance of the vegetative stage of the sporophyte: in Porphyra conchocelis by 

temperature, photoperiod and irradiance (He & Yarish, 2006); of the reproductive stage of the sporophyte: 
in Palmaria tetrasporophytes by short daylength (Pang & Lüning, 2006). [4] control of the shift to the 

reproductive phase of the vegetatively propagated Gracilariopsis gametophyte by temperature optimisation 
(Zhou et al., 2013). [5] identification of sporulation-inhibiting factors (Glycoprotein SP-1 and low molecular 
weight factor SP-2) from Ulva gametophytes and sporophytes (Wichard & Oertel, 2010; Vesty et al., 2015). 
[6] parthenogenesis in brown algae (Nakahara, 1984) and red algae (Undaria female spore seeding; Shan et 
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al., 2013). [7] production of gametophytes from gametes of the Ectocarpus siliculosus mutant ouroboros 
(Coelho et al., 2011). [8] production of Ulva gametophytes from the germination of its own gametes when 

separated from another mating type (Wichard & Oertel, 2010). [9] germination of parthenosporophytes 
(instead of gametophytes in this strain) from Ectocarpus zoospores by an inhibiting factor produced by the 

parthenosporophyte (Arun et al., 2013).  
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Figure 1: Position of macroalgae in the scientific and societal landscapes.  
 

Macroalgae grow rapidly in a wide range of temperatures, using only sunlight, atmospheric carbon and 

naturally nutritious coastal waters. They are therefore valuable feedstock for the production of food, feed, 
biofuel, hydrocolloids, fertilisers, cosmetics, probiotics, biodegradable packaging through aquaculture and 
IMTA (see text for details). They provide curative ecological roles necessitated by human activities (waste-

water treatments and seabed recolonisation). Ecology also benefits from a knowledge of macroalgal 
reproductive mechanisms via a better understanding of dispersion and persistence of both natural and exotic 
populations. This also contributes to the development of conservation protocols for threatened or susceptible 
populations. Because their  life histories differ from land plants, macroalgae also inspire molecular evo-devo 

studies involving the whole green lineage.  
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Figure 2: Importance of the microscopic early developmental stages in the life cycle of exploited seaweeds: 
Example of the kelp Saccharina latissima.  

 
Production of kelp (large brown macroalga) sporophyte juveniles takes place in hatcheries under controlled 
growth conditions. Cultures of microscopic male and female gametophytes are produced from spores of 
macroscopic, mature plants collected from the sea. Gametophyte cultures are grown to fertility under 

controlled temperature and light conditions (see Box 1 for details). Microscopic, fertile, recently fertilised 
gametophytes, or (in turn) juvenile sporophytes are spread onto cultivation support materials (ropes or 2D 

substrates), which are subsequently deployed into the sea. Photos kindly provided by Teis Boderskov 
(Aarhus University, Denmark) and Eric Tamigneaux (Merinov, Canada).  
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Figure 3: Scope of beneficial outflow from basic research to seaweed aquaculture.  
 

Sexual reproduction (top right) gives rise to polarised embryos (left), which progressively grow and 
differentiate, giving tissues and organs with specific shape and cellular functions (e.g. blade, stipe, holdfast, 

reproductive organs). The study of the different steps of the life cycle (here simplified, with adult 
representing either the sporophyte or the gametophyte) at the basic level (in blue) can lead to the control 

and improvement of key processes in seaweed aquaculture (in green).  
In hatcheries, density of juveniles on the cultivation support material depends on both the fertilisation rate 

and the adhesive potential of the embryos. Fertilisation rate itself depends on the physical interactions 
between the two gametes (taxis, specific recognition and membrane fusion). Better knowledge of the cell 

cycle and characterisation of the pluripotent cells (zygotes, meristems) will both contribute to develop 
cryopreservation protocols. Metabolic patterning of seaweed organs and tissues, mediated by molecular, 

biochemical or cellular markers, will assist farmers in monitoring seaweed growth and fitness both in 
hatcheries and in the field. All these processes are under the control of abiotic and biotic factors (see text 

and Box 1 for references).  
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