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ON A FUNCTIONAL CONTRACTION METHOD

By Ralph Neininger and Henning Sulzbach

Goethe University Frankfurt

Methods for proving functional limit laws are developed for se-
quences of stochastic processes which allow a recursive distributional
decomposition either in time or space. Our approach is an extension
of the so-called contraction method to the space C[0,1] of continu-
ous functions endowed with uniform topology and the space D[0,1]
of càdlàg functions with the Skorokhod topology. The contraction
method originated from the probabilistic analysis of algorithms and
random trees where characteristics satisfy natural distributional re-
currences. It is based on stochastic fixed-point equations, where prob-
ability metrics can be used to obtain contraction properties and allow
the application of Banach’s fixed-point theorem. We develop the use
of the Zolotarev metrics on the spaces C[0,1] and D[0,1] in this con-
text. Applications are given, in particular, a short proof of Donsker’s
functional limit theorem is derived and recurrences arising in the
probabilistic analysis of algorithms are discussed.

1. Introduction. The contraction method is an approach for proving con-
vergence in distribution for sequences of random variables which satisfy re-
currence relations in distribution. Such recurrence relations for a sequence
(Yn)n≥0 are often of the form

Yn
d
=

K∑

r=1

Ar(n)Y
(r)

I
(n)
r

+ b(n), n≥ n0,(1)

where
d
= denotes that the left-hand side and right-hand side are identi-

cally distributed, and (Y
(r)
j )j≥0 have the same distribution as (Yn)n≥0 for

all r = 1, . . . ,K, where K ≥ 1 and n0 ≥ 0 are fixed integers. Moreover,

I(n) = (I
(n)
1 , . . . , I

(n)
K ) is a vector of random integers in {0, . . . , n}. The basic

independence assumption that fixes the distribution of the right-hand side
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2 R. NEININGER AND H. SULZBACH

is that (Y
(1)
j )j≥0, . . . , (Y

(K)
j )j≥0 and (A1(n), . . . ,AK(n), b(n), I(n)) are inde-

pendent. Note, however, that dependencies between the coefficients Ar(n),

b(n) and the integers I
(n)
r are allowed.

Recurrences of the form (1) come up in diverse fields, for example, in the
study of random trees, the probabilistic analysis of recursive algorithms, in
branching processes, in the context of random fractals and in models from
stochastic geometry where a recursive decomposition can be found, as well
as in information and coding theory. For surveys of such occurrences, see
[21, 22, 29]. In some applications, one may need K to depend on n or the
case K =∞, where generalizations of the results for our case of fixed K can
be stated; cf. [22], Section 4.3, for such extensions in the finite-dimensional
case.

The sequence (Yn)n≥0 satisfying (1) often is a sequence of real random
variables with real coefficients Ar(n), b(n). However, the same recurrence
appears also for sequences of random vectors (Yn)n≥0 in Rd. Then the Ar(n)
are random linear maps from Rd to Rd and b(n) is a random vector in Rd. We
will also review below work that considered random sequences (Yn)n≥0 into
a separable Hilbert space satisfying (1) where Ar(n) become random linear
operators on the space and b(n) a random vector in the Hilbert space. In
the present work, we develop a limit theory for such sequences in separable
Banach spaces, where our main applications are first to the space C[0,1]
endowed with the uniform topology. Secondly, although not a Banach space,
we will also be able to cover the space D[0,1] equipped with the Skorokhod
topology. Hence, we consider sequences (Yn)n≥0 of stochastic processes with
state space R and time parameter t ∈ [0,1] with continuous, respectively,
cádlág paths and are interested in conditions that together with (1) allow
to deduce functional limit theorems for rescaled versions of (Yn)n≥0.

For functions f ∈ C[0,1] or f ∈D[0,1], we denote the uniform norm by

‖f‖∞ := sup
x∈[0,1]

|f(x)|.

For functions f, g ∈ D[0,1], the Skorokhod distance dsk(f, g) is used; see
Section 2.2.

The rescaling of the process (Yn)n≥0 can be done by centering and normal-
ization by the order of the standard deviation in case moments of sufficient
order are available. Subsequently, we assume that the scaling has already
been done and we denote the scaled process by (Xn)n≥0. Note that affine
scalings of the Yn implies that the sequence (Xn)n≥0 also does satisfy a
recurrence of type (1), where only the coefficients are changed:

Xn
d
=

K∑

r=1

A(n)
r X

(r)

I
(n)
r

+ b(n), n≥ n0(2)
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with conditions on identical distributions and independence similar to re-

currence (1). The coefficients A
(n)
r and b(n) in the modified recurrence (2)

are typically directly computable from the original coefficients Ar(n), b(n)
and the scaling used; see, for example, for the case of random vectors in Rd,
[22], equation (4). Subsequently, we consider equations of type (2) together
with assumptions on the moments of Xn which in applications have to be
obtained by an appropriate scaling.

For the asymptotic distributional analysis of sequences (Xn)n≥0 satisfy-
ing (2), the so-called contraction method has become a powerful tool. In the
seminal paper [26], Rösler introduced this methodology for deriving a limit
law for a special instant of this equation that arises in the analysis of the
complexity of the Quicksort algorithm. In the framework of the contraction

method, first one derives limits of the coefficients A
(n)
r , b(n),

A(n)
r →Ar, b(n) → b (n→∞)(3)

in an appropriate sense. If with n→∞, also the I
(n)
r become large and it

is plausible that the quantities Xn converge, say to a random variable X ;
then, by letting formally n→∞, equation (2) turns into

X
d
=

K∑

r=1

ArX
(r) + b(4)

with X(1), . . . ,X(K) distributed as X and X(1), . . . ,X(K), (A1, . . . ,Ak, b) in-
dependent. Hence, one can use the distributional fixed-point equation (4) to
characterize the limit distribution L(X). The idea from Rösler [26] to for-
malize such an approach and to derive at least weak convergence Xn →X
consists of first using the right-hand side of (4) to define a map as follows: if
Xn are B-valued random variables, denote by M(B) the space of all prob-
ability measures on B and

T :M(B)→M(B),(5)

T (µ) =L
(

K∑

r=1

ArZ
(r) + b

)
,(6)

where (A1, . . . ,AK , b),Z
(1), . . . ,Z(K) are independent and Z(1), . . . ,Z(K) have

distribution µ. Then a random variable X solves (4) if and only if its dis-
tribution L(X) is a fixed point of the map T . To obtain fixed points of T
appropriate subspaces of M(B) are endowed with a complete metric, such
that the restriction of T becomes a contraction. Then Banach’s fixed-point
theorem yields a (in the subspace) unique fixed point of T and one can as
well use the metric to also derive convergence of L(Xn) to L(X) in this
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metric. If the metric is also strong enough to imply weak convergence, one
has obtained the desired limit law Xn →X .

This approach has been established and applied to a couple of examples
in Rösler [26, 27] and Rachev and Rüschendorf [25]. In the latter paper also
the flexibility of the approach by using various probability metrics has been
demonstrated. Later on general convergence theorems have been derived
stating conditions under which convergence of the coefficients of the form (3)
together with a contraction property of the map (5) implies convergence in
distribution Xn →X . For random variables in R with the minimal ℓ2 metric,
see Rösler [28], and Neininger [20] for Rd with the same metric. For a more
widely applicable framework for random variables in Rd, see Neininger and
Rüschendorf [22], where in particular various problems with normal limit
laws could be solved which seem to be beyond the scope of the minimal ℓp
metric; see also [23]. An extension of these theorems to continuous time,
that is, to processes (Xt)t≥0 satisfying recurrences similar to (2) was given
in Janson and Neininger [17].

For the case of random variables in a separable Hilbert space leading
to functional limit laws, general limit theorems for recurrences (1) have
been developed in Drmota, Janson and Neininger [12]. The main application
there was a functional limit law for the profile of random trees which, via a
certain encoding of the profile, led to random variables in the Bergman space
of square integrable analytic functions on a domain in the complex plane.
In Eickmeyer and Rüschendorf [13], general limit theorems for recurrences
in D[0,1] under the Lp-topology were developed. Note that the uniform
topology for C[0,1] and the Skorokhod topology for D[0,1] considered in
the present paper are finer than the Lp-topology. In C[0,1], the uniform
topology provides more continuous functionals such as the supremum f 7→
supt∈[0,1] f(t) or projections f 7→ f(s1, . . . , sk), for fixed s1, . . . , sk ∈ [0,1], to
which the continuous mapping theorem can be applied. In D[0,1], these
functionals are also appropriate for the continuous mapping theorem if the
limit random variable has continuous sample paths.

Besides the minimal ℓp metrics the probability metrics that have proved
useful in most of the papers mentioned above is the family of Zolotarev
metrics ζs being reviewed and further developed here in Section 2. All gen-
eralizations from R via Rd to separable Hilbert spaces are based on the fact
that convergence in ζs implies weak convergence; see Section 2. However,
for Banach spaces this is not true in general. Counterexamples have been
reported in Bentkus and Rachkauskas [4], sketched here in Section 2.1. Also
completeness of the ζs metrics on appropriate subspaces of M(B) is only
known for the case of separable Hilbert spaces; see [12], Theorem 5.1.

Our study of the spaces (C[0,1],‖ · ‖∞) and (D[0,1], dsk) is also based on
the Zolotarev metrics ζs. Hence, we mainly have to deal with implications
that can be drawn from convergence in the ζs metrics as well as with the
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lack of knowledge about completeness of ζs. In Section 2.3, implications of
convergence in the Zolotarev metric are discussed together with additional
conditions that enable to deduce in general weak convergence from conver-
gence in ζs. A key ingredient here is a technique developed in Barbour [2]
in the context of Stein’s method; see also Barbour and Janson [3]. We also
obtain criteria for the uniform integrability of {‖Xn‖s∞|n≥ 0} for 0≤ s≤ 3
in the presence of convergence in the Zolotarev metric. This enables in ap-
plications as well to obtain moments convergence of the sup-functional.

In Section 3, we give general convergence theorems in the framework of
the contraction method first for a general separable Banach space and then
apply and refine this to the space (C[0,1],‖ · ‖∞) and develop a technique
to also apply this to the metric space (D[0,1], dsk). In particular, based on
Janson and Kaijser [16], we give a criterion for the finiteness of the Zolotarev
metric on appropriate subspaces that can easily be checked in applications.

To compensate for the lack of knowledge about completeness of the ζs
metrics, we need to assume that the map T in (5) has a fixed point in an
appropriate subspace of M(C[0,1]) and M(D[0,1]), respectively. In applica-
tions, one may verify this existence of a fixed point either by guessing one
successfully: in the application of our framework to Donsker’s functional
limit theorem in Section 4.1, the Wiener measure can easily be guessed and
be seen to be the fixed point of the map T coming up there. Alternatively, in
general the existence of a fixed point may arise from infinite iteration of the
map T : applied to some probability measure, such an iteration has a series
representation for which one may be able to show that it is the desired fixed
point. This path is being taken in an application of our framework outlined
in Section 4.2.

In Section 4.1, we apply our functional contraction method to derive a
short proof of Donsker’s functional limit theorem. This does not require the
full generality of our setting but illustrates how self-similarities can easily
been exploited with this approach. The application in Section 4.2 is on the
asymptotic study of fundamental complexities in computer science. Here, the
full generality of our approach is needed to obtain a functional limit law.
We highlight and discuss the use of our conditions (C1)–(C5) formulated in
Section 3 on the recurrence (2) at this example. Details on the verification of
the conditions are contained in Broutin, Neininger and Sulzbach [6] where,
based on the functional limit law, also various long open standing problems
on the complexities in computer science are solved.

2. The Zolotarev metric. Let (B,‖ · ‖) be a real Banach space and B its
Borel σ-algebra. In Section 2.1, we assume that the norm on B induces a
separable topology. We denote by M(B) the set of all probability measures
on (B,B). First, we introduce the Zolotarev metric ζs and collect some of
its basic properties, mainly covered in [32, 33]. In the second subsection, we
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define our use of the Zolotarev metrics on the metric space (D[0,1], dsk).
Although not a Banach space, we will be able to declare the Zolotarev
metrics ζs on (D[0,1], dsk) using the notion of differentiability of functions
D[0,1] → R induced by the supremum norm on D[0,1]. We also comment
in Remarks 6 and 7 on delicate measurability issues for the nonseparable
Banach space (B,‖ · ‖) = (D[0,1],‖ · ‖∞) and the realm of our methodology
when working with the coarser (separable) topology on D[0,1] induced by
the Skorokhod metric. In the third subsection, conditions that allow to con-
clude from convergence in ζs to weak convergence are studied for the case
(B,‖ · ‖) = (C[0,1],‖ · ‖∞) as well as for the case (D[0,1], dsk). We also dis-
cuss further implications from ζs-convergence in these two spaces as well as
criteria for finiteness of ζs. Additional material to the content of this section
can be found in the second author’s dissertation [31], Chapter 2.

2.1. Definition and basic properties. For functions f :B→ R, which are
Fréchet differentiable, the derivative of f at a point x is denoted by Df(x).
Note that Df(x) is an element of the space L(B,R) of continuous linear
forms on B. We also consider higher order derivatives, where Dmf(x) de-
notes the mth derivative of f at a point x. Thus, Dmf(x) is a continuous
m-linear (or multilinear) form on B. The space of continuous multilinear
forms g :Bm →R is equipped with the norm

‖g‖= sup
‖h1‖≤1,...,‖hm‖≤1

|g(h1, . . . , hm)|.

For a comprehensive account on differentiability in Banach spaces, we refer
to Cartan [7]. Subsequently, s > 0 is fixed and form := ⌈s⌉−1 and α := s−m
we define

Fs = {f :B→R :‖Dmf(x)−Dmf(y)‖ ≤ ‖x− y‖α, ∀x, y ∈B}.(7)

For µ, ν ∈M(B), the Zolotarev distance between µ and ν is defined by

ζs(µ, ν) = sup
f∈Fs

|E[f(X)− f(Y )]|,(8)

whereX and Y areB-valued random variables with L(X) = µ and L(Y ) = ν.
Here, L(X) denotes the distribution of the random variable X . The expres-
sion in (8) does not need to be finite or even well defined. However, we have
ζs(µ, ν)<∞ if

∫
‖x‖s dµ(x),

∫
‖x‖s dν(x)<∞(9)

and ∫
f(x, . . . , x)dµ(x) =

∫
f(x, . . . , x)dν(x)(10)
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for any bounded k-linear form f on B and any 1 ≤ k ≤ m. For random
variables X , Y in B, we use the abbreviation ζs(X,Y ) := ζs(L(X),L(Y )).
Finiteness of ζs(X,Y ) in Rd fails to hold if X and Y do not have the same
mixed moments up to order m. The assumption on the finite absolute mo-
ment of order s can be relaxed slightly; see Theorem 4 in [34].

We denote

Ms(B) :=

{
µ ∈M(B)

∣∣∣
∫

‖x‖s dµ(x)<∞
}

and for all ν ∈Ms(B) denote

Ms(ν) := {µ ∈Ms(B)|µ and ν satisfy (10)}.

Then ζs is a metric on the space Ms(ν) for any ν ∈Ms(B); see [35], Re-
mark 1, page 198.

A crucial property of ζs in the context of recursive decompositions of
stochastic processes is the following lemma; see Theorem 3 in [34]. A short
proof is given for the reader’s convenience.

Lemma 1. Let B′ be a Banach space and g :B→ B′ a linear and con-
tinuous operator. Then we have

ζs(g(X), g(Y ))≤ ‖g‖sζs(X,Y ), L(X),L(Y ) ∈Ms(ν).

Here, ‖g‖ denotes the operator norm of g, that is, ‖g‖= supx∈B,‖x‖≤1 ‖g(x)‖.

Proof. Note that g is also bounded. It suffices to show that

{‖g‖−sf ◦ g :f ∈ F ′
s} ⊆ Fs,

where F ′
s is defined analogously to Fs in B′. Let f ∈ Fs and η := ‖g‖−sf ◦

g. Then η is m-times continuously differentiable and we have Dmη(x) =
‖g‖−s(Dm(f(g(x))) ◦ g⊗m for x ∈ B. Here, g⊗m :Bm → (B′)m denotes the
mapping g⊗m(h1, . . . , hm) = (g(h1), . . . , g(hm)). This implies

‖Dmη(x)−Dmη(y)‖= ‖g‖−s‖(Dmf(g(x))) ◦ g⊗m − (Dmf(g(y))) ◦ g⊗m‖
≤ ‖g‖−α‖g(x)− g(y)‖α

= ‖g‖−α‖g(x− y)‖α ≤ ‖x− y‖α.

The assertion follows. �

Another basic property is that ζs is (s,+) ideal.
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Lemma 2. The metric ζs is ideal of order s on Ms(ν) for any ν ∈
Ms(B), that is, we have

ζs(cX, cY ) = |c|sζs(X,Y ),

ζs(X +Z,Y +Z)≤ ζs(X,Y )

for any c ∈ R \ {0}, L(X),L(Y ) ∈ Ms(ν) and random variables Z in B,
such that (X,Y ) and Z are independent.

The lemma directly implies

ζs(X1 +X2, Y1 + Y2)≤ ζs(X1, Y1) + ζs(X2, Y2)(11)

for L(X1),L(Y1) ∈Ms(ν1) and L(X2),L(Y2) ∈Ms(ν2) with arbitrary ν1, ν2 ∈
Ms(B) such that (X1, Y1) and (X2, Y2) are independent.

We want to give a result similar to Lemma 1 where the linear operator
may also be random itself. We focus on the case that B′ either equals B
or R where an extension to Rd for d > 1 is straightforward. Let B∗ be the
topological dual of B and B̂ be the space of all continuous linear maps from
B to B. Endowed with the operator norms

‖f‖op = sup
x∈B,‖x‖≤1

|f(x)|, ‖f‖op = sup
x∈B,‖x‖≤1

‖f(x)‖,

both spaces, B∗ and B̂, respectively, are Banach spaces. However, these
spaces are typically nonseparable, hence not suitable for our purposes of
measurability. Therefore, we will equip them with smaller σ-algebras. Similar
to the use of weak-* convergence, let B∗ be the σ-algebra on B∗ that is
generated by all continuous (with respect to ‖ · ‖op) linear forms ϕ on B∗

(i.e., elements of the bidual B∗∗) of the form ϕ(a) = a(x) for some x ∈ B.
Note that the set of these continuous linear forms coincides with the bidual
B∗∗ if and only if B is reflexive, a property that is not satisfied in our
applications. We move on to B̂ and define B̂ to be the σ-algebra generated
by all continuous (with respect to ‖ · ‖op) linear maps ψ from B̂ to B of the
form ψ(a) = a(x) for some x ∈ B. By Pettis’ theorem, we have B = σ(ℓ ∈
B∗). Hence, if S ⊆ B∗ with B = σ(ℓ ∈ S), then B̂ is also generated by the

continuous linear forms ̺ on B̂ that can be written as ̺(a) = ℓ(a(x)) for
ℓ ∈ S and x ∈B.

Using the separability of B, it is now easy to see that the norm-functionals
B∗ → R, f 7→ ‖f‖op and B̂ → R, f 7→ ‖f‖op are B∗–B(R) measurable and

B̂–B(R) measurable, respectively.

Definition 3. By a random continuous linear form on B, we denote
any random variable with values in (B∗,B∗). Analogously, random continu-

ous linear operators on B are random variables with values in (B̂, B̂).
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Note that the definition of the σ-algebras B∗ and B̂ implies in particular
that for any a ∈B∗ or a ∈ B̂, x∈B, random continuous linear form or oper-
ator A and random variable X in B, we have that the compositions a(X),
A(x) and A(X) are again random variables. The latter property follows from
measurability of the map (a,x) 7→ a(x) with respect to (B∗ ⊗B)–B(R) and

(B̂ ⊗B)–B, respectively. In the case of the dual space, this follows as for any
r ∈R we have

{(a,x) ∈B∗ ×B :a(x)< r}

=
⋃

k≥1

⋃

m≥1

⋂

n≥m

⋃

i≥1

{a ∈B∗ :a(ei)< r− 1/k} × {x ∈B :‖x− ei‖< 1/n},

where {ei|i ≥ 1} denotes a countable dense subset of B; the case B̂ being
analogous.

The following lemma follows from Lemma 1 by conditioning.

Lemma 4. Let L(X),L(Y ) ∈ Ms(ν) for some ν ∈ Ms(B). Then, for
any random linear continuous form or operator A with E[‖A‖sop]<∞ inde-
pendent of X and Y , we have

ζs(A(X),A(Y ))≤E[‖A‖sop]ζs(X,Y ).

Zolotarev gave upper and lower bounds for ζs, most of them being valid
if more structure on B is assumed. Subsequently, only an upper bound in
terms of the minimal ℓp metric is needed. For p > 0 and µ, ν ∈Mp(B), the
minimal ℓp distance between µ and ν is defined by

ℓp(µ, ν) = infE[‖X − Y ‖p](1/p)∧1,

where the infimum is taken over all common distributions L(X,Y ) with
marginals L(X) = µ and L(Y ) = ν. We abbreviate ℓp(X,Y ) := ℓp(L(X),L(Y )).

The next lemma gives an upper bound of ζs in terms of ℓs where the first
statement follows from the Kantorovich–Rubinstein theorem and the second
essentially coincides with Lemma 5.7 in [12].

Lemma 5. Let L(X),L(Y ) ∈Ms(ν) for some ν ∈Ms(B) with B sepa-
rable. If s≤ 1 then

ζs(X,Y ) = ℓs(X,Y ).(12)

If s > 1 then

ζs(X,Y )≤ (E[‖X‖s]1−1/s +E[‖Y ‖s]1−1/s)ℓs(X,Y ).
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If Xn,X are real-valued random variables, n ≥ 1, then ζs(Xn,X) → 0
implies convergence of absolute moments of order up to s since there is a
constant Cs > 0 such that the function x 7→Cs|x|s is an element of Fs, hence
|E[|Xn|s − |X|s]| ≤C−1

s ζs(Xn,X).
We proceed with the fundamental question of how convergence in the

ζs distance relates to weak convergence on B. By the first statement of
the previous lemma, or more elementary, by the proof of the Portmanteau
lemma [5], Theorem 2.1(ii)–(iii), one obtains that for 0< s≤ 1 convergence
in the ζs metric implies weak convergence; see also [12], page 300.

If B is a separable Hilbert space, then for any s > 0 convergence in the
ζs metric implies weak convergence. This was first proved by Giné and
León in [15], see also Theorem 5.1 in [12]. In infinite-dimensional Banach
spaces convergence in the ζs metric does not need to imply weak conver-
gence: for any probability distribution µ on B = C[0,1] with zero mean and∫
‖x‖s∞ dµ(s)<∞ for some s > 2, that is pre-Gaussian, that is, there exists

a Gaussian measure ν on C[0,1] with zero mean and the same covariance
as µ, one has ζs-convergence of a rescaled sum of independent random vari-
ables with distribution µ toward ν; see inequality (48) in [32]. However,
pre-Gaussian probability distributions supported by a bounded subset of
C[0,1] that do not satisfy the central limit theorem can be found in [30]. For
the central limit theorem in Banach spaces, see [18]. Note that convergence
with respect to ζs implies convergence of the characteristic functions, hence
ζs(Xn,X)→ 0 implies that L(X) is the only possible accumulation point of
(L(Xn))n≥0 in the weak topology.

2.2. The Zolotarev metric on (D[0,1], dsk). In this section, we discuss
our use of the Zolotarev metric on the metric space (D[0,1], dsk) of càdlàg
functions on [0,1] endowed with the Skorokhod metric defined by

dsk(f, g)

= inf{ε > 0|max{|f(t)− g(τ(t))|, |τ(t)− t|}< ε for all t ∈ [0,1]

for some monotonically increasing and bijective τ : [0,1]→ [0,1]}.
The Borel σ-algebra of the induced topology is denoted by Bsk. For a gen-
eral introduction to this space, see Billingsley [5], Chapter 3. In particular,
(D[0,1], dsk) is a Polish space, Bsk coincides with the σ-algebra generated
by the finite-dimensional projections, the σ-algebra generated by the open
spheres (with respect to the uniform metric) and the σ-algebra generated
by all norm-continuous linear forms on D[0,1]; see [24], Theorem 3. Sub-
sequently, norm on D[0,1] will always refer to the uniform norm ‖ · ‖∞.
Moreover, the norm function D[0,1] → R, f 7→ ‖f‖∞ is Bsk–B(R) measur-
able. By Theorem 2, respectively, Theorem 4, in [24], any norm-continuous
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linear form on D[0,1] is Bsk–B(R) measurable and any norm-continuous lin-
ear map from D[0,1] to D[0,1] is Bsk–Bsk measurable. Recently, Janson and
Kaijser [16], Theorem 15.8, generalized the latter result and proved that
any norm-continuous k-linear form on D[0,1] is (Bsk)

⊗k–B(R) measurable.
We do, however, not know whether Fs defined in (7) based on the uniform
norm on D[0,1] is a subset of the Bsk–B(R) measurable functions. Hence,
we denote the Bsk–B(R) measurable functions by E and define the Zolotarev
metrics analogously to (8) by

ζs(µ, ν) = sup
f∈Fs∩E

|E[f(X)− f(Y )]|,

where X and Y are (D[0,1], dsk)-valued random variables with L(X) = µ
and L(Y ) = ν.

We denote by Ms(D[0,1]) the set of probability distributions µ on D[0,1]
with

∫
‖x‖s∞ dµ(x)<∞ and for ν ∈Ms(D[0,1]), we define Ms(ν) to be the

subset of measures µ from Ms(D[0,1]) satisfying (10). Then ζs is a metric on
Ms(ν) for all ν ∈Ms(D[0,1]), Lemmas 1 and 2, inequality (11), Lemma 5
where (12) is to be replaced by ζs(X,Y ) ≤ ℓs(X,Y ), and the implication
ζs(Xn,X)→ 0⇒Xn →X in distribution if 0< s≤ 1 remain valid.

The situation becomes more involved concerning random linear forms and
operators as defined in Definition 3 in the separable Banach case. Let D[0,1]∗

and D̂[0,1] be the dual space, respectively, the space of norm-continuous
endomorphisms on D[0,1] as in the Banach case. For reasons of measur-
ability, we need to restrict to smaller subspaces. Let D[0,1]∗c ⊆ D[0,1]∗ be
the subset of functions that are additionally continuous with respect to dsk.

Analogously, D̂[0,1]c ⊆ D̂[0,1] are those endomorphism which are continu-
ous regarded as maps from (D[0,1], dsk) to (D[0,1], dsk). We endow D[0,1]∗c
with the σ-algebra generated by the function f 7→ ‖f‖op and all elements ϕ
of D[0,1]∗∗ of the form ϕ(a) = a(x) for some x ∈D[0,1]. Also the σ-algebra

on D̂[0,1]c is generated by the function f 7→ ‖f‖op and the continuous linear

maps ψ : D̂[0,1]→D[0,1] of the form ϕ(a) = a(x) for some x ∈D[0,1]. Under
these conditions, we have the same measurability results as in the Banach
case and Lemma 4 remains valid.

Remark 6. Note that we could as well develop the use of the Zolotarev
metric together with the contraction method for the Banach space (D[0,1],‖·
‖∞). This can be done analogously to the discussion of Sections 2.3 and 3 and
in fact would lead to a proof of Donsker’s theorem similar to the one given
in Section 4.1.1 when replacing the linear interpolation Sn = (Sn

t )t∈[0,1] by a
constant (càdlàg) interpolation of the random walk. However, the applicabil-
ity of such a framework seems to be limited due to measurability problems
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in the nonseparable space (D[0,1],‖ · ‖∞): for example, the random function
X defined by

Xt = 1{t≥U}, t ∈ [0,1]

with U being uniformly distributed on the unit interval is known to be non-
measurable with respect to the Borel-σ-algebra on (D[0,1],‖ · ‖∞). However,
we have applications of the functional contraction method developed here
in mind on processes with jumps at random times. A typical example in
the context of random trees is given in Section 4.2; see also [6]. Hence, in
order to even have measurability of the processes considered it requires to
work with the coarser Skorokhod topology than the uniform topology and
this is our reason for using the Zolotarev metric on (D[0,1], dsk) instead of
(D[0,1],‖ · ‖∞).

Remark 7. Although the methodology developed below covers sequences
(Xn)n≥0 of processes with jumps at random times these times will typically
need to be the same for all n≥ n0. In particular, sequences of processes with
jumps at random times that require a (uniformly small) deformation of the
time scale to be aligned cannot be covered by this methodology. The techni-
cal reason is that in condition (C1) below (see Section 3) the convergence of

the random continuous endomorphisms ‖A(n)
r −Ar‖s is with respect to the

operator norm based on the uniform norm which in general does not allow
a deformation of the time scale.

2.3. Weak convergence on (C[0,1],‖ · ‖∞) and (D[0,1], dsk). In this sub-
section, we only consider the spaces (C[0,1],‖ · ‖∞) and (D[0,1], dsk).

For random variables X = (X(t))t∈[0,1], Y = (Y (t))t∈[0,1] in (C[0,1],‖ · ‖∞)
with ζs(X,Y )<∞ we have

ζs((X(t1), . . . ,X(tk)), (Y (t1), . . . , Y (tk)))≤ ks/2ζs(X,Y )(13)

for all 0≤ t1 ≤ · · · ≤ tk ≤ 1. This follows from Lemma 1 using the continu-
ous and linear function g :C[0,1]→Rk, g(f) = (f(t1), . . . , f(tk)) and observ-
ing that ‖g‖ =

√
k. The bound ζs((X(t1), . . . ,X(tk)), (Y (t1), . . . , Y (tk))) ≤

ζs(X,Y ) can be obtained if Rk is endowed with the max-norm instead of
the Euclidean norm. However, no use of this is made here. Hence, we obtain
for random variables Xn, X in (C[0,1],‖ · ‖∞), n≥ 1, the implication

ζs(Xn,X)→ 0 ⇒ Xn
f.d.d.−→ X.

Here,
f.d.d.−→ denotes weak convergence of all finite-dimensional marginals of

the processes. Additionally, if Z is a random variable in [0,1], independent
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of (Xn) and X , then applying Lemma 4 with the random continuous linear
form A defined by A(f) = f(Z) implies

ζs(Xn(Z),X(Z))≤E[Zs]ζs(Xn,X).(14)

In the càdlàg case, that is, X = (X(t))t∈[0,1], Y = (Y (t))t∈[0,1] being ran-
dom variables in (D[0,1], dsk) inequality (13) remains true by Lemma 1. (The
fact that g is not continuous with respect to the product Skorokhod topol-
ogy does not cause problems since measurability is sufficient here.) Next, in
general, the operator A is no element of D[0,1]∗c . Hence, we cannot apply
Lemma 4 to deduce (14). Nevertheless, by Theorem 2 in [34], the conver-
gence of the characteristic functions of Xn(t) is uniform in t, hence we also
have convergence in distribution of Xn(Z) to X(Z). The same argument
works for the moments of Xn(Z). We summarize these properties in the

following proposition, where
d−→ denotes convergence in distribution.

Proposition 8. For random variables Xn, X in (C[0,1],‖ · ‖∞) or
(D[0,1], dsk), n≥ 1, with ζs(Xn,X)→ 0 for n→∞ we have

Xn
f.d.d.−→ X.

L(X) is the only possible accumulation point of (L(Xn))n≥1 in the weak
topology. For all t ∈ [0,1] we have

Xn(t)
d−→X(t), E[|Xn(t)|s]→E[|X(t)|s].

For any random variable Z in [0,1] being independent of (Xn) and X, we
have

E[|Xn(Z)|s]→E[|X(Z)|s], Xn(Z)
d−→X(Z).

To conclude from convergence in the ζs metric to weak convergence on
(C[0,1],‖·‖∞) or (D[0,1], dsk), further assumptions are needed. Let, for r > 0,

Cr[0,1] := {f ∈ C[0,1]|∃0 = t1 < t2 < · · ·< tℓ = 1, ∀i= 1, . . . , ℓ :
(15)

|ti − ti−1| ≥ r, f |[ti−1,ti] is linear}

denote the set of all continuous functions for which there is a decomposition
of [0,1] into intervals of length at least r such that the function is piecewise
linear on those intervals. Analogously, we define

Dr[0,1] := {f ∈D[0,1]|∃0 = t1 < t2 < · · ·< tℓ = 1, ∀i= 1, . . . , ℓ :
(16)

|ti − ti−1| ≥ r, f |[ti−1,ti) is constant, continuous in 1}.
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Theorem 9. Let Xn be random variables in Crn [0,1], n≥ 0, and X a
random variable in C[0,1]. Assume that for 0 < s ≤ 3 with s = m + α as
in (7)

ζs(Xn,X) = o

(
log−m

(
1

rn

))
.(17)

Then Xn →X in distribution. The assertion remains valid if C[0,1],Crn [0,1]
are replaced by D[0,1], Drn [0,1] endowed with the Skorokhod topology and
X has continuous sample paths.

As discussed above, ζs convergence does not imply weak convergence in
the spaces C[0,1] and D[0,1] without any further assumption such as (17).
In the counterexample from [30], the sequence Sn/

√
n there converges to a

Gaussian limit with respect to ζs for 2< s≤ 3 where the rate of convergence
is upper bounded by the order n1−s/2; see [32] or [31]. Moreover, the sequence
is piecewise linear but the sequence rn can only be chosen of the order
(cn)−2n for some c > 0. Hence, (17) is not satisfied.

In applications such as our proof of Donsker’s functional limit law in
Section 4.1.1 or the application of the present methodology to a problem
from the probabilistic analysis of algorithms in [6], the rate of convergence
will typically be of polynomial order which is fairly sufficient.

We postpone the proof of the theorem to the end of this section and state
two variants, where the first one, Corollary 10, contains a slight relaxation
of the assumptions that is useful in applications such as in the analysis of
the complexity of partial match queries in quadtrees; see Section 4.2 or [6].
The second one will be needed in the case s > 2; see Section 4.1.

Corollary 10. Let Xn,X be C[0,1] valued random variables, n ≥ 0,
and 0 < s ≤ 3 with s = m + α as in (7). Suppose Xn = Yn + hn with Yn
being C[0,1] valued random variables and hn ∈ C[0,1], n≥ 0, such that ‖hn−
h‖∞ → 0 for a h ∈ C[0,1] and

P(Yn /∈ Crn [0,1])→ 0.(18)

If

ζs(Xn,X) = o

(
log−m

(
1

rn

))
,

then

Xn
d−→X.

The statement remains true if C[0,1] and Crn [0,1] are replaced by D[0,1] and
Drn [0,1] endowed with the Skorokhod topology, respectively, X has continu-
ous sample paths and h remains continuous.
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Corollary 11. Let Xn, Yn,X be C[0,1] valued random variables, n≥ 0,
and 0< s≤ 3 with s=m+α as in (7). Suppose Xn ∈ Crn [0,1] for all n and
Yn →X in distribution. If

ζs(Xn, Yn) = o

(
log−m

(
1

rn

))
,

then

Xn
d−→X.

The statement remains true if C[0,1] and Crn [0,1] are replaced by D[0,1]
and Drn [0,1] endowed with the Skorokhod topology, respectively, and X has
continuous sample paths.

In C[0,1] (or D[0,1], if the limit X has continuous paths), convergence
in distribution implies distributional convergence of the supremum norm
‖Xn‖∞ by the continuous mapping theorem. In applications, one is also
interested in convergence of moments of the supremum. For random variables
X in C[0,1] or D[0,1], we denote by

‖X‖s := (E[‖X‖s∞])(1/s)∧1

the Ls-norm of the supremum norm.

Theorem 12. Let Xn,X be C[0,1] valued random variables and 0 <
s ≤ 3 with ‖Xn‖s,‖X‖s <∞ for all n ≥ 0. Suppose one of the following
conditions is satisfied:

(1) Xn ∈ Crn [0,1] for all n and

ζs(Xn,X) = o

(
log−m

(
1

rn

))
.(19)

(2) Xn = Yn+ hn with Yn being C[0,1] valued random variables and hn ∈
C[0,1], n≥ 0, such that ‖hn − h‖∞ → 0 for a h ∈ C[0,1],

E[‖Xn‖s∞1{Yn /∈Crn [0,1]}
]→ 0(20)

and

ζs(Xn,X) = o

(
log−m

(
1

rn

))
.

(3) (Yn)n≥0 is a sequence of C[0,1] valued random variables with Yn ≤ Z
almost surely for a C[0,1] valued random variable Z with ‖Z‖s <∞, Xn ∈
Crn [0,1] for all n and

ζs(Xn, Yn) = o

(
log−m

(
1

rn

))
.
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Then {‖Xn‖s∞|n≥ 0} is uniformly integrable. All statements remain true if
C[0,1],Crn [0,1] are replaced by D[0,1],Drn [0,1] and h in item (2) remains
continuous.

It is of interest whether the metric space (Ms(ν), ζs) is complete. This is
true for 0< s≤ 1. Also, in the case that B is a separable Hilbert space, this
holds true; see Theorem 5.1 in [12]. Nevertheless, the problem remains open
in the general case, in particular in the cases C[0,1] and D[0,1] with s > 1.
We can only state the following proposition.

Proposition 13. Let B = (C[0,1],‖·‖∞) or B = (D[0,1], dsk), s > 0 and
ν ∈Ms(B). Furthermore, let (µn)n≥0 be a sequence of probability measures
from Ms(ν) which is a Cauchy sequence with respect to the ζs metric. Then
there exists a probability measure µ on R[0,1] such that, as n→∞,

µn
f.d.d.−→ µ.(21)

Proof. Let L(Xn) = µn for all n ≥ 0. According to (13), (Xn(t1), . . . ,
Xn(tk))n≥0 is a Cauchy sequence and hence it exists a random variable
Yt1,...,tk in Rk with

(Xn(t1), . . . ,Xn(tk))
d−→ Yt1,...,tk (n→∞).

The set of distributions of Yt1,...,tk for 0 ≤ t1 < · · · < tk ≤ 1 and k ∈ N is

consistent so there exists a process Y on the product space R[0,1] whose
distribution satisfies (21). �

Remark 14. If the distribution µ found in Proposition 13 has a version
with continuous paths then condition (10) for µn and µ is satisfied.

We now present proofs of the theorems and corollaries of the present
sections. Theorem 9 essentially follows directly from Theorem 2 in [2]; see
also [3]. Nevertheless, we present a version of the proof given there so that
we can deduce the variants and implications given in our other statements.
A basic tool are Theorems 2.2, 2.3 and 2.4 in Billingsley [5].

Lemma 15. Let (µn)n≥0, µ be probability measures on a separable metric
space (S,d). For r > 0, x ∈ S let Br(x) = {y ∈ S :d(x, y) < r}. If for any
x1, . . . , xk ∈ S,γ1, . . . , γk > 0 with µ(∂Bγi(xi)) = 0 for i= 1, . . . , k it holds

µn

(⋂

i∈I

Bγi(xi)

)
→ µ

(⋂

i∈I

Bγi(xi)

)
,(22)

where I = {1, . . . , k}, then µn → µ weakly.
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Let (S,d) = (D[0,1], dsk). Then the assertion remains true when the balls
Bγi(xi) are still defined with respect to the uniform distance and µ(C[0,1]) =
1.

Proof. The first part of the lemma is a special case of Theorem 2.4
in [5]. To prove the assertion in the càdlàg space, we apply Theorem 2.2
in [5] upon choosing AP there to be the set of finite intersection of sets
A where A is either a µ-continuous open sphere (in the uniform distance)
whose center lies in C[0,1] or a measurable set with positive uniform distance
from C[0,1]. Using (22) and the inclusion-exclusion formula, it is easy to see
that µn(C) → 0 for any measurable set C with positive uniform distance
from C[0,1], in particular µn(A)→ µ(A) for any A ∈AP . Moreover, we can
decompose any open set O ∈D[0,1] (in the Skorokhod topology) into O′ and
O \O′ with

O′ :=
⋃

x,δ

B‖·‖
x (δ),

where the union is over all x∈O ∩ C′ for a countable set C′ that is dense in
C[0,1] and δ ∈ Q+ such that B

‖·‖
x (δ) ⊆ O and B

‖·‖
x (δ) is µ-continuous. We

have O ∩ C[0,1] ⊆ O′ since any ball in the metric dsk with center in C[0,1]
contains a concentric ball in the uniform distance. Hence,

O \O′ =
⋃

δ∈Q+

{x ∈O \O′ :‖y− x‖> δ for all y ∈ C[0,1]}.

Thus, any open set O is a countable union of sets in AP which proves all
conditions of Theorem 2.2 in [5] to be satisfied and the claim follows. �

A main difficulty in deducing weak convergence from convergence in ζs
compared to the Hilbert space case is the nondifferentiability of the norm
function x 7→ ‖x‖∞; see [10], page 147. We will instead use the smoother
Lp-norm which approximates the supremum norm in the sense that

Lp(x)→‖x‖∞(23)

for any fixed x ∈ C[0,1] as p→∞.
For the remaining part of this section, p, for fixed values or tending to

infinity, is always to be understood as an even integer with p ≥ 4. We use
the Bachmann–Landau big-O notation.

Lemma 16. For x, y ∈ C[0,1] let

Lp(x) =

(∫ 1

0
[x(t)]p dt

)1/p

, ψp,y(x) =Lp((1 + [x− y]2)1/2).
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Then Lp is smooth on C[0,1] \ {0} where 0 is the zero-function and ψp,y is
smooth on C[0,1] for all y ∈ C[0,1]. Furthermore, for k ∈ {1,2,3}, we have

‖DkLp(x)‖=O(pk−1L1−k
p (x)),

uniformly for p and x∈ C[0,1] \ {0}. Moreover, again for k ∈ {1,2,3},
‖Dkψp,y(x)‖=O(pk−1)(24)

uniformly for p and x, y ∈ C[0,1]. All assertions remain valid when C[0,1] is
replaced by D[0,1], moreover both functions Lp and ψp,y are continuous with
respect to the Skorokhod metric for all p and y ∈D[0,1].

Proof. The smoothness properties are obvious. Differentiating Lp by
the chain rule yields

DLp(x)[h] =

(∫ 1

0
[x(t)]p dt

)1/p−1 ∫ 1

0
[x(t)]p−1h(t)dt.

For h ∈ C[0,1] with ‖h‖ ≤ 1 by Jensen’s inequality and Lp(h) ≤ ‖h‖, we
obtain that the right-hand side of the latter display is uniformly bounded
by 1. The bounds on the norms of the higher order derivatives follow along
the same lines. Using the same ideas, it is easy to see that

‖Dkψp,y(x)‖=O

(
k∑

j=1

pj−1L1−j
p (ωy(x))

)
,

uniformly in p and x, y ∈ C[0,1] where ωy(x) = (1+ |x−y|2)1/2. This gives (24).
�

Note that the convergence in (23) holds pointwise; it is easy to construct a
sequence of continuous functions (xp)p≥0 such that Lp(xp)→ 0 and ‖xp‖∞ →
∞ as p→ ∞. Additionally to the obvious bound Lp(x) ≤ ‖x‖∞, we will
need the following simple lemma which contains sort of a converse of this
inequality.

Lemma 17. Let λ denote the Lebesgue measure on the unit interval and
let γ > 0 and 0< ϑ< 1.

(a) For all f ∈Dr[0,1], we have

‖f‖∞ ≥ γ ⇒ λ({t : |f(t)| ≥ (1− ϑ)γ})≥ r.

Moreover, for any g ∈ C[0,1], there exists a δ = δ(g, γ,ϑ)> 0 such that

‖f − g‖∞ ≥ γ ⇒ λ({t : |f(t)− g(t)| ≥ (1− ϑ)γ})≥min(r, δ).
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(b) For all f ∈ Cr[0,1], we have

‖f‖∞ ≥ γ ⇒ λ({t : |f(t)| ≥ (1− ϑ)γ})≥ ϑ

2
r.

Moreover, for g ∈ C[0,1], there exists a δ = δ(g, γ,ϑ)> 0 with

‖f − g‖∞ ≥ γ ⇒ λ({t : |f(t)− g(t)| ≥ (1− ϑ)γ})≥ ϑ

4
min(r, δ).

Proof. Ad (a): The first assertion is trivial. The second one follows by

choosing δ > 0 small enough such that |g(x)− g(y)| ≤ ϑγ
2 for all |x− y|< δ.

Ad (b): For the first statement, assume ‖f‖∞ ≥ γ and let [e0, e1] be an
interval where f attains its maximum. A geometric argument shows that
the quantity λ({t ∈ [e0, e1] : |f(t)| ≥ (1− ϑ)γ}) is minimized when f(e0) = γ
and f(e1) =−(1−ϑ)γ. In this case, the quantity equals ϑr/(2(2−ϑ)) which
implies the assertion since 0<ϑ< 1. Finally, the last statement follows from
a combination of the latter argument and by choosing δ > 0 again such that
|g(x)− g(y)| ≤ ϑγ

2 for all |x− y|< δ. �

We start with the proofs of Theorem 9 and its corollaries in the continuous
case.

Proof of Theorem 9. For r > 0, x ∈ C[0,1] let Br(x) = {y ∈ C[0,1] :‖y−
x‖∞ < r}. According to Lemma 15, we need to verify that

P

(
Xn ∈

⋂

i∈I

Bγi(xi)

)
→P

(
X ∈

⋂

i∈I

Bγi(xi)

)
(25)

for I = {1, . . . , k} and x1, . . . , xk ∈ S,γ1, . . . , γk > 0 such that P(X ∈
(∂Bγi(xi))) = 0. The lack of uniformity in (23) leads us to find lower and
upper bounds on the desired quantity. We will establish

lim sup
n→∞

P

(
Xn ∈

⋂

i∈I

Bγi(xi)

)
≤P

(
X ∈

⋂

i∈I

Bγi(xi)

)
(26)

and

lim inf
n→∞

P

(
Xn ∈

⋂

i∈I

Bγi(xi)

)
≥P

(
X ∈

⋂

i∈I

Bγi(xi)

)
(27)

separated from each other. To this end, it is sufficient to construct functions
gi,n, g̃i,n :C[0,1]→ [0,1] satisfying

g̃i,n(x) ≤ 1Bγi
(xi)(x)≤ gi,n(x) for all x ∈ Crn [0,1],(28)

gi,n(x), g̃i,n(x)→ 1Bγi (xi)(x) for all x ∈ C[0,1] \ ∂Bγi(xi)(29)
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and such that an
∏

i∈I gi,n, ãn
∏

i∈I g̃i,n ∈Fs for appropriate constants an, ãn >
0 such that a−1

n ζs(Xn,X)→ 0 and ã−1
n ζs(Xn,X)→ 0 as n→∞. This is suf-

ficient since we then may conclude

P

(
Xn ∈

⋂

i∈I

Bγi(xi)

)
≤E

[∏

i∈I

gi,n(Xn)

]

(30)

≤E

[∏

i∈I

gi,n(X)

]
+ a−1

n ζs(Xn,X)

and

P

(
Xn ∈

⋂

i∈I

Bγi(xi)

)
≥E

[∏

i∈I

g̃i,n(Xn)

]

(31)

≥E

[∏

i∈I

g̃i,n(X)

]
− ã−1

n ζs(Xn,X).

While this is the basic idea subsequently, the construction is slightly more
involved.

We first give a motivation of how to construct the functions gi,n: according
to (29), asymptotically, the functions gi,n have to separate points x ∈ C[0,1]
which are in Bγi(xi) from those which are not. This is why we use the

Lp norm. Consider ψp,xi as introduced in Lemma 16. If x ∈ Bγi(xi), then

ψp,xi(x)≤ (1+ γ2i )
1/2 whereas if x /∈Bγi(xi) then lim infp→∞ψp,xi(x)> (1+

γ2i )
1/2.
Let ϕ :R→ [0,1] be a three times continuously differentiable function with

ϕ(u) = 1 for u≤ 0 and ϕ(u) = 0 for u≥ 1. For ̺ ∈ R and η > 0, we denote
ϕ̺,η :R

+ → [0,1] by ϕ̺,η(u) = ϕ((u− ̺)/η).
Let gi(x) = ϕ(1+γ2

i )
1/2,η(ψp,xi(x)). Let gi,n = gi with η = ηn ↓ 0 and p =

pn ↑∞. Then gi,n has the properties in (28) and (29).
We do not know how to construct functions g̃i,n with the properties (28)

and (29). Instead, we construct functions ḡi,n satisfying related conditions:
let 0< ϑ< 1 and x ∈ Crn [0,1]. By Lemma 17(b), we can find δ = δ(ϑ) (also
depending on x1, . . . , xk, γ1, . . . , γk which are kept fixed) with

{‖x− xi‖∞ ≥ γi}

⊆
{
λ({t : |x(t)− xi(t)| ≥ γi(1− ϑ)})≥ ϑ

4
min(rn, δ)

}

(32)

⊆
{
ψp,xi(x)≥ (1 + γ2i (1− ϑ)2)1/2

(
ϑ

4
min(rn, δ)

)1/p}

⊆ {ḡi,n(x) = 0}
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with ḡi,n(x) = ϕ(1+γ2
i (1−ϑ)2)1/2(ϑmin(rn,δ)/4)1/p−η,η(ψp,xi(x)). This gives (28).

ḡi,n does not fulfill (29), but we have

ḡi,n(x)→ 1Bγi(1−ϑ)(xi)(x)

for x ∈ C[0,1] \ ∂Bγi(1−ϑ)(xi) and p= pn ↑∞, η = ηn ↓ 0 such that r
1/pn
n → 1.

This gives for every 0< ϑ< 1 with P(X ∈ ∂Bγi(1−ϑ)(xi)) = 0 for all i ∈ I

lim
n→∞

E

[∏

i∈I

ḡi,n(X)

]
=P

(
X ∈

⋂

i∈I

Bγi(1−ϑ)(xi)

)
.

Assuming that ān
∏

i∈I ḡi,n ∈ Fs and letting n tend to infinity (31) rewrites
as

lim inf
n→∞

P

(
Xn ∈

⋂

i∈I

Bγi(xi)

)

(33)

≥P

(
X ∈

⋂

i∈I

Bγi(1−ϑ)(xi)

)
− lim sup

n→∞
ā−1
n ζs(Xn,X),

where ān may depend on ϑ and δ. Below, we will see that the error term on
the right-hand side of (33) vanishes as n→∞ uniformly in ϑ, δ. So, choosing
ϑ ↓ 0 such that P(X ∈ ∂Bγi(1−ϑ)(xi)) = 0 for all i ∈ I the assertion

lim inf
n→∞

P

(
Xn ∈

⋂

i∈I

Bγi(xi)

)
≥P

(
X ∈

⋂

i∈I

Bγi(xi)

)

follows.
It remains to show that the error terms vanish in the limit. By Lemma 16

g(x) = ϕ̺,η(ψp,y(x)) and using the mean value theorem, we obtain for m=
0,1,2

‖g(m)(x+ h)− g(m)(x)‖ ≤Cmp
mη−(m+1)‖h‖α∞

for p ≥ 4, η < 1 and some constants Cm > 0. It is easy to check that the
same is valid for products of functions of form g with different constants,
independent of the parameters. It follows that both error terms in (30) and

(33) are bounded by C ′
mp

m
n η

−(m+1)
n ζs(Xn,X) for all n, uniformly in ϑ, δ,

where C ′
m denotes a fixed constant for each m ∈ {0,1,2}. By (17), we can

choose pn ↑ ∞ and ηn ↓ 0 such that both r
1/pn
n → 1 and the error terms

vanish in the limit. �

Proof of Corollary 10. Again, according to Lemma 15, we only
have to verify (25), for which we modify the proof of Theorem 9: first note
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that the assumption of piecewise linearity of Xn and the convergence rate
for ζs(Xn,X) are not necessary for the upper bound

limsup
n→∞

P

(
Xn ∈

⋂

i∈I

Bγi(xi)

)
≤P

(
X ∈

⋂

i∈I

Bγi(xi)

)
.

For the lower bound let ε > 0 and note that

P

(
Xn ∈

⋂

i∈I

Bγi(xi)

)
≥P

(
Xn ∈

⋂

i∈I

Bγi(xi)∩ {Yn ∈ Crn [0,1]}
)
.

We modify the functions ḡi,n(x). Let 0< γKi < γi such that

P

(
X ∈

⋂

i∈I

BγKi
(xi)

)
≥P

(
X ∈

⋂

i∈I

Bγi(xi)

)
− ε

and P(X ∈ ∂BγKi
(xi)) = 0 for all i. Let 0< ϑ < 1 and n0 be large enough

such that ̺n = ‖hn−h‖∞ <mini(γKi(1−ϑ)∧γ−γKi) and P(Yn /∈ Crn [0,1])<
ε for all n ≥ n0. By Lemma 17(b), there exists δ = δ(ϑ) such that for
y ∈ Crn [0,1] with x= y+ hn and n≥ n0

{‖x− xi‖∞ ≥ γi}
⊆ {‖y + h− xi‖∞ ≥ γKi}

⊆
{
λ({t : |y(t) + h(t)− xi(t)| ≥ γKi(1− ϑ)})≥ ϑ

4
min(rn, δ)

}

⊆
{
λ({t : |x(t)− xi(t)| ≥ γKi(1− ϑ)− ̺n})≥

ϑ

4
min(rn, δ)

}

⊆
{
ψp,xi(x)≥ (1 + (γKi(1− ϑ)− ̺n)

2)1/2
(
ϑ

4
min(rn, δ)

)1/p}

⊆ {ḡi,n(x) = 0}
with ḡi,n(x) = ϕ(1+(γKi

(1−ϑ)−̺n)2)1/2(ϑmin(rn,δ)/4)1/p−η,η(ψp,xi(x)). Hence,

P

(
Xn ∈

⋂

i∈I

Bγi(xi)

)
≥E

[∏

i∈I

ḡi,n(Xn)1{Yn∈Crn [0,1]}

]
≥E

[∏

i∈I

ḡi,n(Xn)

]
− ε

for n≥ n0. The upper bound of the error term ā−1
n ζs(Xn,X) is a function of

p and η so it is uniform in ̺n, ϑ, δ. Following the same lines as in the proof
of Theorem 9 gives

lim inf
n→∞

P

(
Xn ∈

⋂

i∈I

Bγi(xi)

)
≥P

(
X ∈

⋂

i∈I

BγKi
(xi)

)
− ε

≥P

(
X ∈

⋂

i∈I

Bγi(xi)

)
− 2ε.
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Since ε > 0 was arbitrary, the result follows. �

Proof of Corollary 11. In the setting of the proof of Theorem 9,
(30) rewrites as

P

(
Xn ∈

⋂

i∈I

Bγi(xi)

)

≤E

[∏

i∈I

gi,n(Xn)

]
≤E

[∏

i∈I

gi,n(Yn)

]
+ a−1

n ζs(Xn, Yn)

=E

[∏

i∈I

gi,n(Yn)

]
−E

[∏

i∈I

gi,n(X)

]
+E

[∏

i∈I

gi,n(X)

]
+ a−1

n ζs(Xn, Yn).

We may choose Yn →X almost surely. On the event {X ∈Bγi(xi)}, we have
limn gi,n(Yn) = limn gi,n(X) = 1 and on {X /∈Bγi(xi)} we have limn gi,n(Yn) =
limn gi,n(X) = 0. Since P(X ∈ ∂Bγi(xi)) = 0, it follows

∏

i∈I

gi,n(Yn)−
∏

i∈I

gi,n(X)→ 0

for n→∞ almost surely and dominated convergence yields

lim sup
n→∞

P

(
Xn ∈

⋂

i∈I

Bγi(xi)

)
≤P

(
X ∈

⋂

i∈I

Bγi(xi)

)
,

just like in the proof of Theorem 9. The lower bound follows similarly. �

We now head over to the case of càdlàg functions. We only discuss the
approach in the proof of Theorem 9. Following exactly the same arguments
as in the continuous case and using the additional statements of Lem-
mas 16 and 17(a), it is easy to see that we also obtain (25) if the balls
Bγi(xi) are defined with the uniform metric in D[0,1]. Remember that we
still have xi ∈ C[0,1]. Thus, Lemma 15 yields the assertion.

The proof of Theorem 12 is close to the one of Lemma 5.3 in [12]. The
Lp approximation of the supremum norm complicates the argument slightly.
We only give all details in the continuous case.

Proof of Theorem 12. Suppose 0≤ s≤ 3 and that the first assump-
tion of Theorem 12 is satisfied. Let κ :R+

0 → R+
0 be a smooth, monotonic

function with κ(u) = 0 for u≤ 1
2 and κ(u) = us for u≥ 1. We may as well as-

sume that the interpolation for 1
2 ≤ u≤ 1 is done smoothly such that we have

κ(u)≤ us for 1
2 ≤ u≤ 1, thus κ(u)≤ us for all u ∈R+

0 . Let f, f
(p) :C[0,1]→R

be given by

f(x) = κ(‖x‖∞),

f (p)(x) = κ(Lp(x)).
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By Lemma 16, the restrictions of Lp and f (p) to C[0,1] \ {0} are smooth.

Furthermore, all derivatives of f (p) vanish for ‖x‖∞ < 1/2 which implies that
f (p) is smooth on C[0,1]. Again, by Lemma 16 it is easy to check that for
any k ∈ {1, . . . ,m+ 1},

‖Dkf (p)(x)‖=O(pk−1Ls−k
p (x)),

uniformly in p and x ∈ C[0,1]. Let x, y ∈ C[0,1] with Lp(x),Lp(y) ≤ 2‖x −
y‖∞. Then

‖Dmf (p)(x)−Dmf (p)(y)‖ ≤ ‖Dmf (p)(x)‖+ ‖Dmf (p)(y)‖
=O(pm−1‖x− y‖α∞).

Conversely let 2‖x− y‖∞ ≤ Lp(x) [the case 2‖x− y‖∞ ≤ Lp(y) being analo-
gous]. Then, by the mean value theorem, there exists z ∈ [x, y] := {λx+(1−
λ)y|λ ∈ [0,1]}, such that

‖Dmf (p)(x)−Dmf (p)(y)‖= ‖Dm+1f (p)(z)‖ · ‖x− y‖∞
=O(pmLα−1

p (x)) · ‖x− y‖∞
=O(pm‖x− y‖α∞).

Hence, there is a constant c > 0 such that cp−mf (p) ∈ Fs for all p ≥ 4. We
define, for r > 0,

fr(x) := crsf(x/r),

f (p)r (x) := crsf (p)(x/r).

Then p−mf
(p)
r ∈ Fs. Furthermore, fr(x) and f

(p)
r (x) are bounded by c‖x‖s

for all x ∈ C[0,1], uniformly in p. For any fixed x we have fr(x) → 0 and

supp≥4 f
(p)
r (x)→ 0 as r→∞. Hence, by E[‖X‖s]<∞ and dominated con-

vergence this implies

E

[
sup
p≥4

f (p)r (X)
]
→ 0 (r→∞).(34)

By the definition of ζs, we have

E[f (p)r (Xn)]≤E[f (p)r (X)] + pmζs(Xn,X).

By the definition of fr, for ‖x‖> r we have ‖x‖s = c−1fr(x). Hence,

E[‖Xn‖s∞1{‖Xn‖∞≥2r}]

= c−1
E[fr(Xn)1{‖Xn‖∞≥2r}]

≤ c−1
E[f (p)r (Xn)] + c−1(E[(fr(Xn)− f (p)r (Xn))1{‖Xn‖∞≥2r}])(35)

≤ c−1
E[f (p)r (X)] + c−1pmζs(Xn,X)

+ c−1(E[(fr(Xn)− f (p)r (Xn))1{‖Xn‖∞≥2r}]).
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Now, let ε > 0 be arbitrary. By (34), fix r > 0 such that E[f
(p)
r (X)] < ε for

all p ≥ 4. Additionally, by the given assumptions there exists a sequence
pn ↑∞ such that

log rn
pn

→ 0, pmn ζs(Xn,X)→ 0 (n→∞).

Therefore, let N0 be large enough such that pmn ζs(Xn,X) < ε for all n ≥
N0. It remains to bound the third summand in (35). Using Lemma 17(a),
piecewise linearity of Xn implies that for all 0<ϑ< 1,

Lp(Xn)≥ ‖Xn‖∞(1− ϑ)

(
ϑrn
2

)1/pn

.

In particular, we have Lp(Xn)≥ ‖Xn‖∞
2 for all n sufficiently large. For those

n and ‖Xn‖> 2r we also have f
(p)
r (Xn) = cLs

p(Xn). This yields

E[(fr(Xn)− f (p)r (Xn))1{‖Xn‖∞≥2r}]
(36)

= cE[(‖Xn‖s∞ −Ls
p(Xn))1{‖Xn‖∞≥2r}]

≤ c(1− 2−s)E[‖Xn‖s∞1{‖Xn‖∞≥2r}](37)

for all n sufficiently large. Increasing N0 if necessary, inserting (37) into (35)
and rearranging terms implies

E[‖Xn‖s∞1{‖Xn‖∞≥2r}]≤ 21+sc−1ε

for all n≥N0. Since ε was arbitrary, the assertion follows.
Now, suppose the second assumption is satisfied. Then we have to modify

the last part of the proof. In (36), we can decompose

Ls
p(Xn) =Ls

p(Xn)1{Yn∈Crn [0,1]}
+Ls

p(Xn)1{Yn /∈Crn [0,1]}
.

Using Ls
p(Xn)≤ ‖Xn‖s∞, the assumptions guarantee the expectation of the

second term to be small in the limit n→∞. For the first one, using similar
arguments as above, given {Yn ∈ Crn [0,1]}, we find

Lp(Xn)≥
‖Xn‖∞

2
− 2̺n

with ̺n = ‖hn − h‖∞ for all n sufficiently large. Proceeding as in the first
part, we obtain the result. Given the third assumption, it only remains to

bound E[f
(p)
r (Yn)] which appears instead of E[f

(p)
r (X)] by E[f

(p)
r (Z)] in (35).

�
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3. The contraction method. In this section, the contraction method is
developed first for a general separable Banach space B. Then the framework
is specialized to the cases (C[0,1],‖ · ‖∞) and (D[0,1], dsk). For this section,
B will always denote a separable Banach space or (D[0,1], dsk).

We recall the recursive equation (2). We have

Xn
d
=

K∑

r=1

A(n)
r X

(r)

I
(n)
r

+ b(n), n≥ n0,(38)

where A
(n)
1 , . . . ,A

(n)
K are random continuous linear operators, b(n) is a B-

valued random variable, (X
(1)
n )n≥0, . . . , (X

(K)
n )n≥0 are distributed like

(Xn)n≥0, and I
(n) = (I

(n)
1 , . . . , I

(n)
K ) is a vector of random integers in {0, . . . , n}.

Moreover, (A
(n)
1 , . . . ,A

(n)
K , b(n), I(n)), (X

(1)
n )n≥0, . . . , (X

(K)
n )n≥0 are indepen-

dent and n0 ∈N.
Recall that in order to be a random continuous linear operator, A has to

take values in the set of continuous endomorphisms on C[0,1], respectively,
the set of norm-continuous endomorphisms that are continuous with respect
to dsk on D[0,1] such that A(x)(t) is a real-valued random variable for all
x ∈ C[0,1], respectively, x ∈ D[0,1] and t ∈ [0,1]. In D[0,1], we additionally
have to guarantee ‖A‖op to be a real-valued random variable; see Section 2.2.

We make assumptions about the moments and the asymptotic behavior of

the coefficients A
(n)
1 , . . . ,A

(n)
K , b(n). For a random continuous linear operator

A, we write

‖A‖s :=E[‖A‖sop]1∧(1/s).
We consider the following conditions with an s > 0:

(C1) We have ‖X0‖s, . . . ,‖Xn0−1‖s, ‖A(n)
r ‖s,‖b(n)‖s < ∞ for all r =

1, . . . ,K and n ≥ 0 and there exist random continuous linear operators
A1, . . . ,AK on B and a B-valued random variable b such that, as n→∞,

γ(n) := ‖b(n) − b‖s +
K∑

r=1

(‖A(n)
r −Ar‖s + ‖1

{I
(n)
r ≤n0}

A(n)
r ‖s)→ 0(39)

and for all ℓ ∈N,

E[1
{I

(n)
r ∈{0,...,ℓ}∪{n}}

‖A(n)
r ‖sop]→ 0.(40)

(C2) We have

L :=

K∑

r=1

E[‖Ar‖sop]< 1.
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The limits of the coefficients determine the limiting operator T from (5):

T :M(B)→M(B),
(41)

µ 7→ L
(

K∑

r=1

ArZ
(r) + b

)
,

where (A1, . . . ,AK , b), Z
(1), . . . ,Z(K) are independent and Z(1), . . . ,Z(K) have

distribution µ.

(C3) The map T has a fixed point η ∈Ms(B), such that L(Xn) ∈Ms(η)
for all n≥ n0.

The existence of a fixed point is not in general implied by contraction prop-
erties of T with respect to a Zolotarev metric due to the lack of knowledge
of completeness of the metric on a the space B. However, we can argue that
there is at most one fixed point of T in Ms(η):

Lemma 18. Assume the sequence (Xn)n≥0 satisfies (38). Under condi-
tions (C1)–(C3), we have T (Ms(η))⊆Ms(η) and

ζs(T (µ), T (λ))≤ Lζs(µ,λ) for all µ,λ∈Ms(η).

In particular, the restriction of T to Ms(η) is a contraction and has the
unique fixed-point η.

Proof. Let µ ∈Ms(η). Recall that we have s=m+α with m ∈N0 and
α ∈ (0,1]. We introduce an accompanying sequence

Qn :=

K∑

r=1

A(n)
r (1

{I
(n)
r <n0}

X
(r)

I
(n)
r

+ 1
{I

(n)
r ≥n0}

Z(r)) + b(n), n≥ n0,(42)

where (A
(n)
1 , . . . ,A

(n)
K , b(n)), Z(1), . . . ,Z(K) are independent and Z(1), . . . ,Z(K)

have distribution µ.
We first show that L(Qn) ∈Ms(η) for all n≥ n0. Condition (C1), condi-

tioning on the coefficients and Minkowski’s inequality, implies E[‖Qn‖s∞]<
∞ for all n. For s≤ 1, we already obtain L(Qn) ∈Ms(η).

For s > 1, we choose arbitrary 1 ≤ k ≤m and multilinear and bounded
f :Bk →R. We have

E[f(Z, . . . ,Z)] =E[f(Xn, . . . ,Xn)]

=E

[
f

(
K∑

r=1

A(n)
r X

(r)

I
(n)
r

+ b(n), . . . ,
K∑

r=1

A(n)
r X

(r)

I
(n)
r

+ b(n)

)]
.
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To show L(Qn) ∈Ms(η), we need to verify that the latter display is equal
to E[f(Qn, . . . ,Qn)]. Since f is multilinear, both terms can be expanded as
a sum and it suffices to show that the corresponding summands are equal:

E[f(C
(n)
j1
, . . . ,C

(n)
jk

)] =E[f(D
(n)
j1
, . . . ,D

(n)
jk

)],(43)

where j1, . . . , jk ∈ {1, . . . ,K} and for each i ∈ {1, . . . , k} we either have

C
(n)
ji

=A
(n)
ji
X

(ji)

I
(n)
ji

and D
(n)
ji

=A
(n)
ji

(1
{I

(n)
ji

<n0}
X

(ji)

I
(n)
ji

+ 1
{I

(n)
ji

≥n0}
Z(ji))

(44)
or

C
(n)
ji

= b(n) and D
(n)
ji

= b(n).(45)

The equality in (43) is obvious for the case where we have (45) for all i=
1, . . . , k. For the other cases, we have (44) for at least 1≤ ℓ≤ k arguments of
f , say, for simplicity of presentation, for the first ℓ with 1≤ ℓ1 < · · ·< ℓd = ℓ
such that js = jℓi for all s = ℓi−1 + 1, . . . , ℓi, i = 1, . . . , d and jℓi pairwise
different for i= 1, . . . , d (by convention ℓ0 := 0). The claim in (43) reduces
to

E[f(C
(n)
jℓ1
, . . . ,C

(n)
jℓ1
,C

(n)
jℓ2
, . . . ,C

(n)
jℓd
, b(n), . . . , b(n))]

(46)
=E[f(D

(n)
jℓ1
, . . . ,D

(n)
jℓ1
,D

(n)
jℓ2
, . . . ,D

(n)
jℓd
, b(n), . . . , b(n))].

We will prove that, for each p ∈ {1, . . . , d},

E[f(C
(n)
jℓ1
, . . . ,C

(n)
jℓp−1

,C
(n)
jℓp
, . . . ,C

(n)
jℓp
,D

(n)
jℓp+1

, . . . ,D
(n)
jℓd
, b(n), . . . , b(n))](47)

=E[f(C
(n)
jℓ1
, . . . ,C

(n)
jℓp−1

,D
(n)
jℓp
, . . . ,D

(n)
jℓp
,

(48)
D

(n)
jℓp+1

, . . . ,D
(n)
jℓd
, b(n), . . . , b(n))],

which in turn implies (46). Abbreviating Y
(r)
i = (1{i<n0}X

(r)
i + 1{i≥n0}Z

(r))

and denoting by Υ the joint distribution of (A
(n)
jℓ1
, . . . ,A

(n)
jℓd
, I

(n)
jℓ1
, . . . , I

(n)
jℓd
, b(n))

we have

E[f(C
(n)
jℓ1
, . . . ,C

(n)
jℓi−1

,C
(n)
jℓi
, . . . ,C

(n)
jℓi
,D

(n)
jℓi+1

, . . . ,D
(n)
jℓd
, b(n), . . . , b(n))]

=

∫
f(α1x1, . . . , αp−1xp−1, αpxp, . . . , αpxp,

αp+1xp+1, . . . , αdxd, b, . . . , b)

× dPXi1
(x1) · · ·dPXip

(xp)dPYip+1
(xp+1) · · ·dPYid

(xd)
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× dΥ(α1, . . . , αd, i1, . . . , id, b)

=

∫
E[g(Xip , . . . ,Xip)]dPXi1

· · ·dPXip−1
dPYip+1

· · ·dPYid
dΥ,

where, for all fixed α1, . . . , αd, i1, . . . , id, b, x1, . . . , xp−1, xp+1, . . . , xd, we use
the bounded and multilinear function g :Bℓp−ℓp−1 →R,

g(y1, . . . , yℓp−ℓp−1)

:= f(α1x1, . . . , αp−1xp−1, αpy1, . . . , αpyℓp−ℓp−1 ,

αp+1xp+1, . . . , αdxd, b, . . . , b).

Since L(Xm),L(Z) ∈Ms(η) for all m≥ n0 we can replace Xip by Yip . This
shows the equality (47), hence (43). Altogether, we obtain L(Qn) ∈Ms(η)
for all n≥ n0.

Now, we show T (µ) ∈Ms(η). Let W be a random variable with distri-
bution T (µ). By (C2), in particular, ‖Ar‖s <∞ for r = 1, . . . ,K, by (C1)
we have ‖b‖s <∞. Thus, as for Qn, from Minkowski’s inequality we obtain
E[‖W‖s∞]<∞, hence T (µ) ∈Ms(η) for s≤ 1. For the case s > 1, we con-
sider again arbitrary 1≤ k ≤m and multilinear and bounded f :Bk →R. It
suffices to show E[f(Qn, . . . ,Qn)] =E[f(W, . . . ,W )] for some n≥ n0. In fact,
we will show that limn→∞E[f(Qn, . . . ,Qn)] =E[f(W, . . . ,W )]. For this, we
expand

E[f(W, . . . ,W )] =E

[
f

(
K∑

r=1

ArZ
(r) + b, . . . ,

K∑

r=1

ArZ
(r) + b

)]

into summands corresponding to (43) and have to show that

lim
n→∞

E[f(D
(n)
j1
, . . . ,D

(n)
jk

)] =E[f(Ej1 , . . . ,Ejk)],(49)

where j1, . . . , jk ∈ {1, . . . ,K}. For each i ∈ {1, . . . , k}, we have in case (44)
that Eji = AjiZ

(ji), in case (45) that Eji = b. We obtain, introducing a
telescoping sum and using Hölder’s inequality,

|E[f(D
(n)
j1
, . . . ,D

(n)
jk

)]−E[f(Ej1 , . . . ,Ejk)]|

=

∣∣∣∣∣
k∑

q=1

E[f(Ej1 , . . . ,Ejq−1 ,D
(n)
jq
, . . . ,D

(n)
jk

)

− f(Ej1 , . . . ,Ejq ,D
(n)
jq+1

, . . . ,D
(n)
jk

)]

∣∣∣∣∣

≤
k∑

q=1

|E[f(Ej1 , . . . ,Ejq−1 ,D
(n)
jq

−Ejq ,D
(n)
jq+1

, . . . ,D
(n)
jk

)]|
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≤
k∑

q=1

‖f‖‖D(n)
jq

−Ejq‖k
q−1∏

v=1

‖Ejv‖k
k∏

v=q+1

‖D(n)
jv

‖k.

Note that the ‖Ejv‖k and ‖D(n)
jv

‖k are all uniformly bounded by indepen-

dence, (C1), and ‖X0‖s, . . . ,‖Xn0−1‖s, ‖Z‖s <∞. Hence, it suffices to show

that ‖D(n)
jv

− Ejv‖k → 0 for all jv . In case (45), this is ‖b(n) − b‖k → 0 by

condition (C1). In case (45), we have, abbreviating r = ji,

‖A(n)
r (1

{I
(n)
r <n0}

X
(r)

I
(n)
r

+ 1
{I

(n)
r ≥n0}

Z(r))−ArZ
(r)‖k

≤ ‖(A(n)
r −Ar)Z

(r)‖k + ‖A(n)
r (1

{I
(n)
r <n0}

(X
(r)

I
(n)
r

−Z(r)))‖k.

The first summand of the latter display tends to zero by independence,
‖Z‖s <∞ and condition (C1). The second summand tends to zero applying

Hölder’s inequality, condition (C1), which implies that ‖A(n)
r ‖s in uniformly

bounded, ‖X0‖s, . . . ,‖Xn0−1‖s,‖Z‖s <∞ and conditions (C1) and (C3). Al-
together we obtain T (µ) ∈Ms(η).

Let µ,λ ∈Ms(η). Conditioning on the coefficients, using Lemma 1 and
(11), it follows that

ζs(T (µ), T (λ))≤
(

K∑

r=1

E[‖Ar‖sop]
)
ζs(µ,λ).

Thus, by condition (C2), the restriction of T to Ms(η) is a contraction with
respect to ζs.

Assume, µ was a fixed point of T as well. Then the contraction property
implies

ζs(µ, η) = ζs(T (µ), T (η))≤Lζs(µ, η),

hence ζs(µ, η) = 0. Since the ζs-distance is a metric on Ms(η) it follows
µ= η. �

We now turn to the problem of convergence of the sequence (Xn)n≥0 to
the fixed-point η.

Aiming to proof Xn →X condition (C1) is natural in the context of con-
traction method. Condition (C2) is necessary if working with ζs metrics.
We will discuss this in detail for the cases C[0,1] and D[0,1] below. The
existence of a solution of the fixed-point equation in condition (C3) is re-
quired since we miss knowledge about completeness of the ζs metrics. If
µ ∈Ms(B), then (T n(µ))n≥0 is a Cauchy sequence with respect to ζs, the
proof being similar to the one of the previous lemma. Then, for B = C[0,1]
or B =D[0,1], by Proposition 13, all finite-dimensional marginals of T n(µ)

converge to the corresponding marginals of some measure ν on R[0,1], the
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natural candidate for a fixed-point of (41). In the application discussed in
Section 4.2, the solution of the fixed-point equation (69) is constructed via a
sequence (Zn)n≥0 of random variables that satisfy L(Zn) = T n(µ) and con-
verge uniformly almost surely (cf. [6] for details). The starting point is the
Dirac measure µ= δf with a specific function f ∈ C[0,1].

The following proposition uses the ideas developed so far to infer conver-
gence of Xn to X in the ζs distance. The proof extends a similar proof for
the case B =Rd; see [22], Theorem 4.1. We draw further implications from
this proof; see Corollary 21.

Proposition 19. Let (Xn)n≥0 satisfy recurrence (38) with conditions
(C1)–(C3). Then for the fixed-point η = L(X) of T in (41) we have, as
n→∞,

ζs(Xn,X)→ 0.

Proof. We use the accompanying sequence defined in (42). Throughout
the proof, let n≥ n0. Again since the ζs-distance is a metric, we have

ζs(Xn,X)≤ ζs(Xn,Qn) + ζs(Qn,X).(50)

First, we consider the second term. By (C1) and Minkowski’s inequality,
absolute moments of order s of the sequence (Qn)n≥n0 are bounded, hence
using Lemma 5 it suffices to show

ℓs(Qn,X)→ 0.

Using the same set of independent random variables X(1), . . . ,X(K) for Qn

and in the recurrence of X , we obtain

ℓs(Qn,X)≤
∥∥∥∥∥

K∑

r=1

(Ar − 1
{I

(n)
r ≥n0}

A(n)
r )X(r)

∥∥∥∥∥
s

+

∥∥∥∥∥
K∑

r=1

1
{I

(n)
r <n0}

A(n)
r X

(r)

I
(n)
r

∥∥∥∥∥
s

+ ‖b(n) − b‖s

≤
K∑

r=1

(‖Ar −A(n)
r ‖s + ‖1

{I
(n)
r <n0}

‖A(n)
r ‖op‖s)‖X‖s + ‖b(n) − b‖s

+

∥∥∥∥∥
K∑

r=1

1
{I

(n)
r <n0}

A(n)
r X

(r)

I
(n)
r

∥∥∥∥∥
s

.

By (C1) the first two summands tend to zero. Also, the third one converges
to zero using (C1) and

‖1
{I

(n)
r <n0}

‖A(n)
r ‖opX

(r)

I
(n)
r

‖s ≤ ‖1
{I

(n)
r <n0}

‖A(n)
r ‖op‖s

∥∥∥ sup
j<n0

‖Xj‖
∥∥∥
s
.
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Furthermore, conditioning on the coefficients and using that ζs is (s,+)
ideal and Lemma 1, it is easy to see that

ζs(Qn,Xn)≤ pnζs(Xn,X) +E

[
K∑

r=1

1
{n0≤I

(n)
r ≤n−1}

‖A(n)
r ‖sopζs(XI

(n)
r
,X)

]
(51)

≤ pnζs(Xn,X) +

(
K∑

r=1

E[‖A(n)
r ‖sop]

)
sup

n0≤i≤n−1
ζs(Xi,X),(52)

where

pn =E

[
K∑

r=1

1
{I

(n)
r =n}

‖A(n)
r ‖sop

]
→ 0, n→∞.

Combining (50) and (52) implies

ζs(Xn,X)≤ 1

1− pn

[
K∑

r=1

E[‖A(n)
r ‖sop] sup

n0≤i≤n−1
ζs(Xi,X) + o(1)

]
.

From this, it follows that ζs(Xn,X) is bounded. Let

η̄ := sup
n≥n0

ζs(Xn,X), η := limsup
n→∞

ζs(Xn,X)

and ε > 0 arbitrary. Then there exists ℓ > 0 with ζs(Xn,X) ≤ η + ε for all

n≥ ℓ. Using (50), (51) and splitting {n0 ≤ I
(n)
r ≤ n− 1} into {n0 ≤ I

(n)
r ≤ ℓ}

and {ℓ < I
(n)
r ≤ n− 1}, we obtain

ζs(Xn,X)≤ η̄

1− pn
E

[
K∑

r=1

1
{n0≤I

(n)
r ≤ℓ}

‖A(n)
r ‖sop

]

+
η+ ε

1− pn
E

[
K∑

r=1

‖A(n)
r ‖sop

]
+ o(1),

which, by (C1), finally implies

η ≤E

[
K∑

r=1

‖Ar‖sop

]
(η+ ε).

Since ε > 0 is arbitrary and by condition (C2), we obtain η = 0. �

Remark 20. As pointed out in [13] for a related convergence result, the
statements of Lemma 18 and Proposition 19 remain true if condition (C1)
is weakened by replacing

K∑

r=1

‖A(n)
r −Ar‖s → 0
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by

K∑

r=1

‖(A(n)
r −Ar)f‖s → 0, ‖A(n)

r ‖s →‖Ar‖s

for all f ∈ C[0,1] and uniform boundedness of ‖A(n)
r ‖s for all n≥ 0 and all

r = 1, . . . ,K. This follows from the given independence structure and the
dominated convergence theorem.

To be able to apply the results of the previous section to deduce weak
convergence from convergence in ζs for the special cases C[0,1] and D[0,1],
rates of convergence for ζs are required. We impose a further assumption on
the convergence rate of the coefficients to establish a rate of convergence for
the process that strengthens condition (C2). We use the Bachmann–Landau
big-O notation for sequences of numbers.

(C4) The sequence (γ(n))n≥n0 from condition (C1) satisfies γ(n) =
O(R(n)) as n→∞ for some positive sequence R(n) ↓ 0 such that

L∗ = limsup
n→∞

E

[
K∑

r=1

‖A(n)
r ‖sop

R(I
(n)
r )

R(n)

]
< 1.

Corollary 21. Let (Xn)n≥0 satisfy recurrence (38) with conditions
(C1), (C3) and (C4). Then for the fixed-point η = L(X) of T in (41) we
have, as n→∞,

ζs(Xn,X) =O(R(n)).

Proof. We consider the quantities introduced in the proof of Propo-
sition 19 again. By condition (C4), we have ζs(Qn,X) ≤ CR(n) for some
C > 0 and all n. Furthermore, we can choose γ > 0 and n1 > 0 such that

E

[
K∑

r=1

‖A(n)
r ‖sop

R(I
(n)
r )

R(n)

]
≤ 1− γ, pn ≤ γ

2

for n≥ n1. Obviously, for any n2 ≥ n1, we can choose K ≥ 2C/γ such that
d(n) := ζs(Xn,X)≤KR(n) for all n < n2. Using (51), this implies

d(n2)≤ pn2d(n2) +E

[
K∑

r=1

1
{I

(n2)
r ≤n2−1}

‖A(n2)
r ‖sopd(I(n2)

r )

]
+CR(n2)

hence

d(n2)≤
1

1− pn2

(
E

[
K∑

r=1

‖A(n2)
r ‖sopKR(I(n2)

r )

]
+CR(n2)

)
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=
1

1− pn2

(
KR(n2)E

[
K∑

r=1

‖A(n2)
r ‖sop

R(I
(n2)
r )

R(n2)

]
+CR(n2)

)

≤ 1

1− pn2

((1− γ)K +C)R(n2)≤KR(n2).

Inductively, d(n)≤KR(n) for all n. �

We now consider the special cases C[0,1] and D[0,1]. Related to Corol-
lary 10, we consider the following additional assumption, where the notation
Cr[0,1] defined in (15) is used.

(C5) Case (C[0,1],‖ · ‖∞): we have Xn = Yn + hn for all n ≥ 0, where
‖hn − h‖∞ → 0 with hn, h ∈ C[0,1], and there exists a positive sequence
(rn)n≥0 such that

P(Yn /∈ Crn [0,1])→ 0.

Case (D[0,1], dsk): we have Xn = Yn+hn for all n≥ 0, where ‖hn−h‖∞ →
0 with hn ∈ D[0,1], h ∈ C[0,1], and there exists a positive sequence (rn)n≥0

such that

P(Yn /∈Drn [0,1])→ 0.

We now state the main theorem of this section. It follows immediately
from Proposition 8, Corollary 10, Proposition 19 and Corollary 21.

Theorem 22. Let (Xn)n≥0 be a sequence of random variables in (C[0,1],
‖·‖∞) or (D[0,1], dsk) satisfying recurrence (38) with conditions (C1), (C2),
(C3) being satisfied. Then, for L(X) = η, we have for all t ∈ [0,1]

Xn(t)
d−→X(t), E[|Xn(t)|s]→E[|X(t)|s].(53)

If Z is distributed on [0,1] and independent of (Xn) and X then

Xn(Z)
d−→X(Z), E[|Xn(Z)|s]→E[|X(Z)|s].(54)

If moreover conditions (C4) and (C5) are satisfied, where R(n) in (C4) and
rn in (C5) can be chosen with

R(n) = o

(
1

logm(1/rn)

)
, n→∞,(55)

then we have convergence in distribution:

Xn
d−→X.
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Finally, we give sufficient criteria to verify condition (C3) for the cases
C[0,1] and D[0,1]. First, consider the general case where L(Y ) = ν is a prob-
ability distribution on a separable Banach space (B,‖·‖) with E[‖Y ‖s]<∞.
If B is a Hilbert space, it is easy to see (and already indicated in [32] for
m= 2) that for a probability measure L(X) = µ on B to be in Ms(ν) the
defining properties (9) and (10) are equivalent to E[‖X‖s]<∞ and

E[ϕ1(X) · · ·ϕk(X)] =E[ϕ1(Y ) · · ·ϕk(Y )]

for all 0 < k ≤ m and continuous linear forms ϕ1, . . . , ϕn on B. A gener-
alization of this equivalence to Banach spaces does not hold in general, a
counterexample is constructed in Janson and Kaijser [16]. However, with
deeper arguments from functional analysis, Janson and Kaijser [16] proved
that this equivalence does hold for separable Banach spaces having the ap-
proximation property, such as C[0,1]. The case D[0,1] is also treated in [16].
Combining (9), (10) and Theorems 1.3 and 16.13 in [16] implies the following
lemma.

Lemma 23. Let L(Y ) = L((Yt)t∈[0,1]) = ν and L(X) = L((Xt)t∈[0,1]) = µ
be probability measures on C[0,1]. For 0< s≤ 1 we have µ ∈Ms(ν) if

E[‖X‖s∞],E[‖Y ‖s∞]<∞.(56)

For 1< s≤ 2 we obtain µ ∈Ms(ν) if we have condition (56) and

E[Xt] =E[Yt] for all 0≤ t≤ 1.(57)

For 2< s≤ 3 we obtain µ ∈Ms(ν) if we have conditions (56), (57) and

Cov(Xt,Xu) = Cov(Yt, Yu) for all 0≤ t, u≤ 1.(58)

The assertions remain true if C[0,1] is replaced by D[0,1].

Remark 24. Interpreting E[X] as a Bochner integral in the contin-
uous case, condition (57) is equivalent to E[X] = E[Y ]. This is due to
the fact that E[X] is a continuous function with E[X](t) = E[X(t)] and
ϕ(E[X]) = E[ϕ(X)] for all continuous linear forms ϕ on C[0,1]. Also the
higher moments can be interpreted similarly as expectations of correspond-
ing tensor products; see [12] or, for an elaborate account [16].

Remark 25. Note that condition (58) typically cannot be achieved for
a sequence (Xn)n≥0 that arises as in (2) by an affine scaling from a sequence
(Yn)n≥0 as in (1). This fundamental problem for developing a functional
contraction method on the basis of the Zolotarev metrics ζs with 2< s≤ 3
was already mentioned in [12], Remark 6.2. We describe a way to circum-
vent this problem in our application to Donsker’s invariance principle by a
perturbation argument; see Section 4.1.
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4. Applications. As applications, we first give as a toy example a short
proof of Donsker’s invariance principle in Section 4.1. In Section 4.2, we dis-
cuss further examples from the probabilistic analysis of algorithms on partial
match queries which requires the full generality of our abstract setting. This
allows to settle various long standing open questions about asymptotics of
the complexity of such queries.

4.1. Donsker’s invariance principle. Let (Vn)n∈N be a sequence of inde-
pendent, identically distributed real valued random variables with E[V1] = 0,
Var(V1) = 1 (for simplicity) and E[|V1|2+ε]<∞ for some ε > 0. We consider
the properly scaled and linearized random walk Sn = (Sn

t )t∈[0,1], n≥ 1, de-
fined by

Sn
t =

1√
n

(
⌊nt⌋∑

k=1

Vk + (nt− ⌊nt⌋)V⌊nt⌋+1

)
, t ∈ [0,1].

With W = (Wt)t∈[0,1], a standard Brownian motion Donsker’s function limit
law states the following.

Theorem 26 (Donsker [11]). We have Sn d−→W as n→∞ in (C[0,1],
‖ · ‖∞).

4.1.1. A contraction proof. In this section, we apply the general method-
ology of Sections 2 and 3 to give a short proof of Theorem 26. For a recursive
decomposition of Sn and W , we define operators for β > 1,

ϕβ :C[0,1]→C[0,1], ϕβ(f)(t) = 1{t≤1/β}f(βt) + 1{t>1/β}f(1),

ψβ :C[0,1]→C[0,1], ψβ(f)(t) = 1{t≤1/β}f(0) + 1{t>1/β}f

(
βt− 1

β − 1

)
.

Note that both ϕβ and ψβ are linear, continuous and ‖ϕβ(f)‖∞ = ‖ψβ(f)‖∞ =
‖f‖∞ for all f ∈ C[0,1], hence we have ‖ϕβ‖op = ‖ψβ‖op = 1. By construc-
tion, we have

Sn d
=

√
⌈n/2⌉
n

ϕn/⌈n/2⌉(S
⌈n/2⌉)+

√
⌊n/2⌋
n

ψn/⌈n/2⌉(Ŝ
⌊n/2⌋), n≥ 2,(59)

where (S1, . . . , Sn) and (Ŝ1, . . . , Ŝn) are independent and Sj and Ŝj are iden-
tically distributed for all j ≥ 1. Therefore, (Sn)n≥1 satisfies recurrence (38)
choosing

K = 2, I
(n)
1 = ⌈n/2⌉, I

(n)
2 = ⌊n/2⌋, n0 = 2,

A
(n)
1 =

√
⌈n/2⌉
n

ϕn/⌈n/2⌉, A
(n)
2 =

√
⌊n/2⌋
n

ψn/⌈n/2⌉, b(n) = 0.
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In the following, let Ŵ = (Ŵt)t∈[0,1] be a standard Brownian motion, inde-
pendent of W . Properties of Brownian motion imply

W
d
=

√
1

β
ϕβ(W ) +

√
β − 1

β
ψβ(Ŵ )(60)

for any β > 1. Hence, the Wiener measure L(W ) is a fixed point of the
operator T in (41) with

K = 2, A1 =

√
1

β
ϕβ , A2 =

√
β − 1

β
ψβ , b= 0.(61)

For β = 2, the coefficients in (59) converge to the ones in (60), that is, as
n→∞,

√
⌈n/2⌉
n

→ 1√
2
,

√
⌊n/2⌋
n

→ 1√
2
,

but the coefficients A
(n)
1 ,A

(n)
2 only converge to A1,A2 in the operator norm

for n even. Nevertheless, from the point of view of the contraction method,
this suggests weak convergence of Sn to W .

Note that the operator T associated with the fixed-point equation (60),
that is, with the coefficients in (61), satisfies condition (C2) only with s >
2. In view of condition (C3) and Lemma 23, we need to match the mean
and covariance structure. We have E[Sn

t ] = 0 for all 0≤ t≤ 1 and a direct
computation yields

Cov(Sn
s , S

n
t ) =




s, for ⌊ns⌋< ⌊nt⌋,
1

n
(⌊ns⌋+ (ns− ⌊ns⌋)(nt− ⌊nt⌋)), for ⌊ns⌋= ⌊nt⌋.(62)

Hence, we do not have finite ζ2+ε-distance between Sn and W since they
do not share their covariance functions. To surmount this problem, we con-
sider a linearized version of the Brownian motion W . For fixed n ∈ N, we
divide the unit interval into pieces of length 1/n and interpolate W linearly
between the points 0,1/n,2/n, . . . , (n − 1)/n,1. The interpolated process
W n = (W n

t )t∈[0,1] is given by

W n
t :=W⌊nt⌋/n + (nt− ⌊nt⌋)(W(⌊nt⌋+1)/n −W⌊nt⌋/n), t ∈ [0,1].

We have E[W n
t ] = 0 and W n and Sn have the same covariance function (62)

for all n ∈N. Furthermore, W n has the same distributional recursive decom-
position (59) as Sn.

Note that the linearized Brownian motion does not differ much from the
original one:
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Lemma 27. We have ‖W n −W‖∞ → 0 as n→∞ almost surely.

Proof. This directly follows from the uniform continuity of W . For
ε > 0, there exists a random δ > 0 such that |W (t) −W (s)| < ε for any
s, t ∈ [0,1] with |t− s|< δ. The triangle inequality implies ‖W n−W‖∞ < 2ε
for any n > 1/δ. �

In view of Corollary 11, it suffices to prove that Sn andW n are close with
respect to ζ2+ε. The proof of this runs along the same lines as the one for
Proposition 19, respectively, Corollary 21; in fact, it is much shorter due to
the simple form of the recurrence:

Proposition 28. For any δ < ε/2 we have ζ2+ε(S
n,W n) =O(n−δ) as

n→∞.

Proof. We have

ζ2+ε(S
n,W n) = ζ2+ε

(√⌈n/2⌉
n

ϕn/⌈n/2⌉(S
⌈n/2⌉) +

√
⌊n/2⌋
n

ψn/⌈n/2⌉(S
⌊n/2⌋),

√
⌈n/2⌉
n

ϕn/⌈n/2⌉(W
⌈n/2⌉) +

√
⌊n/2⌋
n

ψn/⌈n/2⌉(W
⌊n/2⌋)

)

≤
(⌈n/2⌉

n

)1+ε/2

ζ2+ε(S
⌈n/2⌉,W ⌈n/2⌉)

+

(⌊n/2⌋
n

)1+ε/2

ζ2+ε(S
⌊n/2⌋,W ⌊n/2⌋).

We abbreviate

dn := ζ2+ε(S
n,W n), an :=

(⌈n/2⌉
n

)1+ε/2

, bn :=

(⌊n/2⌋
n

)1+ε/2

and note that we have an + bn ≤ 2−ε/2 + C ′/n for some constant C ′ > 0
and all n ∈ N. For arbitrary δ < ε/2, we prove the assertion by induction:
fix δ < δ′ < ε/2 and choose m0 ∈N such that ⌊n/2⌋−δ ≤ (n/2)−δ2ε/2−δ′ and
1+2ε/2C ′/n≤ 2δ

′−δ for all n≥m0. Furthermore, let C > 0 be large enough
such that dn ≤ Cn−δ for all 1 ≤ n ≤m0. Then, for n > m0, assuming the
claim to be verified for all smaller indices,

dn ≤ and⌈n/2⌉ + bnd⌊n/2⌋

≤ C(an(n/2)
−δ + bn(n/2)

−δ2ε/2−δ′)

≤ Cn−δ2δ2ε/2−δ′(an + bn)

≤ Cn−δ.
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The assertion follows. �

Now Donsker’s theorem (Theorem 26) follows from Proposition 28,
Lemma 27 and Corollary 11.

Note that our approach requires the assumption E[|V1|2+ε]<∞ for some
ε > 0, which in Donsker’s theorem can be weakened to E[V 2

1 ]<∞.
By Theorem 12, we directly obtain convergence of moments of the supre-

mum.

Corollary 29. Suppose E[|V1|2+α]<∞ with 0< α≤ 1. Then ‖Sn‖2+α
∞

is uniformly integrable. Thus, E[‖Sn‖κ∞] converges to E[‖W‖κ∞] for any 0<
κ≤ 2 + α.

Remark 30. Based on the recursion (59), it is easy to show that
E[‖Sn‖k∞] is bounded uniformly in n for integer valued k ≥ 3 if the in-
crement V1 has finite absolute moment of order k. In this case, we have
E[‖Sn‖κ∞]→E[‖W‖κ∞] for any real 0< κ< k.

4.1.2. Characterizing the Wiener measure by a fixed-point property. We
reconsider the map T corresponding to the fixed-point equation (60) for the
case β = 2:

T :M(C[0,1])→M(C[0,1]), T (µ) =L
(

1√
2
ϕ2(Z) +

1√
2
ψ2(Z)

)
,(63)

where Z, Z are independent with distribution L(Z) = L(Z) = µ. Our discus-
sion above implies that the Wiener measure L(W ) is the unique fixed point
of T restricted to M2+ε(L(W )) for any ε > 0. Note that M2+ε(L(W )) is the
space of the distributions of all continuous stochastic processes V = (Vt)t∈[0,1]
with E[‖V ‖2+ε

∞ ]<∞, E[Vt] = 0 and Cov(Vt, Vu) = t ∧ u for all 0 ≤ t, u≤ 1.
Note that one easily verifies that T (M2+ε(L(W )))⊂M2+ε(L(W )) and the
last part of the proof of Lemma 18 implies that T restricted to M2+ε(L(W ))
is Lipschitz-continuous with Lipschitz constant at most L= 2−ε/2 < 1, hence
L(W ) is the unique fixed point of T in M2+ε(L(W )).

We now show that a more general statement is true, the Wiener measure
is also, up to multiplicative scaling, the unique fixed point of T in the larger
space of probability measures L(V ) ∈M(C[0,1]) with V0 = 0. For a related
statement, see also Aldous [1], page 528. The subsequent proof is based on
the fact that the centered normal distributions are the only solutions of the
fixed-point equation

X
d
=
X +X√

2
,(64)

whereX,X are independent, identically distributed real-valued random vari-
ables; see Theorem 7.2.1 in [19].
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Theorem 31. Let X = (Xt)t∈[0,1] be a continuous process with X0 = 0.
Then L(X) is a fixed-point of (63) if and only if either X = 0 a.s. or there
exists a constant σ > 0, such that (σ−1Xt)t∈[0,1] is a standard Brownian
motion.

Proof. Let L(X) be a fixed point of (63) and X = (X t)t∈[0,1] be inde-
pendent of X with the same distribution. The fixed point property implies

X1
d
=
X1 +X1√

2
,

hence L(X1) =N (0, σ2) for some σ2 ≥ 0, where N (0, σ2) denotes the cen-
tered normal distribution with variance σ2. This implies

X1/2
d
=
X1√
2
,

hence L(X1/2) =N (0, σ2/2). Let D = {m2−n :m,n ∈N0,m≤ 2n} by the set

of dyadic numbers in [0,1]. By induction, we obtain L(Xt) =N (0, σ2t) for
all t ∈ D . For the distribution of the increments, we first obtain

X1 −X1/2
d
=
X1√
2
,

hence L(X1 − X1/2) = N (0, σ2/2). Again inductively, we obtain L(X1 −
Xt) =N (0, (1−t)σ2) for all t ∈D . Also by induction, it follows L(Xt−Xs) =
N (0, (t − s)σ2) for all s, t ∈ D with s < t. Finally, continuity of X implies
the same property for all s, t ∈ [0,1]. It remains to prove independence of
increments. Denoting by X(1),X(2), . . . independent distributional copies of
X , we obtain from iterating the fixed-point property

(Xt)t∈[0,1]

d
=

(
2−n/2

2n∑

m=1

1{(m−1)2−n<t≤m2−n}X
(m)
2nt−m+1 + 1{m2−n<t}X

(m)
1

)

t∈[0,1]

for all n ∈N. Hence, for any dyadic points 0≤ t1 < t2 < · · ·< tk ≤ 1, choosing
n large enough, each Xti+1 −Xti can be expressed as a function of a subset

of X(1), . . . ,X(2n) these subsets being pairwise disjoint for i = 0, . . . , n− 1.
Since, D is dense in [0,1], this shows that X has independent increments. For
σ = 0, we have X = 0 a.s., otherwise σ−1X is a standard Brownian motion.

The converse direction of the theorem is trivial. �

Remark 32. Note that we cannot cancel the assumption on continuity
of X without replacement, for example, the process

Yt =

{
Wt, t /∈D ,
0, t ∈D
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also solves (60) and is not a multiple of Brownian motion. However, it would
be sufficient to require càdlàg paths, so C[0,1] could be replaced by D[0,1]
in our statement.

Remark 33. Our decomposition of Brownian motion in (60) is in
time. However, equation (64) suggests to also investigate a decomposition
in space

(Xt)t∈[0,1]
d
=

(
Xt +X t√

2

)

t∈[0,1]

,(65)

where (Xt)t∈[0,1] and (Xt)t∈[0,1] are independent and identically distributed.
Again, equation (65) induces a map on M(C[0,1]) that is a contraction
in ζ2+ε on the subspace M2+ε(L(W )), so the Wiener measure is the only
solution in M2+ε(L(W )). In this case, we cannot remove the moment as-
sumption as in Theorem 31 since any centered, continuous Gaussian process
solves equation (65). Using (64), it is not hard to see that there are no
further solutions of (65).

4.2. Partial match queries in quad trees. In this section, we outline re-
currences coming up in the probabilistic analysis of the performance of data
structures and discuss in detail the use and verification of our conditions
(C1)–(C5) and Theorem 22. In this example, the full generality of our setup
is needed.

For preprocessing and supporting search queries in multidimensional data
various types of search trees are in use, most prominently quad trees and k-d
trees. Among various other fundamental search operations in multivariate
data so-called partial match queries are of particular importance. For a
partial match query, one specifies some of the components of the data and
asks to report all data in the given set that match the specified components
and are arbitrary in the remaining components. We will subsequently not
need to introduce these data structures and the partial match queries since
there is a geometric reformulation that is discussed and used below. For
details about the computer science background and precise definition of the
structures and queries, see [6].

Consider a sequence (Ui, Vi)i≥1 of independent and identically distributed
random vectors all with the uniform distribution on the unit square [0,1]2.
We iteratively construct a decomposition of [0,1]2 as follows. The first point
(U1, V1) decomposes the square into four rectangles by drawing the two lines
through (U1, V1) in [0,1]2 that are perpendicular to its sides. We call these
line segments the horizontal and vertical lines. The second point (U2, V2)
almost surely falls into the interior of one of the four rectangles. We re-
cursively draw the horizontal and vertical lines through (U2, V2) within the
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Fig. 1. The construction of a quad tree at times n = 1,2,3,4. The dashed line in the
right most square indicates the query line x1 = t.

rectangle. Hence, we then have a decomposition of the original square [0,1]2

into seven rectangles. Now we iterate this process. After n−1 steps, we have
3(n−1)+1 rectangles and the nth point is used to decompose the rectangle
it falls in into four new rectangle by the horizontal and vertical lines through
it; see Figure 1. We identify this decomposition of the unit square with all
the line segments drawn and call it the decomposition after n steps.

Now fix t ∈ [0,1] and denote the number of horizontal lines in the decom-
position after n steps that are cut by the vertical line x1 = t by Cn(t); see
Figures 1 and 2.

In the computer science setting, this is the measure for the complexity of a
partial match query in a random (point) quad tree where the first component
is specified as t, the second component is arbitrary and n data are inserted in
the uniform model; see [6]. We have C0(t) = 0 and C1(t) = 1 for all t ∈ [0,1].
We consider the process (Cn(t))t∈[0,1] as a process in (D[0,1], dsk).

For a recursive decomposition of this process, we denote the numbers of
points among the first n points which fall into each of the four rectangles

generated by the first point (U1, V1) =: (U,V ) by I(n) = (I
(n)
1 , I

(n)
2 , I

(n)
3 , I

(n)
4 ).

Hence, conditionally on (U,V ), the vector I(n) has the multinomial distribu-
tion M(n− 1;UV,U(1− V ), (1− U)V, (1− U)(1− V )), where a numbering
of the four quadrants is used. Moreover, conditionally on (U,V ) and I(n) we
have that each point set within a rectangle is a set of independent and identi-
cally distributed points each with the uniform distribution on the particular
rectangle and that the four point sets are also independent. Hence, for pro-

cesses (C
(r)
j (t))t∈[0,1] which are independent and independent of (U,V, I(n)),

and (C
(r)
j (t))t∈[0,1] distributed as (Cj(t))t∈[0,1] for r= 1, . . . ,4 and j ∈N0 we

obtain the recurrence

(Cn(t))t∈[0,1]
d
=

(
1 + 1{t<U}

[
C

(1)

I
(n)
1

(
t

U

)
+C

(2)

I
(n)
2

(
t

U

)]

(66)

+ 1{t≥U}

[
C

(3)

I
(n)
3

(
t−U

1−U

)
+C

(4)

I
(n)
4

(
t−U

1−U

)])

t∈[0,1]

.
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Fig. 2. Left column: A realization of the decomposition of the unit square for a quad tree
of size n= 10 and its process (Cn(t))t∈[0,1]. Right column: A realization of the decomposi-
tion of the unit square for a quad tree of size n= 300 and the process (Xn(t))t∈[0,1]. The

smooth curve indicates the function t 7→ (t(1− t))β/2.

The arguments t/U and (1 − t)/(1 − U) adjust that a vertical line x1 = t
within the whole square [0,1]2, after scaling, corresponds to the line x1 = t/U
in the left rectangles (if t < U ) and to the line x1 = (1− t)/(1− U) in the
right rectangles (if t≥ U ). Note that equation (66) has exactly the form (1),
where the indicators and rescalings in time in (66) give the random linear
maps Ar(n) for r= 1, . . . ,4, and we have b(n) = 1.

The first asymptotic analysis of this process was done by Flajolet et
al. [14], where the one-dimensional averaged complexity Cn(ξ) was consid-
ered with ξ uniformly distributed on [0,1] and independent of the sequence
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(Ui, Vi)i∈N. In [14], is shown that, as n→∞,

E[Cn(ξ)]∼ κnβ with κ=
Γ(2β +2)

2(Γ(β + 1))3
, β =

√
17− 3

2
,

where Γ denotes the gamma function; see also Chern and Hwang [8] for more
refined analysis of this expectation. Recently, Curien and Joseph [9] showed

E[Cn(t)]∼ χ(t(1− t))β/2nβ with χ=
κ

B((β/2) + 1, (β/2) + 1)
,(67)

where B(·, ·) denotes the beta function (Euler integral). The analysis beyond
expectations, in particular of variances and limit laws either for the process
(Cn(t))t∈[0,1] itself or its marginals or the averaged complexity Cn(ξ) or the
worst case complexity supt∈[0,1]Cn(t) remained open.

We now discuss how our general framework from Section 3 can be applied
to a proper normalization of (Cn(t))t∈[0,1] and highlight the use and verifi-
cation of conditions (C1)–(C5), which can be shown to hold with the choice
s= 2. The details are worked out in [6]. The resulting functional limit law
allows to settle the open questions raised in the previous paragraph.

Let us first use the normalization X0(t) := 0 and

Xn(t) :=
Cn(t)

χnβ
, n≥ 1, t ∈ [0,1](68)

and write Xn := (Xn(t))t∈[0,1]. See Figure 2 for a simulation of Xn. For Xn,
we obtain the recurrence

Xn
d
=

(
1

χnβ
+ 1{t<U}

[(
I
(n)
1

n

)β

X
(1)

I
(n)
1

(
t

U

)
+

(
I
(n)
2

n

)β

X
(2)

I
(n)
2

(
t

U

)]

+ 1{t≥U}

[(
I
(n)
3

n

)β

X
(3)

I
(n)
3

(
t−U

1−U

)
+

(
I
(n)
4

n

)β

X
(4)

I
(n)
4

(
t−U

1−U

)])

t∈[0,1]

with assumptions on independence and identical distributions as in (66).
This suggests that a limit process X = (X(t))t∈[0,1] satisfies

X
d
=

(
1{t<U}

[
(UV )βX(1)

(
t

U

)
+ (U(1− V ))βX(2)

(
t

U

)]

+ 1{t≥U}

[
((1−U)V )βX(3)

(
t−U

1−U

)
(69)

+ ((1−U)(1− V ))βX(4)

(
t−U

1−U

)])

t∈[0,1]

,

where U and V are independent [0,1]-uniform random variables and
(X(r)(t))t∈[0,1], for r = 1, . . . ,4, are independent copies of the process X , also
independent of (U,V ). Note that (69) is a fixed-point equation of type (4).
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This heuristic derivation of equation (69) can be turned into a rigorous

approach as follows. First, note that the operators A
(n)
1 and A1 on D[0,1]

are given as follows: for f ∈D[0,1], the random functions A
(n)
1 (f) and A1(f)

are

t 7→ 1{t<U}

(
I
(n)
1

n

)β

f

(
t

U

)
and t 7→ 1{t<U}(UV )βf

(
t

U

)
(70)

and direct integration shows that condition (C2) is satisfied for the choice
s= 2.

For condition (C3) first an appropriate process X = (X(t))t∈[0,1] which
solves (69) has to be constructed. Since we do not know the completeness
of ζ2 on an appropriate subspace of M2(D[0,1]) and also are not able to
guess X as a well-known process (as in the example in Section 4.1.1) such a
process X has to be constructed individually. In view of (67), the normal-
ization (68), the choice s= 2 and Lemma 23 we additionally need to have
E[‖X‖2∞] <∞ and E[X(t)] = (t(1 − t))β/2 for t ∈ [0,1]. In [6], a sequence
of random continuous functions is constructed from a discrete recurrence
approximating (69) which converges uniformly. The construction uses con-
centration inequalities and tail bounds for the saturation level of random
quad trees. Its limit X is the stochastic process as needed. Moreover, it can
also be shown that it has continuous paths almost surely.

Our normalization does not imply that L(Xn) ∈M2(L(X)) for all n ≥
1, since the normalization in (68) does violate condition (57). Thus, the
processes Xn cannot be compared withX using the ζ2 distance. To overcome
this technical issue, one can instead consider the normalization

Cn(t)−E[Cn(t)]

χnβ
, t ∈ [0,1], n≥ 1(71)

and the shifted limit (X(t)− (t(1− t))β/2)t∈[0,1]. Then condition (C3) is sat-
isfied. This also shows the necessity to allow the perturbation hn in Corol-
lary 10 and condition (C5) in our general setup. The centering of the se-
quence Xn and the solution X only affects the additive term b(n) and the
toll term b. In particular, condition (C2) remains valid in the centered setting

and we have ‖A(n)
1 −A1‖s → 0 for any s > 0. Similarly, ‖A(n)

r −Ar‖s → 0 for

r = 2,3,4. Convergence of the additive term b(n) is equivalent to uniformity
of the expansion in (67). This is shown in [6]. It is also easily seen that (40)
holds, hence condition (C1) is true.

For condition (C4), an appropriated rate of convergence of the coefficients
in (39) is needed. Note that such a rate can only be derived if a rate in the
asymptotic expansion of the means in (67) is available. Hence, as a technical
step in [6] a polynomial additive error term of the order O(nβ−ε) for some
ε > 0 is shown to hold valid uniformly in t ∈ [0,1]. This implies that the
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convergence rates γ(n) in (39) satisfy γ(n) =O(n−ε) as n→∞. Hence, for
the sequence (R(n))n≥1 in condition (C4) we can choose R(n) = n−ε′ with
0< ε′ ≤ ε sufficiently small such that we obtain L∗ < 1 in (C4).

Finally, note that the jumps of your piecewise constant processesXn occur
at the random times U1, . . . ,Un so that interval lengths between consecutive
jumps may become arbitrarily small. Condition (C5) allows to cover such
instances of processes if the probability for close jumps can be controlled. In
our example, it is easy to see that the smallest interval between jumps is of
length at least n−3 with probability of order O(1/n). Hence, condition (C5)
is satisfied with the choice rn = n−3 there. Moreover, the sequences (rn)n∈N
and (R(n))n∈N are chosen such that condition (55) is fulfilled. Hence, our
main result Theorem 22 applies and we first obtain distributional conver-
gence of the centered normalized sequence in (71) which also implies

Xn
d−→X

in (D[0,1], dsk). Here, we may also apply Theorem 12 to infer convergence
of moments of ‖Xn‖ toward the moments of ‖X‖.

The use of some other search trees to support partial match queries leads
to distributional recurrences related to (66), for example, the 2-d-trees. For
the application of our framework in this case, see [6].
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