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Highlights 

 New proposal for hybrid estimator based on combination of extended Kalman filtering and 
zero-order Takagi-Sugeno inference system 

 Comparison of the performance of the new estimator with classical estimators 

 Application of the proposal to mobile positioning in wireless network 

 Evaluation of the proposal using both simulation and real-time environmental settings. 
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Abstract—The problem of accurate mobile positioning in cellular network is very challenging and still subject to intensive research, especially 

given the uncertainty pervading the signal strength measurements. This paper advocates the use of fuzzy based reasoning in conjunction with 

Kalman filtering like approach in order to enhance the localization accuracy. The methodology uses TEMS Investigation software to retrieve 

network information including signal strength and cell-identities of various base transmitter stations (BTS). The distances from the mobile 

station (MS) to each BTS are therefore generated using Walfish-Ikigami radio propagation model. The performances of the established hybrid 

estimator –fuzzy extended Kalman filter (FEKF)- are compared with extended Kalman filter approach and  fuzzy-control based approach. Both 

simulation and real-time testing results demonstrate the feasibility and superiority of the FEKF localization based approach. 

Index Terms—estimator, Fuzzy inference system, Kalman filter, mobile positioning, wireless network. 

 

1. Introduction 

1.1 Wireless Positioning 

Motivated by the exponential increase of mobile applications including terthless access and the increased network quality both 

in terms of data rate and dependability, the deployment of wireless networks has exponentially increased across all cities.  Indeed, 

nowadays wireless technology is not only restricted to standard mobile phone communication but extended to almost every aspect 

of our daily life including house appliances, consumer applications as well as transport, medical, industrial, ubiquitous computing 

and military applications [1]. On the other hand, the widespread of wireless systems increased the demand for accurate positioning 

of such wireless devices [2]. For instance, in sensor network, efficient position technology allows the operator to quickly identify 

the damaged sensor (s) [3]. Besides, it is typical that some tasks, e.g., object tracking, coordinating action (s) implicitly make use 

of device position. In mobile positioning, the US E-119 requirement forced the mobile operator to achieve a certain level of 

accuracy (50 meter accuracy in 67%) in order to handle emergency calls based only on wireless infrastructure, regardless of 

availability of GPS or others [4]. Location based advertisement enables users to selectively receive advertisement according to 

the promotions / services available nearby their locations, which also allows providers to provide additional features to 

subscribers. Social networking like Facebook, MySpace, among others, allows location-based social networking where friends 

located in nearby can be grouped and tracked. Roughly speaking, the knowledge of the physical location of mobile user devices, 

such as phones, laptops and PDAs, is crucial in applications involving, for instance, network planning, context aware network 

services, law enforcement and network performance analysis [5]. In this respect, the users can roam ubiquitously from various 

locations. Various technologies for wireless positioning have been put forward. These technologies differ according to the 

topology of the network, e.g., number of transmitters, their range and raw measurements. This includes, for instance, Infrared 

Radiation (IR), Radio Frequency Identification (RFID), Blue Tooth, Ultrasonic (US), Wi-Fi, ZigBee, Ultra Wide Band (UWB) 

frequency, GSM, Global Positioning System (GPS), Assisted GPS, Cellular technologies [3].   

Positioning techniques can be classified according to different perspectives. First, regarding whether some prior knowledge is 

available or not. For instance, if a cartography of the environment is available, then fingerprinting like techniques with some 

machine learning like method, e.g., support vector machine, k-nearest neighbor, Bayesian classification, can be employed to 

match the current observation to the training phase where the mobile location is extrapolated from the (best) matching fingerprints 

[6-7]. Second, if there is no prior knowledge, then the position is inferred from the measurement according to a given geometrical 

principle. In this respect, one distinguishes triangulation, multilateration, hyperbolic like approaches, depending on the type of 

measurements (e.g., time difference of arrival (TDOA) entails hyperbolic principle, time of arrival (ToA) and read-signal strength 

(RSS) may entail triangulation, etc.) [3, 8-9]. From the perspective of the whereabouts of the software unit responsible for the 

mobile location determination, positioning systems are categorized into three groups: handset-based positioning; network-based 

positioning and; hybrid-positioning system [3]. In a handset-based positioning, the handset calculates its own location while in 

network-based positioning the network calculates the handset’s location. In hybrid-positioning method, there is collaboration 

between the network and handset in order to measure and calculate the device’s position. GPS is one of the examples of handset-

based positioning in which position estimation will be done by handset and GPS based on signals received from at least four 

satellites. Examples of network-based positioning systems include cellular networks and Airborne Early Warning and Control 

System (AWACS). Lastly, Assisted GPS (A-GPS) is a good example for hybrid-positioning system.  Throughout this paper, one 

shall mainly be interested in cellular technology [8]. In this respect, a device’s location is usually estimated by monitoring a 

distance dependent parameter such as wireless signal strength or time of flight from the known base station (s) to the device. Such 

location is commonly estimated with respect to a reference location (s), often corresponding to that of (fixed) base stations. In 

order to explain the localization process, Figure 1 highlights the key elements involved in such process. The wireless device 

whose location is to be estimated is referred to a Mobile Station (MS), while the network entity with known location 

communicating with MS is referred to base transceiver station (BTS), or, base station for short. 

 

Besides, from the hardware requirement, one distinguishes localization techniques requiring additional hardware that will be 

imposed on the top of existing infrastructure in order to ensure synchronization or performing specialized measurements, and 

those that do not require such burden additional costs. Techniques like Angle-of-Arrival based localization belong to the first 

class, while Cell-ID, Time-of-Arrival, Time difference of Arrival, Signal Strength belong to the second class [3, 8-9]. Because of 

the relatively low cost, localization techniques based on received signal strength (RSS) are particularly popular. In essence, this 

assumes a complete knowledge of network topology in terms BTS locations, where the use of radio propagation model allows us 

to bring the problem into determining the target position (mobile terminal) from a set of known distances. Several estimation 

based techniques can be employed to solve the underlying optimization problem. Nonlinear least squares [10-11] and Kalman 



  

filter [12] are quite popular for this purpose. Nevertheless, when the quality of measurements is degraded together with inadequate 

tuning of parameters of the filter, the risk of filter divergence is high with highly nonlinear systems [12]. This promotes non-

conventional estimation theory including those based on fuzzy logic as potential candidates.  

 

1.2 Fuzzy Kalman filtering for estimation 

Several works focused on the application of fuzzy logic to strengthen standard estimators or to compensate for the lack of 

information regarding the model or noise statistics. A common example is when the covariance of the corrupting noise is unknown 

requiring the estimation of the (state) noise variance-covariance matrix. For this purpose, fuzzy rules can be applied. These are 

based on the difference between the measurement and its predicted value, since, if the filter works correctly, the residual should 

be zero-mean Gaussian. Examples of typical rules are [13-14]: “If residual is OK then Q is unchanged”; “If residual is very near 

to zero then Q is reduced”; “If residual is very far from zero, then Q is increased”. Another covariance estimation case is when 

the state transition noise is known or previously estimated, but the sensors state have changed during the process, requiring re-

estimation of measurement noise variance-covariance matrix. To handle this issue, Loebis et al., [15] suggested fuzzy rules based 

on the difference between the theoretical and computed values of the covariance where a predefined difference is added (resp. 

subtracted) to (resp. from) an initial covariance. Similarly, [16-19] suggested a two-filter based approach where a correction gain 

were computed from other filter’s residual. Sasiadek et al. [20] introduced the Fuzzy Logic Adaptive System (FLAS) for adapting 

the process and measurement noise covariance matrices in navigation data fusion design. Abdelnour et al. [21] used the 

exponential- weighting algorithm for detecting and correcting the divergence of the Kalman filter. Kobayashi et al. [22] proposed 

a method combining Kalman filter and fuzzy inference system in order to compensate for initialization problems and inconsistent 

measurement using innovation information. A similar approach has also been investigated by Mostove and Soloviev [23] for 

enhancing accuracy of kinematic GPS. Simon [24] investigated a fuzzy Kalman filtering by forcing the outcome of Takagi-

Sugeno rules coinciding with discrete Kalman filtering equations.  Caron et al. [25] suggested to define the validity domains of 

the sensors using fuzzy sets. Simon [26] advocated the use of Kalman filtering in order to train and, subsequently, tune the 

parameters of the underlying fuzzy system; especially, the authors described a possible application, when the input and output 

membership functions are symmetric triangles, and an extended Kalman filter is used to estimate their centroid and half-widths.  

Fuzzy Kalman filters can also be used for model selection/mixing. This occurs in applications such as tracking a maneuvering 

target where the maneuver detection is usually reduced to the estimation of a (possibly discrete) variable [27], or to computing 

the likelihood of different models, which may depend on some parameter [28] where a set of bank filters can also be employed. 

In the latter fuzzy rules may be applied to adapt a model set for a better coverage of possible maneuvers [29], or to adjust 

parameters of the models, or even to reinitialize the model if the track is lost [30], or to calculate the substitute a fuzzy measure 

to likelihood measure [31].  

Fuzzy Kalman filters have also been investigated from the fusion architecture perspective. In [32], the authors used a fuzzy logic 

based Kalman filter to build adaptive, centralized, decentralized and federated Kalman filters for adaptive multisensory data 

fusion where the adaptation is carried out in the sense of adaptively adjusting the measurement noise covariance of each local 

filter in order to fit the actual statistics of noise profile present in the incoming measured data.  

Several of the above works reported a better results in terms of estimation accuracy of the (adaptive) fuzzy Kalman filtering when 

compared to the extended Kalman filtering [18, 19] mainly using a set of Monte Carlo simulations. Nevertheless, it is 

acknowledged that the lack of wide scale comparative studies and the possible sensibility of the embedded linguistic variables 

prevented, at large extent the application of adaptive fuzzy Kalman filter in critical applications such as aircraft flight control 

systems [33]. This opens the door for further analysis both from theoretical and application oriented perspectives in order to 

demonstrate the effectiveness and usefulness of the underlying concept.  

 

1.3 Contribution and paper organization 

This work contributes to ongoing research activity on fuzzy Kalman filtering for estimation process with an application to cellular 

mobile positioning field. It builds on previous work, see Oussalah et al. [7] where an optimized fuzzy inference system is put 

forward in order to accurately locate a target using fingerprinting in WiFi based environment. In essence, a new fuzzy extended 

Kalman filtering (FEKF) is put forward. The proposal overlaps with the previously aforementioned work of tuning noise variance-

covariance matrix using a dedicated fuzzy inference system. However, in contrast to previous works, the proposal advocates a 

decentralized like approach where single measurements are assumed to yield local solutions that will then be combined to output 

a global solution. More specifically, the FEK employs a zero-order Takagi-Sugeno system whose inputs are the innovation and 

its associated variance-covariance matrix and whose outputs consists of the weight attached to each local solution generated by a 

single BTS. The parameters of the underlying fuzzy systems have been optimized using ANFIS system. The performances of the 

developed FEKF are compared to both Extended Kalman Filter (EKF) and Fuzzy Control (FC) system where both simulated and 

real time measurements were employed. Besides, several theoretical results are pointed out.  

This paper is organized as follows. In Section II, discusses the theoretical background and practical realization of measuring the 

distance between MS and BTS. The proposed strategy of the FEKF approach is introduced in Section III. Several parameters for 

determining the degree of divergence (DOD) are introduced for identifying the degree of change in mobile dynamics based on 

the innovation information. In Section V, simulation experiments on mobile dynamic localization are carried out to evaluate the 

performance of the approach in comparison to those by conventional EKF and FEKF. Conclusions are given in Section VI. 

 

 

 



  

2. BACKGROUND  

Considering the typical positioning problem highlighted in Figure 1, let i

kd be the (measured or inferred) distance from the ith base 

station to mobile station (MS) at time k. Let kX and i

kB be the 3D coordinates of the MS and ith BTS, respectively at time k. 

Assuming MS is almost fixed when the measurements are triggered, the state and measurement models are therefore described 

by:   

 

              

{
 
 

 
 

𝑋𝑘+1 = 𝑋𝑘 +𝑤𝑘

𝑑k+1 = [
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1‖
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‖𝑋𝑘 − 𝐵𝑘
𝑚‖
] + 𝑣𝑘

                                                                                                                                          (1) 

 

 

Where ||.|| stands for Euclidean norm, 𝑤𝑘 and 𝑣𝑘 are independent zero mean Gaussian noise with known variance-covariance 

matrices Q and R, respectively. m is the total number of BTS triggered at time k.  

Since the norm ||.|| is non-linear, the solution of the estimation problem in (1) requires a linearization around the target estimate 

kX , which forms the essence of the extended Kalman filtering (EKF). The latter yields kX̂ an estimation of kX as well as its 

associated variance-covariance matrix kP . More specifically, the filter equations boil down to the prediction and update stages: 

 

Prediction 

�̂�k
− = �̂�k−1                                                                                                                                                                (2) 

Pk
− = Pk−1 + 𝑄𝑘                                                                                                                                                       (3) 

Update 

Filter gain:   Kk = Pk
−Hk

T(HkPk
−Hk

T + 𝑅𝑘)
−1

                                                                                                                          (4) 

�̂�k = �̂�k
− + Kk(𝑑𝑘 − �̂�k)                                                                                                                       (5) 

Pk = (I–KkHk)Pk
−                                                                                                                                (6) 

Where �̂�k is the predicted measure given by ‖𝑋𝑘 − 𝐵𝑘‖. 

Hk is the measurement Jacobian matrix given by, for the ith measurement: 

 

𝐻𝑘
𝑖 = [

∂D̂i(k)

∂𝑥𝑘

∂D̂i(k)

∂𝑦𝑘
   
∂D̂i(k)

∂𝑧𝑘
]                                                                                                                                (7)    

 
∂D̂i(k)

∂𝑥𝑘
=

(xk−xi)

√(xk−xi)
2+(yk−yi)

2+(zk−zi)
2
                                                                                                                        (8) 

 
∂D̂i(k)

∂𝑦𝑘
=

(yk−yi)

√(xk−xi)
2+(yk−yi)

2+(zk−zi)
2
                                                                                                                         (9)   

 
∂D̂i(k)

∂𝑧𝑘
=

(zk−zi)

√(xk−xi)
2+(yk−yi)

2+(zk−zi)
2
                                                                                                                      (10) 

 

Where  i i ix ,y ,z  stands for the 3D coordinate of the ith BTS. 

 

The performance of the extended Kalman filter as indicated in Equations (2-6) is widely dependent on the behavior of the 

linearization carried out around the estimate �̂�k, in addition to the quality of the initialization stage. This renders the convergence 

of the filter quite vulnerable [11-12]. For this purpose, several works have focused on monitoring the innovation of the 

measurements in order to decide on any corrective action in case where the deviation from its theoretical value is deemed to be 

important [12].  More specifically, the innovation is measured as: 

𝐼𝑛𝑛𝑘
𝑖 = 𝑑𝑘

𝑖 − D̂𝑘
𝑖                                                                                                                                                          (11) 

 

with its associated variance-covariance matrix:  

Sk = HkPkHk
T +  R                                                                                                                                             (12) 

 

A solution based on the use of fuzzy logic to tune the system and measurement noise has been proposed in [13-14], which allows 

the filter to reduce the risk of divergence. The key idea is to use an adaptive fuzzy logic based controller to continuously adjust 

the P and Q noise intensity depending on the gap between the theoretical and measured innovation. The covariance and mean of 

the residuals were used as input of the fuzzy controller, and the output is the degree of the divergence of the filter. In essence, it 



  

assumes that if the statistical covariance of the residuals is larger than its theoretical value in EKF formulating (12) and the mean 

value of the residuals is moving away from zero, then the Kalman filter is becoming unstable and will potentially diverge, 

therefore, the noise covariance get reduced according to the parametric expressions 𝑅𝑘 = R𝛼
−(2𝑘+1);  𝑄𝑘 = Q𝛼

−(2𝑘+1), where R 

and Q are constant and  is the output of the fuzzy system.  

Nevertheless, relaxing the noise constraint is also very debatable and could significantly impact the quality of the estimation as 

demonstrated in other studies, see, e.g., [12, 34]. This motivates the current proposal where the focus is rather shifted towards the 

quality of the measurement through monitoring the innovation sequence.  

 

3. Hybrid Kalman filter and Fuzzy logic 

 

3.1 Motivation and overview 

The proposed FEKF relies on two main stipulates:  

- First, inspired by the idea of decentralized Kalman filter [35] where the contribution of individual measurement to the global 

solution is explicitly quantified, a decoupling of the distinct measurements in the framework of Kalman filter is achieved. 

In other words, if a set of measurements are available, then instead of handling these measurements as a single measurement 

input vector, which would require handling large size innovation matrices, individual Kalman filter (local solution) is rather 

created for each single measurement. The outputs of the local filters are then combined via some master filter, see Figure 2. 

Under some linearity conditions, Felter [36] showed that such decentralized Kalman filtering is equivalent to centralized 

Kalman filtering. In our case, a single measurement corresponds to the case of a single base station. Therefore, the key is to 

generate local solutions induced by individual base stations, whose outcomes will next be combined in the same spirit as 

master-filter of decentralized Kalman filtering but involving fuzzy entities. 

- Second, in order to deal with the divergence of non-linear filtering and in the same spirit as [20-21], the innovation and its 

associated variance-covariance matrix is monitored for each individual measurement, yielding a sort of reliability factor or 

confidence value to each local solution. This is achieved through the use of a Takagi-Fuzzy inference system [37] whose 

inputs are the innovation and its associated variance-covariance matrix and whose output is the reliability or weight factor 

as will be detailed in Section 3.2.  

- Finally, the global estimate is therefore estimated as a weighted combination of the local solutions, say Xk, Pk, generated by 

individual measurements (base stations), making use of the weight factors (yk)  outputted by the fuzzy inference system. The 

detail of the combination process is provided in Section 3.3. Figure 3 provides a generic synoptic of the FEKF solution. 

3.2 Fuzzy inference system 

Fuzzy logic has been introduced by Zadeh in the sixties in order to represent imprecise and uncertain data. It provides an appealing 

framework to represent complex, ill-known and ambiguous entities. Especially fuzzy inference system [38] allows us to map 

fuzzy input variables to output variables. We particularly focused on zero-order Takagi-Sugeno fuzzy controller [37]. As pointed 

out earlier, we considered a two-inputs and one output system. The input variables or premises are innovation and its variance-

covariance matrix, say, 𝐼𝑛𝑛𝑘
𝑖  and 𝑆𝑘

𝑖 , for the ith measurement. The output yi  [0,1] quantifies the confidence attached to the ith 

local solution, where the yi = 0 indicates a full inconsistency or lack of soundness of the ith solution, while yi = 1 corresponds to a 

fully reliable (local) solution. In other words,  𝑦𝑖 is the outcome of the fuzzy inference system when only the ith measurement was 

employed. The jth fuzzy rule reads as (we shall denote by yij the output according to the jth rule when the ith measurement is 

employed): 

 

                                                  Rj  IF  𝐼𝑛𝑛𝑘
𝑖  is A1j AND 𝑆𝑘

𝑖  is A2j THEN yij = cj 

 

Where A1j , A2j are the fuzzy set describing the property attached to input variables 𝐼𝑛𝑛𝑘
𝑖  and 𝑆𝑘

𝑖 , respectively, and  cj  [0,1] are 

discrete weights outputted by the fuzzy system (j=1,m). The fuzzy sets A1j, A2j (j=1,m) are characterized by their membership 

functions 
1 jA and 

2 jA . The aggregated output from the m rules is calculated as the weighted mean of the outputs of individual 

rules; namely,  

 

            
1 2

1 2

1

1

j j

j j

m
i i

j A k A k
j

i m
i i i

k A k A k
j

c . (Inn ) (S )

y
(Inn ) (Inn ) (S )

 

 










                                                                                                                 (13) 

 

The term 
1 2j j

i i

A k A k(Inn ) (S )   is interpreted as the degree of fulfilment of the jth rule.  

Trivially, the number of fuzzy rules m and the values of the discrete weight factors cj are very much dependent on the number of 

partitions ascribed to fuzzy sets A1j and A2j within their associated universe of discourse. This will be detailed in the optimization 

subsection later on. 

 



  

Intuitively, one expects that the reliability of the local solution to be high if the innovation and its associated variance-covariance 

matrix are deemed to be sufficiently small where the quantification “sufficiently small” is captured by the underlying fuzzy set 

(e.g., A1j for the innovation part and A2j for the variance-covariance matrix). This translates the scenario where the prediction is 

sufficiently close to the actual measurement (small innovation) with high accuracy (small variance-covariance matrix). On the 

hand, the reliability should be deemed to be low whenever the innovation and its associated variance-covariance matrix are 

deemed to be high where the quantification high is also captured by the fuzzy sets A1j and A2j.  

 

3.3 Combination of local solutions 

3.3.1 Formulating of the combined state and variance-covariance estimates. 

The process of estimating the state variable Xk and its variance covariance matrix Pk using the output of fuzzy inference system 

involves the use of local Kalman filter solutions provided at each individual single measurement. The global estimate is therefore 

calculated as a weighted average of the local solutions where the weights correspond to the outcome of the fuzzy inference system. 

More specifically,  

  

     �̂�𝑘
𝑖 = �̂�k−1 + 𝐾𝑘

𝑖(𝐼𝑛𝑛𝑘
𝑖 )                                                                                                                                                      (14) 

 

is the local (Kalman filter) estimation obtained when only the ith BTS is employed, where Inni corresponds to the innovation from 

the ith measurement and 𝐾𝑘
𝑖  is Kalman gain as in expression (4) for 𝐻𝑘

𝑖  . For N measurements issued from N BTS, the global 

estimation is calculated as, provided ∑ 𝑦𝑖
𝑁
𝑖=1 > 0: 

 

𝑋𝑘
𝑒𝑠𝑡 =

∑ �̂�𝑘
𝑖𝑁

𝑖=1 𝑦𝑖
∑ 𝑦𝑖
𝑁
𝑖=1

                                                                                                                                                                          (15) 

 

Notice that since there is at least one fuzzy rule which is activated at a given time, it holds that for at least one measurement 𝑦𝑖 >
0, which makes the expression (15) always definite.  

(15) assumes that the global estimate of the target corresponds to the weighted estimate of the local estimates in view of (14). 

This agrees with the intuition pertaining to the outcome of the fuzzy inference system. On the other hand, (15) also resembles to 

the concept of federated Kalman filter [35] where the different subsystems were obtained by partitioning the measurement vector 

into individual single measurements. Especially, the following holds 

 

Next, the calculus of the variance-covariance matrix associated to the estimate 𝑋𝑘
𝑒𝑠𝑡 is carried out using the statistical definition 

of the variance-covariance matrix. In this respect, the following holds. 

 

Proposition 1 

The variance-covariance matrix associated to 𝑋𝑘
𝑒𝑠𝑡 is given by 

 

𝑃𝑘
𝑒𝑠𝑡 = 𝑃𝑘

− −
∑ 𝑃𝑘

−𝑁
𝑖=1 𝐻𝑘

𝑖 𝑇𝐾𝑘
𝑖𝑇𝑦𝑖

∑ 𝑦𝑖
𝑁
𝑖=1

−
∑ 𝐾𝑘

𝑖𝐻𝑘
𝑖𝑁

𝑖=1 𝑃𝑘
−𝑇𝑦𝑖

∑ 𝑦𝑖
𝑁
𝑖=1

+
∑ 𝐾𝑘

𝑖𝑆𝑘
𝑖𝑁

𝑖=1 (𝑦𝑖)
2𝐾𝑘

𝑖𝑇

(∑ 𝑦𝑖
𝑁
𝑖=1 )2

                                                                            (16) 

 

Proof 

First one uses the definition of the variance-covariance matrix 

 

  𝑃 = 𝐸[(X −  𝐸[𝑋])(X −  𝐸[𝑋])𝑇]                                                                                                     (17)  

Therefore, for 𝑋𝑘
𝑒𝑠𝑡, we have:  

𝑃𝑘
𝑒𝑠𝑡 = 𝐸[(𝑋𝑘 − 𝑋𝑘

𝑒𝑠𝑡)(𝑋𝑘 − 𝑋𝑘
𝑒𝑠𝑡)𝑇]                                                                                                            (18) 

 

Where 𝑋𝑘
𝑒𝑠𝑡 can be rewritten as  

 

𝑋𝑘
𝑒𝑠𝑡 =

∑ �̂�𝑘
𝑖𝑁

𝑖=1 𝑦𝑖
∑ 𝑦𝑖
𝑁
𝑖=1

=
∑ (�̂�k−1 + 𝐾𝑘

𝑖(𝐼𝑛𝑛𝑘
𝑖 ))𝑁

𝑖=1 𝑦𝑖
∑ 𝑦𝑖
𝑁
𝑖=1

 

=
∑ (�̂�𝑘

− + 𝐾𝑘
𝑖(𝐼𝑛𝑛𝑘

𝑖 ))𝑁
𝑖=1 𝑦𝑖

∑ 𝑦𝑖
𝑁
𝑖=1

 

= �̂�𝑘
− +

∑ 𝐾𝑘
𝑖  𝐼𝑛𝑛𝑘

𝑖  𝑦𝑖
𝑁
𝑖=1

∑ 𝑦𝑖
𝑁
𝑖=1

                                                                                                                                                (19) 

Substituting in (18), it holds that 

  

𝑃𝑘
𝑒𝑠𝑡 = 𝐸 [((𝑋𝑘 − �̂�𝑘

−) −
∑ 𝐾𝑘

𝑖𝐼𝑛𝑛𝑘
𝑖 𝑦𝑖

𝑁
𝑖=1

∑ 𝑦𝑖
𝑘
𝑖=1

)((𝑋𝑘 − �̂�𝑘
−)

𝑇
−
∑ 𝐼𝑛𝑛𝑘

𝑖 𝑇𝐾𝑘
𝑖𝑇𝑦𝑖

𝑁
𝑖=1

∑ 𝑦𝑖
𝑘
𝑖=1

)]                                                                            (20) 

 

Next one notices that:  



  

 

         𝑃𝑘
− = 𝐸[(𝑋𝑘 − �̂�𝑘

−)(𝑋𝑘 − �̂�𝑘
−)𝑇]                                                                                                                               (21) 

        𝐼𝑛𝑛𝑘
𝑖 = 𝐻𝑘

𝑖 (𝑋𝑘 − �̂�𝑘
−) + 𝜈𝑘                                                                                                                    (22) 

 

Using the linearity of the expectation operator and the zero mean of the noise 𝜈𝑘: 

𝐸 [(𝑋𝑘 − �̂�𝑘
−)(𝐼𝑛𝑛𝑘

𝑖 )
𝑇
] = 𝐸 [(𝑋𝑘 − �̂�𝑘

−)(𝑋𝑘 − �̂�𝑘
−)

𝑇
]𝐻𝑘

𝑖 𝑇      = 𝑃𝑘
−𝐻𝑘

𝑖 𝑇                                                                        (23) 

 

Similarly, using the zero-mean and decorrelation property of the noise, it holds that 

 

𝐸 [∑Kk𝐼𝑛𝑛𝑘
𝑖 𝑦𝑖

𝑁

𝑖=1

∑𝐼𝑛𝑛𝑘
𝑖 𝑇𝐾𝑘

𝑖𝑇𝑦𝑖

𝑁

𝑖=1

] =∑𝐾𝑘
𝑖𝑆𝑘
𝑖 (𝑦𝑖)

2

𝑁

𝑖=1

𝐾𝑘
𝑖𝑇                                                                                                         (24) 

 

Substituting the above in (20), the expression (16) of Proposition 2 follows straightforwardly.     

Expression (15-16) therefore constitutes the basis for the combination rule that combines the local solutions generated by 

individual sensors (BTS).  From an algorithmic perspective, Table II summarizes the FEKF. 

 

3.3.2 Properties of the combination rule 

On other hand, it should be interesting to investigate the properties of the solution provided by (15-16) in some boundary cases. 

In this respect, one notices the following. 

 

Proposition 2 

The target estimation 𝑋𝑘
𝑒𝑠𝑡 is always situated within the n-ary convex polygon formed by the N local solutions �̂�𝑘

𝑖  (i=1,N). 

 

The proof of Proposition 1 follows straightforwardly by construction given that (15) can be seen as a linear convex combination 

of the �̂�𝑘
𝑖 , (i=1, N). This is due to the fact that (15) can be rewritten as 𝑋𝑘

𝑒𝑠𝑡 = ∑ �̂�𝑘
𝑖𝑁

𝑖=1 𝑦′𝑖, with 𝑦′ =
𝑦𝑖

∑ 𝑦𝑖
𝑁
𝑖=1

 where ∑ 𝑦′𝑖
𝑁
𝑖=1 = 1. 

Using the geometrical properties of convex linear combination [11], the result is straightforward.  

 

Since the local estimates �̂�𝑘
𝑖  are typically close to 𝐵𝑘

𝑖 , Proposition 1 reinforces the natural result that the target estimate is within 

the region obtained by the set of base stations activated at time k. A special case of three-local solutions is shown in Figure 4 

where the target position estimate is highlighted using the star mark (*). Especially, it is shown that when one weight, say, y2=0, 

then the target estimate is located on the edge formed by the local solutions �̂�𝑘
1 and �̂�𝑘

3. Otherwise, the triangle formed by vertices 

1, 2 and 3 represent the geometrical area where all possible solutions 𝑋𝑘
𝑒𝑠𝑡 lie in.  

 

Interestingly, one may also notices some boundary cases. 

 

- If all local solutions are fully unreliable, then no solution is induced by our FEKF as expression (15) does not hold, which 

is in full agreement with the intuition.  

- If one solution is fully unreliable; that is, yi = 0 for some ith solution, then the latter is fully discarded from the estimation 

of the combined estimate 𝑋𝑘
𝑒𝑠𝑡 in view of expression (15). This is also in full agreement with the intuition as one expects a 

non-reliable input not to be taken into account by the fusion scheme.  

- If all local solutions provide the same output in terms of reliability factor and estimate 𝑋𝑘
𝑖 , then the output of the fusion 

process also yields the same input 𝑋𝑘
𝑖  regardless the value of the reliability factor. In other words, any agreement among the 

local solutions is made preserved by the underlying fusion operation.  

- Another interesting case arises when only one local solution is full reliable, say, yj = 0 and all others are fully unreliable; 

that is, yi = 0 for all ij. In such case, it is easy to notice that the application of (15) yields a global estimate which exactly 

coincides with the fully reliable local solution �̂�𝑘
𝑗
.   

- If all local solutions are fully reliable yi = 1 for all i=1,N, the global estimate corresponds to the geometric centroid of all 

local solutions (arithmetic mean). 

- Finally, it is worth investigating the influence on the variance-covariance matrix of local solutions, say 𝑃𝑘
𝑖  on the variance-

covariance matrix of the combined estimate 𝑃𝑘. For this purpose, we first require to write expression (16) in terms of local 

variance covariance matrices. In this respect the following holds. 

 

 

 

 

 

 



  

Proposition 3 

An equivalent expression of (16) is given by 
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                   (25) 

Proof 

Using the expressions of the filter gain and variance-covariance matrix (4) and (6), we have: 

     i i i
k k k kP I K H P        and     

1Ti i i
k k k kK P H S


                                                                          (26) 

This entails, using the properties of inverse and transpose matrices 

        
1

i i i
k k k kK H I P P


    and     

11T T T T
T

i i i i
k k k k k kH K I P P I P P


      

 
                                     (27) 

Similarly, we have 

        
11T T T Ti i i i i i i i

k k k k k k k k k kK S K P H S S S H P


                                                                  (28) 

Substituting (27) and (28) in (15) and after some manipulations of the matrix sum operations, the result is straightforward.  

 

Interestingly, if kP
is symmetric so that 

T

k kP P  , then (25) reduces to 
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                                                              (29) 

Now it order to see the influence of the variance covariance inputs 
i

kP  (i=1, N) on the variance-covariance matrix of the estimate 

est
kP ,  a rational criterion that defines the extent of the matrix is its trace. In this respect, the following holds.  

 

Proposition 4 

 est
kTrace P  is monotonic increasing with respect to  i

kTrace P . 

 

The proof follows straightforwardly from the linearity property of the trace matrix when applied to expression (25) and the 

invariance of kP
 entity. Besides using differentiation properties of trace matrices, we have: 

 

       
 

 
 

1
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T

T

est
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
 


  


  

   
.  The latter is positively valued, which 

justifies the monotonicity property.  

 

More the application of trace matrix to expression (29) yields  
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                 (30) 

Since the last two entities of the right hand side of equation (30) are constant with respect to 
i

kP , the linearity of  est
kTrace P  

with respect to  i
kTrace P  is demonstrated. 

As a consequence of the above, if the local solutions induce estimates 
i

kP of smaller order of magnitude in the sense of trace 

matrix, then the outcome of the combination rule will also induce an estimate whose variance-covariance matrix presents a lower 

order of magnitude. This is in full agreement with the intuition that an increase in accuracy of inputs would increase the accuracy 

of the outcome as well.  



  

From (25), one should also notice that if the local solutions have all the same variance-covariance matrix 
i

kP , the outcome of the 

combination rule does necessarily have the same variance-covariance matrix as it is much dependent on the quality of the 

prediction kP
as well as the parameters of the individual systems. 

 

In probabilistic setting, the combination of the local solutions is such that [39] 
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In contrast to our FEKF, the variance-covariance matrix of the outcome of the probabilistic combination model is only dependent 

on the variance-covariance matrices of the individual inputs 
i

kP , which appears to be problematic in case of presence of non-

reliable sources. 

 

3.4 Optimization of the fuzzy system parameters 

The fuzzy inference system with (fuzz) inputs Inn and C-Inn corresponding to the innovation and its associated variance-

covariance matrix for each measurement and time increment. While the (crisp) output corresponds to the discrete constant values 

ci (with 0  ci  1), i=1,p, because of the use of zero-order Takagi-Sugeno controller, like: 

 

      IF  𝐼𝑛𝑛𝑘
𝑖  is Small AND 𝑆𝑘

𝑖  is Large THEN yi = cj 

 

The number of fuzzy rules as well as the number of constants ci is directly related to the number of partitions of input variables 

𝐼𝑛𝑛𝑘
𝑖  and 𝑆𝑘

𝑖 . For this purpose, ANFIS system proposed by Jang [40] was employed. The latter is based on neuro-fuzzy system 

that makes use of a combination of least squares and gradient back-propagation algorithms. Such optimization is carried out on 

training dataset in order to find the optimal configuration of the various parameters; namely, the number of partitions of 𝐼𝑛𝑛𝑘
𝑖  and 

the number of partitions of 𝑆𝑘
𝑖 , the number of constants ci, shape of membership functions associated to 𝐼𝑛𝑛𝑘

𝑖  and 𝑆𝑘
𝑖 , type of 

defuzzification method. Matlab implementation of ANFIS was employed. On the other hand, in order to speed up the optimization 

process and reducing the search domain, we deliberately chosen triangular membership functions. Besides, the training database 

was generated by choosing a simulated linear trajectory of the target as will be detailed in the next section. In order to get an order 

of magnitude of the range of values attached to the input variables     

𝐼𝑛𝑛𝑘
𝑖  and 𝑆𝑘

𝑖 , an extended Kalman filter based method is applied. In this respect, it was observed that 𝐼𝑛𝑛𝑘
𝑖  takes values in range 

[0, 1.5 Km], while 𝑆𝑘
𝑖  takes values in [0.22  0.32]. This was especially helpful to identify the universe of discourse of the fuzzy 

sets associated to the input variables. On the other hand, during the training phase, the output yi is chosen proportional to the 

confidence attached to the position of the target given the full knowledge of the target positioning. The result of the ANFIS 

optimization is summarized in Table I in terms of fuzzy rules, and Figure 5 in terms of membership functions of premises 𝐼𝑛𝑛𝑘
𝑖 . 

 

Similarly, the ANFIS based optimized membership function of the 2nd input 𝑆𝑘
𝑖  is provided in Figure 6. 

 

3.5 Alternative fuzzy controller based approach 

On the other hand, in order to assess the contribution of the Kalman filtering process in FEKF, a comparison with a more 

conventional fuzzy controller has been carried out. For this purpose, a fuzzy controller whose inputs are the distance 

measurements BTS-MS and the outputs are the weights associated to such measurements. Namely, to draw analogy with FEKF 

approach, the concept of local and global solution is preserved where the combination rule (14-15) is still employed. However, 

instead of a two-input fuzzy inference (and involving Kalman filtering parameters) as in FEKF, a cheap fuzzy inference system 

where the input is only constituted by the distance BTS-MS, so that a confidence factor is outputted for each distance. The 

rationale behind such process is to assign higher weights to measurements yielding smaller distances and smaller weights for 

those yielding higher distances. This agrees with practical considerations as larger distances are subject to non-light-of-sight 

effect and other random perturbations. Besides, in wireless communications, the mobile station is likely to get connected to BTS 

which is situated nearby instead of those situated far away. One shall refer to this alternative cheap fuzzy estimator, “Fuzzy 

controller system” (FCS). Similarly to FEKF fuzzy inference system, an ANFIS based system has been employed to tune the 

parameters of FCS (number of partitions of input variable –distance-, and weights). Table III summarizes the outcome of this 

optimization process. 

 

For example,  

    If the distance « d » is very small, then the weight “c” is equal to 1 

    If the distance "d" is small then the weight “c” is equal to 0.75 

    If the distance “d” is Very large then, the weight “c” is null.  

 



  

The membership function associated to the distance input as outputted by the ANFIS system is shown in Figure 7. 

 

The purpose of this alternative proposal is to challenge the usefulness of FEKF whose fuzzy inference system employs innovation 

and its variance-covariance matrix. 

It should be noted that the process of optimizing the parameters of FCS has been investigated considering an urban like 

environment where the average radius of cells is around 100 meters. The generic scheme of the FEKF is kept unchanged. More 

specifically, similarly to FEKF, Table IV provides a generic synoptic of the FCS from an algorithmic perspective. 

 

4. Experimentation 

4.1 General Framework 

In order to evaluate the performance of the developed FEKF in the context of mobile cellular positioning, experimentation in 

urban/suburban Algiers area has been conducted. The network topology and base stations characteristics have communicated by 

the mobile operator Mobilis.  

Ericsson TEMS Investigation 8.0.3 Data Collection Software [41] together with GPS enabled handset have been employed as 

shown in Figure 8 for a particular drive test image. The software also allows us to force handover in order to communicate with 

surrounding base stations, which enable the user to get information from several base stations at the same time.   

 

On the hand, the use of GPS devices in handset allows us to quantify the positioning error with relatively high accuracy; namely, 

one uses the root mean square error metric: 

 

RMSE(k) = √xk,real − xk,est)
2 + (yk,real − yk,est)

2 + (zk,real − zk,est)
2                                                                   (25) 

 

Where Xk,est and  X𝑘,real are the estimated and real position of the target, respectively.  

Prior to real time experimentation, a simulation study has been carried. Especially, the availability of several drive test images 

through TEMS allows us to build consistent simulation dataset. 

 

4.2 Simulation 

We considered two simple, but realistic, scenarios of a linear trajectory and a turning manoeuver of two-linear trajectories where 

three BTS at fixed known locations were active at each time increment. 

The distance BTS-MS is therefore augmented with a zero-mean Gaussian noise of fixed variance-covariance corresponding to a 

noise of moderate intensity. That is, 

 

        d(BTS,MS) = dreal(BTS,MS) + noise                                                                                                                        (26) 

with  

            𝑛𝑜𝑖𝑠𝑒 ~ 𝒩(0, 𝜎), 
where 𝜎 = 0.001 

 

The estimated position is therefore calculated over a set of Monte Carlo simulations (100 Monte Carlo simulations) in order to 

take into account the various realizations of the noise. 

Figures 9 and 10 illustrate the performance of the FEKF in terms of real path and RMSE. The results were compared to EKF and 

FCS. The initial parameters of the filter were chosen as  

 

R0 = 0.222 

 

P0 = [
0.001 0 0
0 0.001 0
0 0 0.001

] 

 

    Q0 = [
0.020 0 0
0 0.020 0
0 0 0.002

]. 

 

From results shown in figures 9, 10, the superiority of the FEKF is clearly highlighted. The results also show that FCS yields the 

worse performance among the three positioning algorithms. This can partly be explained by the inadequacy of the distance 

measurements for calculating the weights attached to individual measurements, in case of relatively low noise influence. Table 

V provides the overall average results in terms of RMSE over the whole trajectory for cases of both single linear trajectory and 

two-linear trajectory with a manoeuver. 

 

Table V shows that FEKF outperforms the EKF by 30.5% and 32.5% in case of single linear and two-linear trajectory, 

respectively. While it outperforms FCS by 78% and 84% in case of single linear and two-linear trajectory.  



  

In order to quantify the statistical significance of the results pointed out in Table 5 given the fluctuation of the result from one 

Monte Carlo simulation to another, we carried out a (student) t-test [42] in order to test the null hypothesis that the RMSE-mean 

of FEKF technique and that of alternative technique (either EKF or FCS) are similar. At default 5% significance level, a p-value 

of the t-test of less than 0.05 (p ≤ 0.05) indicates a rejection of the null hypothesis, and therefore a confirmation of the observation  

    RMSE-mean (FEKF) < RMSE-mean (FEKF) 

and 

    RMSE-mean (FEKF) < RMSE-mean (FCS) 

 

The results of this statistical test are summarized in Table VI. Since the p-values of the t-test are in both single linear and two-

linear trajectories confirm the hypotheses that RMSE of FEKF is less than RMSE of EKF and RMSE of FCS. On the other hand, 

the analysis of the standard deviation results shown in Table V indicates that FEKF exhibits less fluctuations of the results when 

compared to both EKF and FCS. We believe the observed enhanced performances of the FEKF are rooted back to the efficiency 

of the centralized architecture of the filter as well as the optimized parameters of the underlying fuzzy inference system obtained 

using the ANFIS system. The established theoretical foundations of the filter also contributed to the stability of the outcome. 

 

We have also investigated the influence of the noise intensity in the overall performance of the FEKF. In this respect, Table VII 

provides the RMSE for various noise intensities averaged over the whole trajectory. 

 

Results of Table VII testify of the superiority of the FEKF in case of low-medium noise intensity. Nevertheless, when the noise 

intensity becomes higher, the FCS becomes progressively competitive. This again can be explained by the growing influence of 

the distances in case of higher noise intensity, which possibly translate into important non-light of sight factors. However, this 

result should be taken with cautious as with high noise intensity, the signal becomes blurred, which may question the usefulness 

of the result.  

The influence of the initial parameters of the filter; namely, R0, P0 and Q0 have also been investigated as illustrated in figures 11-

14. A comparison between EKF and FEKF has been carried out. Note that the FCS does not use such parameters. On the other 

hand, we deliberately took the diagonal elements in P and Q of equal quantity in order to simply the analysis. This is also in 

agreement with previous studies in this context, see, e.g., [12] and references therein. 

 

Especially, figures 11-13 show the existence of a range of values for which the performance of the filters, either EKF or FEKF, 

is stable. For instance, values of Q0 (diagonal elements) between 0.02 and 5050 provide relatively similar performance, which 

also can act as good guess to initialize the filter (s). Similarly, values of P0 between 0.001 and 0.1 provide a good guess to initialize 

the filter (s). While Figure 11 indicates rather a relatively good robustness of FEKF with respect to some initial values of R0 as 

compared to EKF. 

 

4.3 Real time experiment 

In contrast to simulation data, in real time experiment, the distances BTS-MS are not directly available. For this purpose, TEMS 

investigation 8.0.3 software was first used to retrieve the network key components, including, cell identity (CI) of surrounding 

base stations communicating with the mobile station, as well as their physical characteristics, i.e., frequency, height, channel 

number, transmitted power.  

By forcing the hand over in order to communicate directly with a specific CI (or BTS) using the channel number of such cell as 

pointed by the software, TEMS investigation also allows us to display the received signal strength (Rx) transmitted by each of 

the surrounding BTS pointed out at previous test. The determination of the location of the BTSs is accomplished using the data 

base of the sites in the public operator Mobilis Ltd., which updates the location of GSM base stations throughout Algiers area. It 

is therefore possible to measure the latitude/longitude positioning of all the surrounding base stations. An instance of drive test 

experience as outputted by TEMS is shown in Figure 14.  

 

The distance between each BTS and the handset is determined using one of the empirical propagation models. We focused in this 

paper on Walfish-Ikigami propagation model [43], see [44-45] for an exploration of alternative models. Basically, the model 

provides an expressing of the path loss of the signal transmitted by the BTS (Tx) and the received signal at the MS receiver (Rx), 

as a function of the distance between BTS and MS and the carrier frequency f, also determined using TEMS investigation 

displayed parameters.  

The carrier frequency f is determined by the following expression [46-47]:   

 

       f = 1805 + 0.2 (ARFCN -511) 

where ARFCN stands for BTS carrier channel number as displayed by TEMS investigation software. The mathematical detail of 

the application of the Walfish-Ikigami model is reported to the Appendix of this paper. Table VIII provides an example of the 

BTS-MS calculus at specific locations of the above drive test data.  

 

Similarly to the simulation results, the outcome of a single drive test is reported in figures 15 and 16 in terms of itinerary and 

RMSE performances. Comparison with EKF and FCS is also highlighted. 

 

 



  

The results shown in figures 15-16 agree with the simulation results and demonstrate the usefulness, feasibility and attractiveness 

of the FEKF where its superiority over both FCS and EKF is clearly highlighted. RMSE results averaged over the whole trajectory 

are shown in Table IX. 

 

Similarly to the simulation study, we also investigated the sensibility of the result using t-test testing while repeating the real-

time experiment hundred of times in order to accommodate, at some extent, the various noise realizations. The results summarized 

in Table X demonstrate the validity of the observation exhibited in Table IX about the superiority of the FEKF in both urban and 

semi-urban environment. 

 

In order to evaluate the agreement between the simulation and real time results in terms of the influence of initial parameters, we 

have also investigated the influence of initialization R0, Q0 and P0 on the RMSE results. In this respect, figures 17-19 provide 

direct counterparts to figures 11-13. 

 

5. Conclusion 

This paper presented a new estimation algorithm based on a hybrid combination of extended Kalman filter and zero-order 

Takagi-Sugeno fuzzy inference system. The latter takes the innovation and its variance-covariance matrix as inputs, and outputs 

the weight attached to each local solution obtained when a single measurement in terms of BTS was employed. Inspired from the 

idea of federated Kalman filter, the same approach has been adopted in order to combine local solutions generated by taking 

individual measurement separately. The global estimate is therefore calculated as a weighted mean of these local solutions, while 

theoretical estimation of its variance-covariance matrix is determined by making use of statistical definition of the covariance. 

Properties of the underlying combination scheme is investigated and original results were laid down. The elaborated fuzzy 

extended Kalman filter is next applied to localization of mobile station in cellular network with known topology. A simulation 

platform has been employed to optimize the parameters of the fuzzy inference system using ANFIS like approach. The 

performances of the FEKF have been evaluated using root mean square error metric in both simulated and real time dataset. The 

results in both cases confirmed the usefulness of the FEKF and its superiority to standard extended Kalman filter as well as a 

standard fuzzy controller whose inputs are the BTS-MS distance measurements, and outputs the weight or confidence associated 

to the measurement. We believe that part of the increased performances brought by the FEKF are due to its decentralized 

architecture, which allows it to deal with complex non-linearity and correlation issues that restricted the performances of the EKF. 

Besides, its optimized parameters using ANFIS system conveys an edge compared to its possible competitors.  

On the other hand, the promising theoretical and experimental results open new era for future fuzzy Kalman filter designs 

embedding, for instance, concepts from particle filters or unscented filtering in order to handle more efficiently the non-linearity 

issues while enhancing the computational efficiency of the proposal.  

From the cellular mobile positioning perspective, this work also opens new opportunities to add extra sources of information as 

part of local solution of the filter, issued, for instance, from any known or recognized landmark, WiFi signal, among others, in 

order to strengthen the global solution induced by the filter. Together with theoretical investigations of the convergence properties 

of the filter, this will would constitute part of our perspective work in the near future.   
 

Appendix 
 

The Walfish-Ikigami model defines a set of parameters intervening in the expression of the model, see [22, 24]: 

 Loss=Tx−Rx: Path loss (dB) 

 f: Frequency bearer (MHz): 800 ≤ f ≤ 2000. 

 hb: Height of antenna (m) of the  base station in relation to soil: 4 ≤ h b  ≤ 50. 

 hm: Height of antenna (m) of the mobile station in relation to soil: 1 ≤ h m ≤ 3. 

 hr: Middle height (m) of the buildings: hr ≥ h hm.   

 W: Width of the road (m) where the mobile is situated   

   b: Distance (m) between the centers of buildings  

   d: Distance (Km) between the BS and the mobile:  0.2 ≤ d ≤ 5. 

 α: Angle (in degrees) that makes the journey with the axis of the road     

      ∆ℎ𝑏=hb – hr: Height of BS to the cover of the roofs.   

      Δhm=hr– hm : Height of MS below the roofs.  

- Case of Line Of Sight LOS 

Lp = 42.64 + 26log (d) + 20log (f)                      

- Case of Non Line Of Sight NLOS 

             𝐿𝑜𝑠𝑠(𝑑𝐵) = {
𝐿𝑓𝑠 + 𝐿𝑟𝑡𝑠  (𝑑𝐵) + 𝐿𝑚𝑠𝑑(𝑑𝐵)   

𝐿𝑓              𝐼𝑓  𝐿𝑟𝑡𝑠 + 𝐿𝑚𝑠𝑑 ≤ 0   
 

 

 



  

With:  

Lfs: the attenuation in free space    

Lrts: the attenuation due to the diffraction on the roofs of the buildings.   

Lmsd:   the attenuation due to the multiple diffractions 

 The attenuation in free space: 

𝐿𝑓𝑠= 32,44+20Log(d) +20Log(f) 

 The attenuation due to the diffraction on the roofs of the buildings: 

 

𝐿𝑟𝑡𝑠= -16,9 – 10 Log (w) + 10 Log(f) +20 Log (∆ℎ𝑚) + 𝐿𝑜𝑟𝑖 

Lori: is a term that depends on the orientation of the road in relation to the emitter.    

     𝐿𝑜𝑟𝑖 = {

−10 + 0,3574𝛼                   0 ≤ 𝛼 ≤ 35°
                  2,5 + 0,075(𝛼 − 35)       35° ≤ 𝛼 ≤ 55°

4 − 0,1004(𝛼 − 55)                  55° ≤ 𝛼 ≤ 90°
 

 

 The attenuation due to the multiple diffractions: 

      𝐿𝑚𝑠𝑑= 𝐿𝑏𝑠ℎ+𝐾𝑎+𝐾𝑑Log (d) +𝐾𝑓Log (f) – 9Log (b)   

Ka and Kd : are two factors of empiric correction of the height of the antenna. 

Kf : is a factor of adaptation of the different densities of the buildings. 

With : 

𝐿𝑏𝑠ℎ={
−18𝐿𝑜𝑔(1 + ∆ℎ𝑏)       ℎ𝑏 > ℎ𝑟
0                                       ℎ𝑏 ≤ ℎ𝑟

 

      Ka={

54                                       ℎ𝑏 > ℎ𝑟
54 − 0,8∆ℎ𝑏                     𝑑 ≥ 0,5   𝑛𝑑 ℎ𝑏 ≤ ℎ𝑟

54 − 0,8∆ℎ𝑏 (
𝑑

0,5
)            𝑑 < 0,5  𝑎𝑛𝑑 ℎ𝑏 ≤ ℎ𝑟

 

 

       Kd={
18                           ∆ℎ𝑏 > 0   

18 − 15 (
∆ℎ𝑏

∆ℎ𝑚
)  ∆ℎ𝑏 ≥ 0  

                         

      Kf={
−4 + 0,7 (

𝑓

925
− 1)  𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑖𝑡𝑦

−4 + 1,5 (
𝑓

925
− 1)   𝐵𝑖𝑔 𝑐𝑖𝑡𝑦

 

 

     In the absence of detailed data on the structure of the buildings, the Cost231 recommends the following values: 

 20 ≤b ≤50m, w=b/2.  

In our test data, we used the following:   

 Distance (m) between the centers of buildings b= 50 m, Width of the road w=25 m, the angle (in degrees) who makes the journey 

with the axis of the road α = 30°, the middle height (m) of the buildings hr =15 m.   

The carrier frequency f is determined using the already pointed out formula:   

     f = 1805 + 0.2 (ARFCN -511) 
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Fig. 1 Localization framework 

 

 
 

Figure 2. Centralized versus decentralized Kalman Filtering architectures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3. Generic scheme of FEKF 
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Figure 4. Example of target positioning with respect to weights yi. 

 
Figure 5. Membership function of input variable “innovation” 

 

 

Figure 6. Membership function of input variable “Covariance-innovation” 



  

 
Figure 7. Membership function of input variable “distance” of FCS. 

 
Figure 8. Tools and example of drive test image of TEMS software.  

 
 

Figure 9. Real and estimated trajectories in case of linear itinerary 
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Figure 10. Performances in terms of RMSE in case of linear trajectory 

 
Figure 11. Influence of R0 values on RMSE performance in case of linear trajectory 

 

 
Figure 12. Influence of P0 values on RMSE performance in case of linear trajectory 



  

 
Figure 13. Influence of Q0 values on RMSE performance in case of linear trajectory 

 
Figure 14. Example of drive test experience in Algiers’ area 

 
Figure 15. Real and estimated trajectories in case of real-time experiment 



  

 
Figure 16. Performances in terms of RMSE in case of real time experiment 

 
Figure 17. Influence of R0 values on RMSE performance in case of real time experiment 

 
Figure 18. Influence of P0 values on RMSE performance in case of real time experiment. 



  

 
Figure 19. Influence of Q0 values on RMSE performance in case of real time experiment. 

  



  

TABLE I: Fuzzy Rules for FEKF 

    𝐼𝑛𝑛𝑘
𝑖                                  

 

 𝑆𝑘
𝑖  

Very Large Large Neutral Small Very Small 

Large 

 
0.25 0.5 0.5 0.5 0.75 

Small 

 
0 0.25 0.5 0.75 1 

For instance,  

If  𝐼𝑛𝑛𝑘
𝑖  is Small AND 𝑆𝑘

𝑖  is Large THEN yi = 0.75 

IF  𝐼𝑛𝑛𝑘
𝑖  is Large AND 𝑆𝑘

𝑖  is Small THEN yi = 0.25 

The above table shows an optimal five partitions on the input variable 𝐼𝑛𝑛𝑘
𝑖  and two partitions for input variable 𝑆𝑘

𝑖 , as well as 

five distinct discrete values of ci.  

 
TABLE II. FEKFS pseudo-code 

Input: 

 

Output: 

i

kB , 𝐻𝑘
𝑖  , 𝑑𝑘

𝑖  (i=1, N), �̂�𝑘
−, Pk

−, R, P0, Q0.  

 

 𝑋𝑘 = 𝑋𝑘
𝑒𝑠𝑡 , 𝑃𝑘 = 𝑃𝑘

𝑒𝑠𝑡 ,  �̂�𝑘+1
− , 𝑃𝑘+1

−  . 

 

FOR i = 1 to N 

- Calculate Filter gain  

           𝐾𝑘
𝑖 = Pk

−𝐻𝑘
𝑖 𝑇 (𝐻𝑘

𝑖Pk
−𝐻𝑘

𝑖 𝑇 + 𝑅𝑘)
−1

  

- Calculate predicted distance D̂𝑘
𝑖 = 𝐻𝑘

𝑖 �̂�𝑘
−

 

- Calculate innovation 𝐼𝑛𝑛𝑘
𝑖 = 𝑑𝑘

𝑖 − D̂𝑘
𝑖  

- Calculate innovation covariance  

          𝑆𝑘
𝑖 = 𝐻𝑘

𝑖𝑃𝑘
−𝐻𝑘

𝑖 𝑇 + R . 

- Calculate local solution  
        �̂�𝑘

𝑖 = �̂�k−1 + 𝐾𝑘
𝑖(𝐼𝑛𝑛𝑘

𝑖 ) 

- yi = Fuzzy_Inferrence_System1 (𝐼𝑛𝑛𝑘
𝑖 , 𝑆𝑘

𝑖 ). 

END 

 

Calculate target estimate 𝑋𝑘
𝑒𝑠𝑡 and 𝑃𝑘

𝑒𝑠𝑡 using (15-16) 

Calculate next prediction �̂�𝑘+1
− , 𝑃𝑘+1

−  using (2-3). 

 

 
TABLE III: Fuzzy Rules associated to distance input fuzzy inference system. 

distance Very Small Small Medium Large Very Large 

Weight c       1   0.75 0.5 0.25      0 

 

  



  

TABLE IV FCS pseudo-code 

Input: 

 

 

 

 

Output: 

i

kB , 𝐻𝑘
𝑖  , 𝑑𝑘

𝑖  (i=1, N), �̂�𝑘
−, Pk

−, R, P0, Q0.  

 

 

Target estimate 𝑋𝑘 = 𝑋𝑘
𝑒𝑠𝑡 

 

FOR i=1 to N 

- yi = Fuzzy_Inferrence_System2 (𝑑𝑘
𝑖 . ). 

- Calculate Filter gain  

           𝐾𝑘
𝑖 = Pk

−𝐻𝑘
𝑖 𝑇 (𝐻𝑘

𝑖Pk
−𝐻𝑘

𝑖 𝑇 + 𝑅𝑘)
−1

  

- Calculate the innovation 𝐼𝑛𝑛𝑘
𝑖 = 𝑑𝑘

𝑖 − 𝐻𝑘
𝑖 �̂�𝑘

− 

- Calculate the local solution  
-         �̂�𝑘

𝑖 = �̂�k−1 + 𝐾𝑘
𝑖(𝐼𝑛𝑛𝑘

𝑖 ) 

END 

 

Calculate target estimate 𝑋𝑘
𝑒𝑠𝑡 and 𝑃𝑘

𝑒𝑠𝑡 using (15-16) 

Calculate next prediction �̂�𝑘+1
− , 𝑃𝑘+1

−  using (2-3). 

 

 
TABLE V Average RMSE along the whole trajectory. 

 FCS EKF FEKF 

Average RMSE (km) (one-Linear Traj.) 0.1642 0.0518 0.0360 

Standard deviation  0.1148 0.0250 0.0184 

Average RMSE (km) (two-Linear Traj.) 
0.2181 0.0937 0.0605 

Standard deviation  
0.0820 0.0824 0.0434 

 
TABLE VI Comparaison test for RMSE along the linear trajectories 

 FEKF Vs EKF FEKF Vs FCS 

t-test p-value (Single 

Linear Traj.) 
0.0185  <0.00001 

 

t-test p-value(Two-

Linear Traj.) 

0.0250    <0.00001 

 

  



  

TABLE VII Average RMSE along the whole trajectory for various noise intensities. 

Noise Intensity  F CS EKF FEKF 

        0.001   (Linear Traj.) 0.1640 0.0520 0.0360 

        0.001   (Two-Linear Traj.) 0.2181 

 

0.0937 

 

0.0605 

 

        0.002   (Linear Traj.) 0.1648 0.0565 0.0364 

        0.002   (Two-Linear Traj.) 0.2188 

 

0.0939 

 

0.0612 

 

        0.004   (Linear Traj.) 0.2114 0.0681 0.0565 

        0.004 (Two_LinearTraj.) 0.2213  0.0988 

 

0.0646 

 

        0.006   (Linear Traj.) 0.2224 0.0762 0.0682 

        0.006   (Two-Linear Traj.) 0.2281 

 

0.1037 

 

0.0690 

 

        0.008   (Linear Traj.) 0.2442 0.0942 0.1126 

        0.008   (Two-Linear Traj.) 0.2321 

 

0.1532 

 

0.0914 

 

         0.1    (Linear Traj) 0.258 0.180 0.133 

         0.1 (Two-Linear Traj.) 0.2367 

 

0.1794 

 

0.1002 

 

         0.2  (Linear Traj.) 0.2561 0.1880 0.1500 

        0.2   (Two-Linear Traj.) 0.2454 

 

0.2113 

 

0.1186 

 

        0.3  (Linear Traj.) 0.266 0.203 0.156 

        0.3  (Two-Linear Traj.) 0.2446 

 

0.2303 

 

0.1263 

 

        0.4    (Linear Traj) 0.2532 0.3027 0.1899 

        0.4 (Two-Linear Traj.) 0.2533 

 

0.2362 

 

0.1433 

 

         0.5   (Linear Traj.) 0.251 0.438 0.326 

         0.5  (Two_LinearTraj.) 0.3028 0.2390 0.1611 

    

         0.6   (Linear Traj.) 0.3264 0.6549 0.5382 

         0.6  (Two_LinearTraj.) 0.5878 0.2572 0.3268 

 

TABLE VIII. Example of distance calculation using Walfish-Ikigami model 
Cell ID Hb Tx Rxlev ARFCN Walfish distances (Km) 

16139E 52 43 -69 764 0.455334 

16212F 36 45 -74 756 0.537776 

16203F 15 45 -95 766 0.443333 

 
TABLE IX Average RMSE along the whole trajectory. 

 FCS EKF FEKF 

Average RMSE (km) Urban 

environment 0.1642 0.0518 0.0360 

Average RMSE (km) Semi-urban 

environment 0.4102 0.0736 0.0583 

 

TABLE X. Statistical t-test results along whole trajectory 

 FEKF Vs EKF FEKF Vs FCS 

t-test p-value (Urban 

environment.) 
0.0211    <0.00001 

 

t-test p-value(Semi-urban 

environment.) 

0.0427 <0.00001 

 

 


