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Abstract 

Extremely high precipitation occurs in the Southern Alps of New Zealand, associated with 

both orographic enhancement and synoptic-scale weather processes. In this study, we test 

the hypothesis that atmospheric rivers (ARs) are a key driver of floods in the Southern Alps 

of New Zealand. Vertically-integrated water vapour and horizontal water vapour transport, 

and atmospheric circulation, are investigated concurrently with major floods on the Waitaki 

River (a major South Island river). Analysis of the largest eight annual maximum floods 

between 1979 and 2012 indicates that all are associated with ARs. Geopotential height fields 

reveal that these ARs are located in slow eastward moving extra-tropical cyclones, with high 

pressure to the northeast of New Zealand. The confirmation of ARs as a contributor to 

Waitaki flooding indicates the need for their further exploration to better understand South 

Island hydrometeorological extremes.  
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1. Introduction 

Flooding is a recurrent phenomenon in New Zealand, with flood magnitude relative to basin 

size close to global maximum values, particularly for the rivers draining the Southern Alps in 

the South Island (Pearson and Henderson, 2004). Many communities are located on 

floodplains and much critical infrastructure is dependent on water from rivers (in particular, 

hydroelectricity and irrigation). Consequently, floods have been calculated as the most costly 

natural hazard in New Zealand (McSaveney, 2009). 

Heavy precipitation events in the Southern Alps region are associated often with cold 

fronts embedded within the general moist westerly circulation (Pearson and Henderson, 

2004; Salinger et al., 2004). Precipitation associated with these fronts is enhanced typically 

by the orography of the Southern Alps, which rise from sea level to >3000 m within 

approximately 40 km of the west coast. The combination of frontal precipitation and 

orographic uplift can result in a „seeder-feeder‟ situation, whereby the synoptic-origin 

precipitation scavenges moisture that has condensed at a lower level as a result of forced 

uplift to create extreme heavy precipitation events (Purdy and Austin, 2003; Purdy et al., 

2005). 

In mid-latitude regions of the world, atmospheric rivers (ARs) have been identified as 

important meteorological drivers of floods, for example in western North America (e.g. Ralph 

et al., 2006; Neiman et al., 2011) and Europe (e.g. Lavers et al., 2011, 2012, Lavers and 

Villarini, 2013; Ramos et al., 2015). A very recent global study has indicated the presence of 

ARs in New Zealand (Guan and Walliser, 2015), and the presence of an AR has been noted 

for individual floods before (Dean et al., 2013; Rosier et al., 2015), but ARs importance for 

flooding in New Zealand has not yet been investigated systematically. Herein, we 

hypothesise that ARs may be useful in understanding the causes of New Zealand floods 

given the very high proportion of precipitation originating from oceanic sources (Dirmeyer et 

al. 2009) and occurrence of very high annual precipitation totals (up to 15,000 mm) in the 

Southern Alps (e.g. Kerr et al. 2011). 
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The aim of this study is to determine the role of ARs for flood events on the Waitaki River 

in the South Island of New Zealand. The Waitaki is typical of rivers draining east from the 

Southern Alps and is the single most important river nationally for hydroelectricity 

generation. Analysis of the potential role of ARs is achieved by characterising the vertically 

integrated water vapour (IWV)  and vertically integrated horizontal water vapour transport 

(IVT) concurrent with the largest annual maximum flood events for the Waitaki River for the 

period 1979-2012. Additionally, geopotential height fields are used to determine the 

connection between atmospheric circulation, IWV and IVT over the Waitaki. 

 

2. Data and Methods 

The Waitaki River (11,900 km2) drains in a southeasterly direction from a height of 3724 m 

above sea level in the Aoraki/Mount Cook National Park. The river basin has very marked 

climatic and physiographic gradients, varying from the snow and glacier dominated alpine 

headwaters with high precipitation (annual totals > 15,000 mm; Kerr et al. (2011)), to a 

continental-type climate with mean annual precipitation < 500 mm. In this study, inflow data 

for Lake Pukaki are used as the basis for flood analysis, and were obtained from Meridian 

Energy, the hydroelectricity company that operate this section of the upper Waitaki basin. 

Pukaki (1457 km2) is the largest of the three main headwater sub-basins in the Waitaki, and 

timing of high inflow events in this lake is similar to the other two sub-basins (Tekapo and 

Ohau; Kingston et al. (2016)). Owing to the aforementioned very strong precipitation 

gradient, and limited storage within the Waitaki basin, river flow in these sub-basins are 

highly correlated with downstream variation in river flow. 

Daily lake inflow data were analysed for the period 1 October 1979 to 30 September 

2012 (33 water years; herein we define the water year as beginning on 1 October, the month 

of lowest flow annually in the study period). Henceforth, 1980 refers to the water year of 

1979–1980. Flood events were identified using a block maxima approach over the period 

1980–2012 (Coles, 2001; Tallaksen et al., 2004). This method extracts the maximum daily 

http://onlinelibrary.wiley.com/wol1/doi/10.1029/2012JD018027/full#jgrd18106-bib-0006
http://onlinelibrary.wiley.com/wol1/doi/10.1029/2012JD018027/full#jgrd18106-bib-0038
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mean flow in a certain period (or block), and in this study two different time periods were 

used: (1) October to March to determine the Summer Maximum Series (SMS); and (2) April 

to September to determine the Winter Maximum Series (WMS). The resulting half-yearly 

time series were assessed to determine the seasonality of the largest floods in the Waitaki 

basin.  

Specific humidity, and zonal and meridional winds on 20 pressure levels between 1000 

and 300 hPa were retrieved from the European Centre for Medium-Range Weather 

Forecasts (ECMWF) ERA-Interim (ERAI) reanalysis (Dee et al., 2011) at a 6-hourly 

resolution over the 1979–2012 period. Data were extracted on a T128 (N255) reduced 

Gaussian grid and converted on to a regular latitude-longitude grid of approximately 

0.7°×0.7°. Following Neiman et al. (2008), the ERAI vertically-integrated horizontal water 

vapor transport (IVT) was then calculated. ERAI Geopotential at 500 hPa was retrieved for 

the analysis of the large-scale atmospheric circulation. Meteorological data for the basin 

(temperature, precipitation) were obtained for the Mount Cook weather station (located near 

the head of Lake Pukaki) from the National Institute of Water and Atmospheric Research 

(NIWA) CliFlo database. 

 

3. Results 

In Figure 1, we show the SMS and WMS floods over 1980–2012. In most years (except 

2003 and 2009) the SMS is greater than the WMS, meaning that the annual maxima floods 

occur during the Southern Hemisphere summer (October to March). Generally, the 

difference between the SMS and WMS is substantial (i.e. greater than twice the magnitude). 

Given these findings, hereafter we focus on the summer floods and the associated large-

scale atmospheric conditions. 

 

3.1 Hydrometeorological analysis of the largest flood  
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To investigate the atmospheric conditions that were associated with the largest flood in the 

1979-2012 analysis period (9th January 1994), maps of IVT and 500 hPa geopotential height 

on the day of the flood and two days preceding were evaluated (Figure 2). On the 7th of 

January a relatively strong and persistent IVT was present over the basin (location given by 

a black dot on Figure 2). An area of low geopotential height (a proxy for a low pressure 

region) moved eastwards from the south of Australia towards New Zealand, which was 

associated with strengthening IVT over the Tasman Sea. This low geopotential region 

became quasi-stationary on the 8th January, leading to a persistent and strong northwesterly 

airflow and IVT corridor in the form of an AR, with IVT values exceeding 1000 kgm-1s-1. The 

„core‟ of the AR appears to have been located over the basin for approximately 24 hours 

between 8-9th  January (Figure 2i-l), leading to 131% of the January mean precipitation 

being received over these two days, an increase in surface air temperature and a 

corresponding lake inflow 1162% higher than the monthly mean (Table 1).  

 

 3.2 Hydrometeorological analysis of the top eight floods 

Given the key role that an AR had in the largest flood on the Waitaki River, we consider if 

ARs are responsible for the largest eight (approximately the top 25%) floods too (Table 1). 

All flood events are associated with very high precipitation totals and all-but-one with above 

average temperatures occurring within the timeframe of the event (Table 1). For this broader 

analysis, we use the 3-day time-integrated IVT, a diagnostic that has been used in previous 

studies to show the presence of AR conditions (e.g. Moore et al., 2012; Ralph and Dettinger, 

2012). Figure 3 presents the 3-day time-integrated IVT and 3-day average 500 hPa 

geopotential field for the largest eight floods. (For the 9th January 1994 event, the time 

average is taken from 12UTC 6 January 1994 to 06UTC 9 January 1994.) All floods have 

low geopotential heights to the south of New Zealand and high 3-day time-integrated IVT 

embedded in a northwesterly airflow near the basin, indicating that ARs are responsible for 

these floods. Moreover, inspection of the IVT and 500 hPa geopotential height fields for all 6-
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hour time steps on the day of the flood and two days preceding the flood confirms this AR 

finding (not shown). 

We investigate the low altitude atmospheric conditions during the largest eight floods by 

evaluating the total column water vapour (IWV) and 850 hPa wind (Figure 4). Around 

midnight on the day of the flood, the IWV fields provide further evidence for AR features, with 

IWV values of greater than 20mm (following Ralph et al., 2004). The 850 hPa wind speeds 

of between 15 to 30 ms-1 across the events are consistent with likelihood that orographic 

enhancement of precipitation occurred (Wratt et al., 2000).  

 

4. Discussion 

The majority of the largest floods occur in summer (Figure 1), which is generally the season 

of maximum precipitation in this region of New Zealand (Salinger et al. 2004). This result is 

also linked to the effects of seasonal snowmelt (meltwater is estimated to account for 47% of 

entire Waitaki river flow from December-February: McKerchar et al. (1998)). Snowmelt is 

thought to be particularly high during summer flood events due to both rain-on-snow 

processes, and prior to that, the higher temperatures due to warm air-masses advected by a 

northwesterly circulation (for all but one event; Table 1). Relatively high temperatures under 

northwesterly airflow are associated with windward saturated adiabatic cooling and leeward 

dry adiabatic warming immediately prior to passage of the eastward moving band of 

precipitation (McGowan and Sturman, 1996).   

Notwithstanding snowmelt contributions to flood events, the results indicate strongly that 

high IVT is an important contributor to the largest floods in the Waitaki River. Analysis of the 

IVT and IWV fields (Figures 2-4) indicate that in the case of the most extreme Waitaki floods, 

the fluxes of atmospheric moisture are sufficiently large and concentrated to be classified as 

an AR (e.g. following the definitions of Ralph et al. (2004)). Furthermore, the IVT and IWV 
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during the largest flood events are comparable in magnitude to previously studied northern 

hemisphere extratropical flood events (e.g. Lavers et al. (2011, 2012)).  

The ARs contributing to extreme Waitaki floods form at the northeastern edge (along the 

cold front) of eastward moving low pressure systems (Figures 3 and 4), showing moisture 

transport within a predominantly northwesterly airflow. The eastward moving low pressure 

area typically occurs in combination with a high pressure system to the northeast of the 

country (Figures 3 and 4). The resultant strong southwest-to-northeast synoptic pressure 

gradient and related strong northwesterly winds over the Southern Alps indicate the 

forthcoming passage of a cold front; warm and moist air is drawn typically into the path of the 

frontal system from the northwest, resulting in high precipitation (Brenstrum, 1988). Indeed, 

northwesterly airflow under this situation is associated often with high precipitation over the 

Southern Alps (e.g. Pearson and Henderson, 2004; Salinger and Mullan, 1999), and 

furthermore to high upper Waitaki lake inflow at both the monthly and event scale (Kingston 

et al., 2016; Kingston and McMecking, 2015).  

The synoptic situation described in the preceding paragraph is recognisable in two 

prominent methods of characterising atmospheric circulation in the New Zealand region. 

Firstly, the Kidson synoptic weather classification (Kidson, 2000), and specifically the Trough 

regime and T synoptic type, which have been demonstrated to correspond to high 

precipitation in study area (Renwick, 2011). Secondly, the MZ1 and MZ2 „Trenberth Indices‟ 

(Trenberth, 1976; Salinger and Mullan, 1999) of station-pair sea level pressure anomalies 

capture neatly the approximate southwest-northeast gradient across the South Island 

associated with high precipitation and lake inflow. As a result, it may be that the MZ1 and 

MZ2 indices represent a useful proxy for AR occurrence – an important area for further 

research, especially because both indices have previously been shown to be of some use 

for season-ahead prediction of Waitaki river flow (Purdie and Bardsley, 2010; Kingston et al., 

2016). 
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5. Conclusion 

Atmospheric rivers (ARs) have been shown to be an important process associated with the 

largest flood events in Waitaki River, one of largest and most economically important rivers 

in New Zealand. AR characteristics are comparable to those in more widely studied locations 

(such as Western Europe). AR occurrence aligns well with previous understanding of 

synoptic situations associated with both high precipitation events in New Zealand, and high 

river flow for the Southern Alps. As such, this research adds important new understanding of 

the hydrometeorological processes underpinning the occurrence of extreme precipitation 

and river flow. Confirmation of ARs as a contributor to Waitaki flooding indicates the need for 

their further exploration to better understand hydrometeorological extremes in New Zealand. 
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Table 1 Date and magnitude of peak inflow, and concurrent precipitation and daily maximum 

temperature (Tmax). Anomalies from 1981-2000 monthly means shown in brackets: % for 

inflow and precipitation, °C for Tmax. Also indicated are precipitation totals over course of 

precipitation event, and peak temperature on the preceding day. 

 

Date Inflow  

(m-3 s-1) 

Precip 

(mm) 

Tmax 

(°C) 

Event details 

25/12/1979 1847  

(849%) 

341 (69%) 12.3 

(-0.5) 

471 mm (95%) fell over three days.  

15.7 °C (+3.0) on preceding day. 

12/03/1982 1869 

(1147%) 

314 (83%) 14.7 

(+2.4) 

440 mm (116%) fell over three days.  

16.5 °C (+4.2) on preceding day. 

21/12/1984 1563 

(718%) 

225 (45%) 13.8 

(+1.1) 

548 mm (110%) fell over three days.  

11.1 °C (-1.6) on preceding day. 

28/12/1989 1803 

(829%) 

359 (72%) 11.4 

(-1.3) 

468 mm (94%) fell over three days. 

11.5 °C (-1.2) on preceding day. 

9/01/1994 2688 

(1162%) 

302 

(72%) 

15.3 

(+0.7) 

555 mm (131%) fell over two days. 

15.9 °C (+1.3) on preceding day. 

13/12/1995 2210 

(1016%) 

275 (55%) 

No data 

515 mm (104%) fell over three days. 

13.5 °C (+0.7) on preceding day. 

04/01/2002 1473 

(637%) 

0 10.4 

(-4.2) 

109% fell over three days at Franz Josef*. 

15.1 °C (+0.5) on preceding day. 

28/12/2010 1762 

(810%) 

0 12.1 

(-0.6) 

49% fell over two days at Franz Josef*. 

14.2 °C (+1.5) on preceding day. 

 

*Daily precipitation at Mt Cook <1 mm; Franz Josef is the closest station upwind of Mt Cook.  
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Figure 1: Time series of the Summer Maxima Series (SMS; blue line), and Winter Maxima 

Series (WMS; red line) over 1980–2012. 
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Figure 2 (a–f): The integrated water vapour transport (IVT; shading, and arrows) and 500 

hPa geopotential heights (contours on a 50 meter interval) from (a) 12UTC 6th January 1994 

to (f) 00UTC 9th January 1994. These times approximately correspond to 00UTC 7th January 

1994 to 12UTC 9th January 1994 local time. The black dot is the location of the Waitaki 

River. 
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Figure 3 (a–h): The 3-day time-integrated IVT (IVT; shading, and arrows) and 3-day average 

500 hPa geopotential heights (contours on a 50 meter interval) before the largest eight 
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floods (the flood rank is given in the title of each panel). The time average is taken from 

12UTC 3 days before the flood to 06UTC on the day of the flood; for example, for panel (a) 

the time average is taken from 12UTC 6 January 1994 to 06UTC 9 January 1994. The black 

dot is the location of the Waitaki River. 
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Figure 4 (a–h): The integrated water vapour (IWV shaded in mm) and 850hPa wind (barbs in 

ms-1) at 12UTC on the day before the flood (approximately midnight local time on the day of 

the flood). Key for the barbs: circles are < 5 ms-1, half-barbs are 5 ms-1, full barbs are 10 ms-

1. The black dot is the location of the Waitaki River. 


