

University of Birmingham

Inverse truss design as a conic mathematical
program with equilibrium constraints
Kocvara, Michal; Outrata, JV

DOI:
10.3934/dcdss.2017071

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Kocvara, M & Outrata, JV 2017, 'Inverse truss design as a conic mathematical program with equilibrium
constraints', Discrete and Continuous Dynamical Systems - Series S, vol. 10, no. 6, pp. 1329-1350.
https://doi.org/10.3934/dcdss.2017071

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 05/06/2017
This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Discrete and Continuous Dynamical Systems -
Series S following peer review. The definitive publisher-authenticated version KOČVARA, MICHAL, and JIŘÍ V. OUTRATA. "INVERSE
TRUSS DESIGN AS A CONIC MATHEMATICAL PROGRAM WITH EQUILIBRIUM CONSTRAINTS." Discrete & Continuous Dynamical
Systems-Series is available online at: http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=14262.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 17. Apr. 2024

https://doi.org/10.3934/dcdss.2017071
https://doi.org/10.3934/dcdss.2017071
https://birmingham.elsevierpure.com/en/publications/435d7e92-f57e-476b-809e-17af8b7d2d9e

Manuscript submitted to 10.3934/xx.xx.xx.xx
AIMS’ Journals
Volume X, Number 0X, XX 200X pp. X–XX

INVERSE TRUSS DESIGN AS A CONIC MATHEMATICAL

PROGRAM WITH EQUILIBRIUM CONSTRAINTS

Michal Kočvara∗

School of Mathematics, University of Birmingham

Birmingham B15 2TT, United Kingdom

and
Institute of Information Theory and Automation

Academy of Sciences of the Czech Republic, Pod vodárenskou věž́ı 4

18208 Praha 8, Czech Republic

Jiř́ı V. Outrata

Institute of Information Theory and Automation
Academy of Sciences of the Czech Republic, Pod vodárenskou věž́ı 4

18208 Praha 8, Czech Republic

Dedicated to Tomáš Roub́ıček on the occasion of his 60th birthday

(Communicated by the associate editor name)

Abstract. We formulate an inverse optimal design problem as a Mathemat-
ical Programming problem with Equilibrium Constraints (MPEC). The equi-

librium constraints are in the form of a second-order conic optimization prob-
lem. Using the so-called Implicit Programming technique, we reformulate the

bilevel optimization problem as a single-level nonsmooth nonconvex problem.

The major part of the article is devoted to the computation of a subgradient of
the resulting composite objective function. The article is concluded by numer-

ical examples demonstrating, for the first time, that the Implicit Programming

technique can be efficiently used in the numerical solution of MPECs with conic
constraints on the lower level.

1. Introduction. A truss is an assemblage of m pin-jointed uniform straight bars.
The bars are subjected to only axial tension and compression when the truss is
loaded at the joints; the load is denoted by f ∈ Rn. With a given load and a given
set of joints at which the truss is fixed, the goal of the designer is to find a truss that
is as light as possible and satisfies the equilibrium conditions. In the simplest, yet
meaningful, approach, the number of the joints (nodes) and their position are kept
fixed. The design variables are the bar cross-sectional areas assembled in a vector
a ∈ Rm and the only constraints are the equilibrium equation and an upper bound
on the weighted sum of the displacements of loaded nodes, so-called compliance.
This model (or its equivalent reformulations) has been extensively analyzed in the

2010 Mathematics Subject Classification. Primary: 49K40, 74P05; Secondary: 49M05, 90C30.
Key words and phrases. mathematical programs with equilibrium constraints, conic optimiza-

tion, truss topology optimization.
The second author is supported by the Grant Agency of the Czech Republic project 15-00735S.
∗ Corresponding author.

1

2 MICHAL KOČVARA AND JIŘÍ V. OUTRATA

mathematical and engineering literature (see, e.g., [1, 2, 17] and the references
therein).

Assume that we solved, in the past, the truss optimization problem for some
load vector f∗; the solution (bar cross-sectional areas) is denoted by a∗. We are
now facing the question of solving the inverse problem: given an optimal design
a∗ ∈ Rm, we want to find a load vector f ∈ Rn such that a∗ is a solution of the
truss optimization problem for this f ∈ Rn. This might be useful, for instance, for
existing constructions, to determine the loading (position and magnitude of forces)
under which the structure performs best.

The resulting problem is a typical Mathematical Program with Equilibrium Con-
straints (MPEC) where on the upper level we minimize, with respect to the load
vector f , the distance of the solution a from a given a∗ and on the lower level we
solve the truss optimization problem for a given f . One of the established tech-
niques for the solution of a class of MPECs is the so-called implicit programming
(ImP) technique; see [22, 28]. This technique replaces the initial bi-level problem
by a single-level one, by using the solution map implicitly defined via the lower-
level problem. The resulting single-level problem (in variable f only) is typically
nonsmooth and one has to use a nonsmooth optimization algorithm for its solution.

For the implicit programming technique to work, some assumptions have to be
satisfied. In particular, the lower-level optimization problem (in our case the truss
design problem) must satisfy a certain constraint qualification which enables us to
work with respective optimality conditions. Further, its solution map (assigning
a to f) must be at least locally unique and locally Lipschitzian. In case of truss
design, the problem is usually formulated as a nonlinear nonconvex optimization
problem that, unfortunately, does not satisfy the required constraint qualifications.
The problem can be reformulated as a convex quadratically constrained quadratic
problem which, however, does not include a as a (primal) variable. We thus use yet
another reformulation of the truss design problem as a conic optimization problem
with a Cartesian product of Lorentz cones. We will show that this problem (in
variable a) satisfies the required constraint qualification and arrive in this way
at a mathematical program with constraints in the form of a conic optimization
problem, or conic MPEC. Under the assumption that its solution of the lower level
conic problem is unique we will apply the ImP technique. The conic MPECs have
been rarely studied in the literature, due to their technical complexity. The main
difficulty lies in finding a subgradient of the (nonsmooth) composite objective that
includes the solution map to the conic optimization problem. For that we will use
recent results based on the generalized differentiable calculus of B. Mordukhovich
([23, 25]) and on the coderivatives of the projections onto the Lorentz cone ([30]).

To the best of our knowledge, we present one of the first approaches to the so-
lution of a conic MPEC that leads to a computationally approachable problem.
In standard (not conic) MPECs one typically replaces the lower-level equilibrium
problem by the corresponding KKT conditions (if possible), in which the (difficult)
complementarity condition is either relaxed or added to the upper-level objective
via a suitable (exact) penalty. In this way one eventually arrives at a nonlinear
optimization problem in all primal variables and, additionally, the multipliers; see
[16, 32]. Alternatively, under additional assumptions, the ImP approach mentioned
above can be used; see [19] for the comparison of these two techniques. The advan-
tage of the first technique is the fact that one does not need the often complicated
formula for the subdifferential of the composite function, as in the ImP technique.

INVERSE TRUSS DESIGN BY CONIC MPEC 3

On the other hand, the resulting nonlinear optimization problem may be difficult
to solve numerically because it is nonconvex, despite the original lower-level prob-
lem being convex or even linear. Moreover, to guarantee theoretical properties of
this technique, one often needs similar assumptions as in ImP. The disadvantages
of the first technique are magnified when considering a linear conic optimization
problem on the lower level, as in this paper. While avoiding the complex analysis
and technical formulas presented in Section 4, it leads to a nonlinear nonconvex
conic optimization problem, for which there is no available software so far. Com-
pared to that, the ImP approach used here requires solutions of linear second-order
conic problems and of a nonconvex nonsmooth optimization problem in the control
variable only. Numerical results presented in Section 5 show that, indeed, with
this approach we can successfully find local (and often even global) optima in the
considered MPECs. The reader is kindly asked to look at the practical relevance of
our application from this point of view, as a demonstration of solvability of conic
MPECs.

The plan of the paper is as follows. After introducing necessary notation, in Sec-
tion 3 we define the truss design problem, give its various reformulations and show
that the final formulation as a convex conic optimization problem could amenable
for the solution by the ImP technique. In this section we also define our main prob-
lem, the inverse truss design, as a conic MPEC. Section 4 presents details of the
implicit programming technique, in particular, the computation of the subgradient
information for the composite objective function. In Section 5 we show results of
two numerical examples.

2. Notation and preliminaries. For a Lipschitz continuous function f : Rn → R,
∂̄f(x) denotes the Clarke subdifferential at x, defined by

∂̄f(x) = conv{ lim
i→∞

∇f(xi) | xi
Ωf→ x},

where Ωf is the set of points at which f is differentiable.
In Section 4 we use the following notions of variational analysis. Given a closed

set A ⊂ Rn and a point x̄ ∈ A, we denote by TA(x̄) the Bouligand tangent cone
to A at x̄, formed by vectors h ∈ Rn such that there exist sequences hk → h and
tk ↓ 0 for which x̄+ tkhk ∈ A for all k.

We further denote by N̂A(x̄) the Fréchet (regular) normal cone to A at x̄, defined
as the (negative) polar cone to TA(x̄), i.e., by

N̂A(x) = (TA(x̄))0 .

The limiting (Mordukhovich) normal cone to A at x, denoted NA(x), is defined by

NA(x) := Lim sup
x

A−→x

N̂A(x) ,

where “Lim sup” is the Kuratowski-Painlevé outer limit of sets (see [31]). If A

is convex, then NA(x) = N̂A(x) amounts to the classic normal cone in the sense
of convex analysis. We say that x̄ is a (normally) regular point of A, provided

NA(x̄) = N̂A(x̄).
Let Φ : Rn ⇒ Rm be a multifunction with closed graph and (x, y) belong to the

graph of Φ. The multifunction D∗Φ(x, y) : Rm ⇒ Rn, defined by

D∗Φ(x, y)(y∗) := {x∗ ∈ Rn | (x∗,−y∗) ∈ Ngph Φ(x, y)}

4 MICHAL KOČVARA AND JIŘÍ V. OUTRATA

is called limiting (Mordukhovich) coderivative of Φ at (x, y). If Φ happens to be
single-valued, we simply write D∗Φ(x)(·). If Φ is continuously differentiable, then
D∗Φ(x) amounts to the adjoint Jacobian of Φ at x.

Let K ∈ Rm be a closed convex cone with non-empty interior. For a ∈ Rm we
will use the notation a �K 0 for a ∈ K and a �K 0 for a ∈ int (K). Consider the
following linear conic optimization problem with equality constraints:

min
x∈Rn

c>x (1)

subject to

Ax = b

Cx− d �K 0 ,

where c ∈ Rn, A ∈ Rp×n, b ∈ Rp, C ∈ Rm×n, d ∈ Rm.

Definition 2.1. We say that problem (1) satisfies the Conic Mangasarian-Fromovitz
constraint qualification (C-MFCQ) if A has linearly independent rows and there ex-
ists a vector ξ ∈ Rn such that

Aξ = b

Cξ − d �K 0 .

C-MFCQ is equivalent to the Robinson constraint qualification for a general
optimization problem; see, e.g., [5, 15]. In the absence of equality constraints, it
reduces to the Slater constraint qualification.

Definition 2.2. The cone Ln ∈ Rn defined by

Ln =

{
(x1, . . . , xn−1, xn)>

∣∣∣∣ √x2
1 + · · ·+ x2

n−1 ≤ xn
}

is called the n-dimensional Lorentz cone or the second-order cone.

Linear conic problems (1) with the K being the Lorentz cone are called second-
order conic programming problems (SOCP).

The rest of our notation is standard; in particular, gph f denotes the graph of a
map f , Bd (Ω) is the boundary of a set Ω, and ProjK(·) denotes the metric projection
onto a convex set K ⊂ Rn. Finally, for x ∈ R, x+ := max{0, x}.

3. Optimum truss design. By truss we understand an assemblage of pin-jointed
uniform straight bars in two or three spatial dimensions. The bars can only carry
axial tension and compression when the truss is loaded at the joints. A truss is
determined by positions of nodes and cross-section areas of bars, i.e., by vectors
y ∈ Rñ and a ∈ Rm. The bar lengths are denoted by `i. The material properties
of bars are characterized by their Young’s moduli Ei. The response of the truss to
the vector of nodal forces f ∈ Rñ is measured by the vector of nodal displacements
u ∈ Rñ. Some of the nodes are assumed to be fixed, that is, some components of
u are forced to be zero; the simplest way how to treat these components is to omit
them and work with reduced vectors u ∈ Rn and f ∈ Rn, n < ñ. We will always
assume that the nodal coordinates y are fixed.

We now denote by

qi =
Eiai
`i

r>i u

INVERSE TRUSS DESIGN BY CONIC MPEC 5

the axial force in i-th bar and introduce bar stiffness matrices and assemble them
in the global stiffness matrix of the truss

K(a) =

m∑
i=1

aiKi =

m∑
i=1

ai
Ei
`i
rir
>
i , i = 1, . . . ,m

and introduce the equilibrium equation

K(a)u = f . (2)

Here ri denotes the vectors of directional cosines of the i-th bar; see [1]. To simplify

the notation, we define bi =
√

Ei

`i
ri, so that K(a) =

m∑
i=1

aibib
>
i . Finally, we denote

by â ∈ Rm an upper bound for vector a and by V the maximum volume of all bars.

Assumption 1. The rows of the matrix composed column-wise from vectors bi,
i.e., the n×m matrix (b1, b2, . . . , bm), are linearly independent.

Assumption 2. The maximum volume V must satisfy V
m < âi`i, i = 1, . . . ,m, and

thus V <
m∑
i=1

âi`i

It follows from Assumption 1 that K(1m) is positive definite, where 1m ∈ Rm is
the vector of all ones. From the point of view of Mechanics, Assumption 1 excludes
rigid body movements of the truss composed of bars of unit cross-sectional areas.

We first recall the standard truss topology design problem. The design variables
are the bar areas ai and we try to find such a design that the truss of limited volume
is as stiff as possible, with respect to the given load f . This is formulated as the
following standard nonlinear program (NLP), the so-called minimum compliance
problem

min
a,u

f>u (3)

subject to

âi ≥ ai ≥ 0, i = 1, . . . ,m
m∑
i=1

`iai ≤ V

K(a)u = f .

Lemma 3.1. The optimal solution a∗ of (3) is invariant with respect to the scaling
of the load vector f , whereas the second component of the solution, u∗, is directly
proportional to the scaling of f .

Proof. This follows directly from the KKT conditions of (3).

The next theorem shows that the seemingly straightforward optimization prob-
lem (3) does not satisfy (standard) Mangasarian-Fromovitz constraint qualification
(MFCQ).

Theorem 3.2. Let (a, u) be feasible for problem (3), and K(a) be singular and such
that some of its rows and columns are zero. Then MFCQ is violated at (a, u).

Proof. MFCQ is equivalent to the fact that the Lagrangian multipliers associated
with the constraints of the optimization problem are bounded [5]. We will show
that the multipliers in problem (3) may be unbounded.

6 MICHAL KOČVARA AND JIŘÍ V. OUTRATA

We claim that MFCQ is violated when some components of a are equal to zero.
Hence, without loss of generality, we will assume that â = ∞, so that the first
constraint reduces to ai ≥ 0. Let µ ∈ Rn, ν ∈ Rm, λ ∈ R be the Lagrangian
multipliers associated with the constraints in (3). The Lagrangian of (3) is then

f>u− µ> (K(a)u− f) + λ

(
m∑
i=1

`iai − V

)
− ν>a

and the Karush-Kuhn-Tucker (KKT) conditions can be written as

f −K(a)µ = 0

µ>Kiu− `iλ+ νi = 0, i = 1, . . . ,m

K(a)u− f = 0

m∑
i=1

`iai ≤ V, λ ≥ 0,

(
m∑
i=1

`iai − V

)
λ = 0

ai ≥ 0, νi ≥ 0, a>ν = 0 .

The first condition shows that µ solves the equilibrium equation for optimal a.
However, we have assumed that K(a) is singular, in particular, that some of the
rows and columns of K(a) are zero (see the example below the proof). That is,
after a proper re-ordering, the stiffness matrix is of the form

K(a) =

(
K1:n′,1:n′ 0n′,n′′

0n′′,n′ 0n′′,n′′

)
with some 0 < n′, n′′ < n such that n′ + n′′ = n. The last n′′ components of vector
µ may be then arbitrary and thus unbounded.

Even unbounded, vector µ must still satisfy the second KKT condition for all
bars i = 1, . . . ,m. Recall that K(a) =

∑m
i=1 aiKi and assume that the last n′′

components of vector µ are indeed unbounded. Then, for every i = 1, . . . ,m, either
(Ki)n′+1:n,n′+1:n is a zero matrix and then µ>Kiu is finite, or (Ki)n′+1:n,n′+1:n is

not zero. In the latter case, µ>Kiu is unbounded; however, the corresponding ai
must be then equal to zero (as (K(a))n′+1:n,n′+1:n = 0 and the diagonal elements
of Ki are nonnegative), the complementarity condition aiνi = 0 is trivially satisfied
and thus also νi can be (nonnegative) unbounded for the second KKT condition to
hold (see Example 1).

Example 1. Consider the truss shown in Figure 1 with V = 1. The element

(2)

(1)

Figure 1. Two-bar truss.

stiffness matrices of the two bars and the right-hand side vector are

K1 =

(
1 0
0 0

)
, K2 =

1

4

(
1 −1
−1 1

)
and f =

(
1
0

)
.

INVERSE TRUSS DESIGN BY CONIC MPEC 7

Consider the point

a =

(
1
0

)
, u =

(
1
u2

)
with some (fixed) u2 ∈ R. The global stiffness matrix is then

K(a) =

(
1 0
0 0

)
and the equilibrium equation is satisfied by any µ of the form µ = (1, µ2)>, µ2 ∈ R.
The second KKT condition reads then as

µ>K1u− λ = 0

µ>K2u− λ+ ν2 = 0 .

Clearly, λ = 1. Now, the latter equation reduces to

1

4
(1− u2 − µ2 + u2µ2)− 1 + ν2 = 0 .

Without loss of generality, we may assume that u2 < 0 (this component is arbitrary).
The equation then remains valid when ν2 and µ2 go both to plus infinity with the
same rate. 4

3.1. Dual problem (QCQP and QP formulations). We now introduce a re-
formulation of (3) that has a great impact on the numerical solution of truss design
problems. It is the following quadratically constrained quadratic program (QCQP):

min
u∈Rn, α∈R, ρ∈Rm

αV − f>u+

m∑
i=1

âiρi (4)

subject to

1

2
u>Kiu ≤ α`i + ρi, i = 1, . . . ,m

ρ ≥ 0 .

Then next theorem is a compilation of several theorems from [1].

Theorem 3.3 ([1]). The NLP and QCQP problems (3) and (4) are equivalent in
the following sense:

(i) If one problem has a solution, then also the other problem has a solution and

min(3) = min(4) .

(ii) Let (u∗, α∗, ρ∗) be a solution to (4). Let further τ∗ be the vector of Lagrangian
multipliers for the inequality constraints associated with this solution. Then
(u∗, τ∗) is a solution of (3).

(iii) Let (u∗, a∗) be a solution of (3). Let further r∗ be the Lagrangian multipliers
associated with the upper bounds on a, respectively, and let α∗ be the multiplier
for the volume constraint. Then (u∗, α∗, r∗) is a solution of (4).

The QCQP problem (4) can further be rewritten as a standard (linearly con-
strained) quadratic programming problem. We will use the fact that α is always
nonnegative. This follows from the quadratic constraints in (4) and the fact that,
by Assumption 2, ρi = 0 for at least one i.

8 MICHAL KOČVARA AND JIŘÍ V. OUTRATA

Theorem 3.4. The QCQP problem (4) is equivalent to the quadratic program

min
u∈Rn, µ∈R, s∈Rm

(s>, µ) C (s>, µ)> − f>u (5)

subject to

1√
2`i

b>i u ≤ µ+ si, i = 1, . . . ,m

− 1√
2`i

b>i u ≤ µ+ si, i = 1, . . . ,m

s ≥ 0

µ ≥ 0 ,

where

C =


â1`1 â1`1

. . .
...

âm`m âm`m
â1`1 · · · âm`m V

 .

Proof. We first apply transformation of variables α, ρ in (4) to new variables µ ∈
R, s ∈ Rm,

α = µ2, ρi = `i(2µsi + s2
i) ,

to get a problem

min
u∈Rn, µ∈R, s∈Rm

µ2V − f>u+

m∑
i=1

âi`i(2µsi + s2
i)

subject to

1

2

1

`i
u>Kiu ≤ (µ+ si)

2, i = 1, . . . ,m

s ≥ 0

µ ≥ 0 .

Now recalling that Ki = bib
>
i , we immediately get (5).

Remark 1. Matrix C in Theorem 3.4 may be indefinite, in general. Indeed, if
V is not big enough, relative to âi`i, it may have one negative eigenvalue and m
non-negative ones. Only when V ≥

∑m
i=1 âi`i (and this is not a typical case and

contradicts Assumption 2), C will become positive semidefinite, according to the
Gershgorin theorem [14]. It was shown in [1] that problem (5) is convex nonetheless,
as C is positive semidefinite on the feasible set of (5). However, the consequence
is that (5) cannot be readily solved by available software for convex quadratic pro-
gramming, such as Gurobi [11].

3.2. Primal SOCP formulation. We recall a simple but useful lemma that shows
the relation between convex quadratic constraints and second-order conic con-
straints. The proof follows from direct evaluation of the expression on the right-hand
side.

Lemma 3.5. Let x ∈ Rn, t ∈ R and s ∈ R, s > 0. Then

x>x

s
≤ t ⇐⇒

∥∥∥∥(x
t−s

2

)∥∥∥∥
2

≤ t+ s

2
.

INVERSE TRUSS DESIGN BY CONIC MPEC 9

Using this lemma, QCQP (4) can be immediately re-written as an SOCP problem

min
u∈Rn, α∈R, ρ∈Rm

αV − f>u+

m∑
i=1

âiρi (6)

subject to∥∥∥∥∥
(√

2
2 b
>
i u

α`i+ρi−1
2

)∥∥∥∥∥
2

≤ α`i + ρi + 1

2
, i = 1, . . . ,m

ρ ≥ 0 .

3.3. Dual SOCP formulation. The primal SOCP formulation (6) does not in-
clude the variable a, the cross-section areas. This will be desirable in the next
section, so we have to work with its dual.

Proposition 3.6. The dual problem to (6) can be written as

min
a∈Rm, τ∈Rm, q∈Rm

1

2

m∑
i=1

τi (7)

subject to
m∑
i=1

ai`i = V

m∑
i=1

qibi = f∥∥∥∥(√2qi
2ai−τi

2

)∥∥∥∥
2

≤ 2ai + τi
2

, i = 1, . . . ,m

0 ≤ ai ≤ âi, i = 1, . . . ,m ,

where a are the bar areas, q the bar axial forces and the objective function is equal
to the compliance.

Proof. Let µi, νi be Lagrangian multipliers to the conic constraints, where µi =
(µi,1, µi,2) ∈ R2 and νi ∈ R, i = 1, . . . ,m. Further, let κ ∈ Rm be the multiplier to
the bound constraint on ρ. The Lagrangian dual to (6) reads as

max
µ∈Rm×2, ν∈Rm, κ∈Rm

1

2

m∑
i=1

µi,2 − νi

subject to

1

2

m∑
i=1

(µi,2 + νi)`i = V

m∑
i=1

µi,1

√
2

2
bi = f

‖µi‖2 ≤ νi, i = 1, . . . ,m

1

2
µi,2 +

1

2
νi + κi = âi, i = 1, . . . ,m

κi ≥ 0, i = 1, . . . ,m .

10 MICHAL KOČVARA AND JIŘÍ V. OUTRATA

Setting qi =
√

2
2 µi,1, ai = 1

2 (µi,2 + νi) and τ = νi − µi,2, we first see that ai ≤ âi
(from the last two constraints), and that ai ≥ 0 (as |µi,2| ≤ νi from the conic
constraint). Consequently, we get (7).

An important property of the above reformulation is stated in the next proposi-
tion.

Proposition 3.7. The dual SOCP problem (7) satisfies C-MFCQ from Defini-
tion 2.1.

Proof. By Assumption 1, the gradients of the equality constraints are linearly in-
dependent. We need to find a point (a, τ, q) feasible with respect to the equality
constraints and strictly feasible with respect to the conic inequalities. (The stan-
dard inequalities ai ≥ 0 and âi − ai ≥ 0, i = 1, . . . ,m, can of course be viewed as
conic inequalities with the cone Rm+ .)

Choose

ãi =
V

m`i
, i = 1, . . . ,m .

Then
∑m
i=1 ãi`i = V and, by Assumption 2, 0 < ãi < âi, i = 1, . . . ,m. By

Assumption 1, the matrix K(ǎ) with ǎi = ãi`
− 1

2
i is positive definite, so that we can

define a (finite) unique vector

ũ = (K(ǎ))
−1
f

and the corresponding axial forces

q̃i =
Ei
`i
ãib
>
i ũ, i = 1, . . . ,m .

By Lemma 3.5, the conic inequalities can be written as

ai
`i
u>Kiu ≤ τi, i = 1, . . . ,m .

For ã and ũ the left-hand side is always finite, so that we can find τ̃i, i = 1, . . . ,m,
such that

ãi
`i
ũ>Kiũ < τ̃i, i = 1, . . . ,m .

The triple (ã, τ̃ , q̃) is the vector satisfying Definition 2.1.

3.4. Uniqueness of solution to SOCP (7). It is well known that the optimal
solution of problem (7), in particular, the design vector a may be non-unique. This
is demonstrated in Figure 2: it shows a 3× 3 truss with all nodes connected by po-
tential bars. Both trusses presented in this figure and all their convex combinations
are optimal solutions of problem (7) (this can easily be confirmed numerically). We
have to emphasize, however, that this is a very rare situation requiring a special
combination of the nodal positions and the load vector. Indeed, in the above exam-
ple, a minor change in either the nodal positions or the force direction would result
in unique solution a∗ of (7) .

In the MPEC problem (8) below we want to identify some a∗, an optimal solution
of (7) for a given f∗. Let S(·) : Rn → R3m be the solution map assigning a load
vector f the (unique) optimal solution (a, τ, q) of (7). Denote by Sa a “restriction”
of this map satisfying

gphSa = {(f, a) | ∃τ, q : (f, a, τ, q) ∈ gphS} .

INVERSE TRUSS DESIGN BY CONIC MPEC 11

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

Figure 2. Two solutions of the 3 × 3 truss design problem with
all nodes connected.

In the following, we will assume that the truss nodal positions and load vector f∗ are
chosen in such a way that Sa has a Lipschitzian single-valued localization around
(f∗, a∗), see [9, p.4]. In our case this means, by virtue of the convex valuedness
of Sa, that Sa(f∗) = a∗ and there is a neighborhood U of f∗ such that Sa is
single-valued and Lipschitz continuous on U . It is readily seen from the proof of
Proposition 3.6 and the definition of the axial force q that the single-valuedness and
the Lipschitz continuity of Sa over U amounts, in fact, the single-valuedness and
Lipschitz continuity of S over U . This may be ensured, e.g., via the property of
nondegeneracy introduced in the next section and the appropriate strong second-
order sufficient condition, see [6, Thm. 5].

3.5. MPEC for inverse truss design. Assume that we solved, in the past, the
dual SOCP formulation (7) of the truss design problem for some load vector f∗. We
are now facing the question of solving the inverse problem: given an optimal design
a∗ ∈ Rm, we want to find a load vector f ∈ Rn such that a∗ is a solution of (7) for
this f ∈ Rn. As mentioned in the Introduction, this may be useful, for instance,
for existing constructions, when we want to determine the loading (positions and
magnitudes of forces) under which the structure performs best.

As usual in such problems, we will try to find a vector a ∈ Rm that minimizes
the 2-norm of the difference between a and a∗. The problem can be formulated as
follows:

min
f∈Rn,a∈Rm

(a− a∗)>(a− a∗) (8)

subject to

a solves (7) with load vector f

f ∈ F ,

where F ⊂ Rn is a feasible set for f . Problem (8) is a conic MPEC, as defined in
the Introduction. As also mentioned there, one of the established techniques for the
solution of MPECs is the so-called implicit programming technique (see [22, 28]).

12 MICHAL KOČVARA AND JIŘÍ V. OUTRATA

The idea of the ImP approach is to replace problem (8) by the following non-
smooth optimization problem, referred to as ImP-MPEC:

min
f∈Rn

(Sa(f)− a∗)>(Sa(f)− a∗) (9)

subject to

f ∈ F .

The new problem (9) can now be solved by algorithms and software of nonsmooth
optimization. In particular, the ImP technique is known to couple well, e.g., with
the bundle algorithm described in [7]. This algorithm requires at each iteration, i.e.,
for any choice of f ∈ F , the knowledge of the objective function value of (9) and
of one arbitrary element of its Clarke subdifferential. While the objective function
value is immediately available, the computation of an element of the subdifferential
is highly nontrivial and, in case of conic MPEC, has not been conducted in the
literature yet. The next section is devoted to this issue.

4. Computation of subgradients of the composite objective. Assume that
f belongs to a neighborhood of f∗ on which S : f 7→ (a, τ, q) generated by the dual
SOCP problem (7) is single-valued and Lipschitz continuous, as discussed in the
previous section. In the computation of the “subgradient” information needed for
the minimization of the respective composite objective function via the used bun-
dle method, we take advantage of the generalized differential calculus of B. Mor-
dukhovich and employ the chain rule [23, Thm. 1.110]. It follows that for an arbi-
trary continuously differentiable function ϕ of argument a and for a fixed quadruple
(f, a, τ , q) ∈ gphS one has the inclusion

∂(ϕ ◦ S)(f) ⊃ D∗S(f, a, τ , q)(∇ϕ(a), 0, 0) , (10)

whenever S is single-valued and Lipschitzian around f .
So any element from the right-hand side of (10) provides a workable subgradient

information at the considered point. Unfortunately, the currently available tools of
variational analysis do not enable us to compute such an element at all points of
gphS. In this section we will explain the used technique and discuss the properties
of the resulting information which will be supplied to the bundle algorithm as a
desired Clarke subgradient of the composite objective function in ImP-MPEC (9).
To this purpose, we replace SOCP (7) by a slightly more general convex conic
program which will allow us to simplify both the notation and the final formulas.

This conic program, dependent on parameter f ∈ Rn, attains the form

min
y

h(y) (11)

subject to

g(f, y) = 0

b(y) ∈ K
y ∈ Ω ,

where y ∈ Ro stands for the triple (a, τ, q), g : Rn × Ro → Rr is affine linear and
models the map in the equality constraints in (7), Ω ∈ Ro is a closed convex set
replacing the bound constraints on a and the constraint b(y) ∈ K generalizes the
conic constraints in (7). We will assume that h : Ro → R is convex and continuously
differentiable, K ⊂ Rp is a closed cone with vertex at 0 and non-empty interior and
b : Ro → Rp is twice continuously differentiable and K-convex [5, Def. 2.103]. These

INVERSE TRUSS DESIGN BY CONIC MPEC 13

assumptions are satisfied by the dual SOCP problem (7) and imply, in particular,
that (11) is a convex program. Let Γ be the constraint multifunction in (11) defined
by

Γ(f) = {y |Ψ(f, y) ∈ D} , (12)

where

Ψ(f, y) =

g(f, y)
b(y)
y

 and D =

{0}K
Ω

 .
Further, let Σ : Rn ⇒ Ro be the “solution map” of (11) which assigns each f the
corresponding set of minimizers y. Clearly, by virtue of the assumed convexity, for
f = f , y is a solution of (11) if and only if it is a solution to the GE

0 ∈ ∇h(y) +NΓ(f)(y) ,

and, with Q(f, y) := NΓ(f)(y), one has

gph Σ =

(f, y) ∈ Rn × Ro
∣∣∣∣∣∣
 f

y
−∇h(y)

 ∈ gphQ

 .

Define now the associated perturbation mapping M : Rn+2o → Rn+o via

M(p) :=

(f, y)

∣∣∣∣∣∣
 f

y
−∇h(y)

− p ∈ gphQ

 . (13)

According to [12, Thm. 4.1] one has that

Ngph Σ(f, y) ⊂
{

(a, d+∇2h(y)c)
∣∣ (a, d) ∈ D∗Q(f, y,−∇h(y))(c)

}
, (14)

whenever M has the calmness property at (0, f , y); see [31, p. 399]. This property
is fulfilled under the “standard” 2nd-order qualification condition

d+∇2h(y)c = 0

(0, d) ∈ D∗Q(f, y,−∇h(y))(c)

}
=⇒ d = 0, c = 0 , (15)

which ensures even the stronger Aubin property ofM around (0, f , y) ([31, Def.9.36]).
In most applications of the ImP technique to various MPECs, the coderivative

D∗Q(f, y,−∇h(y)) can be computed and condition (15) can be verified. Even then,
however, the subgradient information based on the right-hand side in (14) need not
be always correct because it is an upper estimate of Ngph Σ(f, y). In our case,
the situation is even more complicated because, under the imposed C-MFCQ, we
dispose only with an upper approximation of D∗Q(f, y,−∇h(y)) derived in [25,
Thm. 4.3]. Notice that this upper approximation requires the fulfillment of an ad-
ditional calmness assumption and knowledge of all Lagrange multipliers associated
with the constraint system (12). Fortunately, recent results in [10] indicate that
certain conic programs fulfill generically the so-called nondegeneracy condition and
under this condition D∗Q(f, y,−∇h(y)) can be computed exactly. (More precisely,
in [10] this has been proved for nonlinear semidefinite programming (SDP) prob-
lems and thus, as every SOCP problem can be formulated as an SDP problem, also
for our dual SOCP (7).)

14 MICHAL KOČVARA AND JIŘÍ V. OUTRATA

To introduce the nondegeneracy in the case of problem (11), notice first that
C-MFCQ at (f, y) for this problem amounts to the implication

0 ∈ (∇yg(f, y))>λ+ (∇b(y))>µ+NΩ(y)

g(f, y) = 0, µ ∈ NK(b(y))

}
⇒ λ = 0, µ = 0 . (16)

This follows from [5, Prop. 2.89] because both these conditions are equivalent with
the metric regularity of the canonically perturbed conic constraint system

Ψ(f, y) ∈ D (17)

around (y, 0). Following [5, Def. 4.70] and [29, p. 804], we may now say that y is a
nondegenerate point of (17), provided (16) is strengthened to the form

0 ∈ (∇yg(f, y))>λ+ (∇b(y))>µ+ spanNΩ(y)

g(f, y) = 0, µ ∈ spanNK(b(y))

}
⇒ λ = 0, µ = 0 . (18)

It is easy to prove that if y is a nondegenerate point of (17), then there are
unique Lagrange multipliers λ ∈ Rr, µ ∈ NK(b(y)) and ν ∈ NΩ(y), satisfying the
KKT conditions

∇yL(f, y, λ, µ, ν) = 0

g(f, y) = 0 ,
(19)

where L(f, u, λ, µ, ν) := ∇h(y) + ∇yg(f, y)>λ + ∇b(y)>µ + ν is the Lagrangian
associated with problem (11).

We may now invoke the recent results in [24, 26] and arrive at the following
statement.

Theorem 4.1. Let y be a nondegenerate point of (17) and λ ∈ Rr, µ ∈ NK(b(y))
and ν ∈ NΩ(y) be the unique Lagrange multipliers satisfying (19). Then one has

D∗Q(f, y,−∇h(y))(v) =
{

(a,w) ∈ Rn × Ro
∣∣∣ a =

(
∇fg(f, y)

)>d,
w ∈ ∇2

yy〈g, λ〉(f, y)v +∇2〈b, µ〉(y)v +
(
∇yg(f, y)

)>d
+ (∇b(y))>D∗NK(b(y), µ)(∇b(y)v) +D∗NΩ(y, ν)(v)

with some vectors d ∈ Rr, v ∈ ker∇yg(f, y)
}
.

(20)

Proof. The proof follows essentially from [26, Thm. 3.1], where this type of a second-
order chain rule has been derived under surjectivity of ∇yΨ(f, y). The replacement
of this requirement by the nondegeneracy has been conducted in [24, Prop. 5.1].
The restriction v ∈ ker∇yg(f, y) comes from the fact that

D∗N{0}
(
g(f, y), λ

) (
∇yg(f, y)v

)
=

〈
Rr provided ∇yg(f, y)v = 0

∅ otherwise,

so that we have no restrictions on d, but have to require that v ∈ ker∇yg(f, y).

Vector a amounts to the single term
(
∇f g(f, y)

)>d because ∇yg(f, y) does not

depend on f .

INVERSE TRUSS DESIGN BY CONIC MPEC 15

Under the assumptions of Theorem 4.1 we thus immediately obtain that the
right-hand side of (14) amounts to{

(ξ, η) ∈ Rn × Ro
∣∣∣ ξ =

(
∇fg(f, y)

)>d, η ∈ ∇yL(y, λ, µ, ν)>v

+
(
∇yg(f, y)

)>d+ (∇b(y))>D∗NK(b(y), µ)(∇b(y)v) +D∗NΩ(y, ν)(v)

with some vectors d ∈ Rr, v ∈ ker∇yg(f, y)
}
.

(21)

It now follows from the definition of the coderivative that D∗Σ(f, y)(y∗) can be
approximated by the set of vectors ξ such that (ξ,−y∗) belongs to the set (21). This
type of approximation has been used in numerous applications of the ImP technique
to MPECs with complicated variational systems on the lower level [3, 4, 18].

So, given a vector η ∈ Ro, let us define the “adjoint system” in variables d ∈ Rr,
v ∈ Rp:

η ∈ ∇yL(y, λ, µ, ν)>v + (∇yg(f, y))>d

+ (∇b(y))>D∗NK(b(y), µ)(∇b(y)v) + D∗NΩ(y, ν)(v)

v ∈ ker∇yg(f, y) .

 (22)

On the basis of (21) we propose the following three-step procedure for the compu-
tation of a point that will be supplied as an element from ∂(h ◦ Σ)(f).

Algorithm 1.

(i) Solve (11) with f = f to obtain y and associated multipliers λ, µ, ν.
(ii) Solve (22) with these data and η = −∇h(y) to obtain a solution (d, v) ∈

Rr × Rp.
(iii) Put

ξ =
(
∇fg(f, y)

)> d . (23)

Next we observe that the vector ξ from (23) belongs to D∗Σ(f, y)(∇h(y)) , pro-
vided

(a) M (defined in (13)) is calm at (0, f , y);
(b) y is a nondegenerate point of (17);
(c) the points (b(y), µ) and (y, ν) are regular points of the sets gphNK and gphNΩ,

respectively.

Indeed, following [31, Thm.6.14] and [23, Thm.4.1], it can be shown that N̂gph Σ(f, y)
contains the set (21), provided the limiting coderivativesD∗NK(b(y), µ) andD∗NΩ(y, ν)
are replaced by their regular counterparts. This fact, together with inclusion (14)
produces a chain of inclusions which, under condition (c), become equalities. The
nature of conditions (a)–(c) indicates that in the course of the iteration process we
meet almost always points where our methods leads to a correct subgradient. This
behaviour has been observed also in the case of the MPEC problem (8). Further no-
tice that the algorithm of the used nonsmooth code BTNCLC is sufficiently robust
so that it can cope with occasionally incorrect subgradients. Concerning (a),(b),
one could attempt to verify implications (15) and (18) at the considered points.
This would, however, be extremely time-consuming and definitely not practicable
during the iteration process. It is substantially easier to verify the stationarity of
the obtained results on the basis of a suitable stationarity concept. Finally notice
that in many of our numerical examples presented in the next section, BTNCLC
converged to points giving optimal objective values smaller than 10−7. Due to the

16 MICHAL KOČVARA AND JIŘÍ V. OUTRATA

nature of problem, without any further verification we may conclude that these
points are (approximations of) global minima.

We conclude this section with a specification of the above procedure to our MPEC
problem (8). With respect to the structure of K(=

∏m
i=1 L

3), it is convenient to put

y = (y1, y2, . . . , ym) ∈ R3m with yi = (ai, τi, qi) ∈ R3, i = 1, . . . ,m .

Also vector b(y), multipliers µ, ν, adjoint variable v and vector L have the same
structure, where v = (v1, v2, . . . , vm) ∈ R3m with vi = (v1

i , v
2
i , v

3
i),

L(y, λ, µ, ν) = (L1(y1, λ, µ1, ν1), . . . ,Lm(ym, λ, µm, νm))

with

Li(yi, λ, µi, νi) =

0
1
2
0

+B>i λ+A>µi +

νi0
0

 , i = 1, . . . ,m ,

and

A =

0 0
√

2
1 − 1

2 0
1 1

2 0

 , Bi =

[
`i 0 0
0 0 bi

]
,

i.e., Bi ∈ R(1+n)×3. Finally, let λ = (λ1, λ2) ∈ R×Rn, where λ1 and λ2 are related
to the first and the second equality in the dual SOCP problem (7), respectively.
Putting everything together, we arrive at a system of linear equations in 7m +
n + 1 variables α = (α1

1, α
2
1, α

3
1, . . . , α

1
m, α

2
m, α

3
m) ∈ R3m, d ∈ R1+n, γ ∈ Rm,

v = (v1
1 , v

2
1 , v

3
1 , . . . , v

1
m, v

2
m, v

3
m) ∈ R3m0

0
0

 =

ai − a∗i0
0

+B>i

[
d1

d2

]
+A>

α1
i

α2
i

α3
i

+

γi0
0

 for i = 1, . . . ,m (24)

m∑
i=1

Bivi = 0 (25)

together with the relations

αi ∈ D∗NL3(Ayi, µi)(Avi) for i = 1, . . . ,m (26)

γi ∈ D∗N[0,âi](ai, νi)(v
1
i) for i = 1, . . . ,m . (27)

System (24)–(27) represents a specific form of adjoint system (22). By a suitable
choice of selections from the coderivative mappingsD∗NL3(Ayi, µi) andD∗N[0,âi](ai, νi),
we obtain a square linear system in (α, d, γ, v); see [19, pp. 138–139].

The limiting coderivatives of NL3 and N[0,âi] are well-known (see, e.g., [30, 8]
and the Appendix) and so the choice of suitable vectors αi, γi (dependent on the
position of considered points in the graph of NL3 and N[0,âi], respectively) does

not make any difficulties. In step (iii) of Algorithm 1 we then put ξ = −d2, where
(α, d, γ, v) is a solution of system (24)–(27).

Finally notice that under assumptions (a)–(c) stated above, the system (24)–(27)
possesses a solution. This follows from the fact that the set of all vectors −d2 arising
in the solutions of (24)–(27) amounts under (a)–(c) to the limiting (Mordukhovich)
subdifferential of ϕ◦S at f , where ϕ is the objective in the ImP-MPEC problem (9).
Since ϕ ◦ S is Lipschitz around f , the claim is implied by the non-emptiness of this
subdifferential, see [23, p. 86].

INVERSE TRUSS DESIGN BY CONIC MPEC 17

5. Numerical experiments. In this section we present results of numerical ex-
amples which, on the one hand, demonstrate the correctness of our formulas and,
on the other hand, the difficulties connected with this problem.

Intentionally, we do not specify realistic physical properties, like material elastic
modulus E or density ρ. In all examples, they are assumed to be equal to one.
This can be done without any loss of generality or applicability due to the lin-
ear dependence of the volume, compliance, and stiffness matrices on a, E and ρ.
Switching from our default values to realistic physical values (say, E = 2.1 · 1011

Pa and ρ = 7.8 · 103 kg/m3) is a matter of a simple linear scaling of our results.
Further, when we speak of an i × j truss, we have in mind a regular equidistant
grid of i times j nodes, i in the horizontal direction and j in the vertical direction.
Thus the dimensions of the nodal grid are (i− 1)(j − 1).

The truss topology software together with formulas for the subgradients were
implemented in MATLAB. The SOCP problems (7) were defined using YALMIP
[21] and solved by the conic solver MOSEK [27]. The nonsmooth optimization
problem (9) was solved by the Bundle-Trust code BTNCLC [33] for nonsmooth
nonconvex optimization with linear constraints. Stopping criterion for BTNCLC
was set to ε = 10−4.

The examples were solved on a notebook with Intel Core i7 CPU M620 2.67GHz
running 64-bit Windows 7.

In all examples, we have first solved the dual SOCP problem (7) with a given
load vector f∗ to get an optimal design a∗. Then, by solving MPEC (8), we tried
to reconstruct this design, starting with a random load vector. We did not apply
any constraints on f , i.e., we set F = Rn in the ImP-MPEC (9). Notice that, using
Lemma 3.1, the optimal solution a of the NLP problem (3) (and thus SOCP (7)) is
invariant to the scaling of the load vector f . This means that problem (8), without
any additional constraints on f , has always infinitely many optimal solutions giving
the same value of the objective function.

The ImP-MPEC optimization problem (9) is nonconvex, hence BTNCLC may
converge to a local minimum or just to a stationary point. The solution obtained
(whether local or global) and the iteration process depends significantly on the
initial iteration. We have adopted three strategies for choosing the initial point fini:

INI1: random vector of sum one;
INI2: random vector of zero sum with norm 0.1‖f∗‖ added to the original load f∗;
INI3: random vector of sum one applied only at nodes with nonzero components of

the original load f∗; here we assume that we know the loaded nodes but not
the actual load vector.

Comparison with a derivative-free method. Is the complicated computation
of the subgradient information (and the theory behind) really necessary? After all,
with F = Rn the implicit programming problem (9) is a nonsmooth unconstrained
optimization problem. We may thus try to solve it by an appropriate derivative-
free optimization (DFO) method. In this the examples below, we thus present also
results obtained by a DFO algorithm and compare them with the BTNCLC results.
Our DFO method of choice was the universal Nelder-Mead “simplex” algorithm
and its implementation by Higham [13], available in File Exchange by Mathworks
as nmsmax.m. We have used the default settings of nmsmax.m, in particular, of the
stopping criterion: the algorithm stopped when the simplex size shrank below 10−4.
We refer to this method as NMSMAX in the examples below.

18 MICHAL KOČVARA AND JIŘÍ V. OUTRATA

For NMSMAX we set the INI3 starting point equal to zero. With the original
INI3 MOSEK sometimes failed to solve the SOCP subproblem .

Example 2. Consider a 5-by-3 truss with all nodes connected by 74 potential bars.
The bottom-corner nodes are fixed in both directions, and horizontal force (0,−1)
is applied at all remaining bottom-line nodes; see Figure 3-left. The upper bound
on a was chosen as â = 0.25. The optimal design a∗ is shown in Figure 3-right.

Figure 3. Five-by-three truss (Ex. 2): initial layout and optimal design

Table 1 summarizes the results obtained by BTNCLC and NMSMAX from our
three initial points. We present the computed optimal objective value c∗ and, in
the next four columns, number of iterations needed to reach the objective values
10−3–10−6. The last column gives the number of iterations needed to reach the
value c∗, i.e., the number of iterations needed to fulfill the stopping criterion of the
respective algorithm. The superiority of BTNCLC is clearly demonstrated by these
results.

Table 1. Results of Example 2. The last columns show the num-
ber of iterations needed to obtain the value of the objective function
smaller than 10−3–10−6 and (the last column) to fulfill the stopping
criterion.

number of iterations to reach
method INI c∗ 10−3 10−4 10−5 10−6 c∗

BTNCLC 1 2.4 · 10−8 23 36 50 63 88
BTNCLC 2 2.0 · 10−8 6 15 25 43 64
BTNCLC 3 7.6 · 10−8 9 11 16 23 26
NMSMAX 1 7.7 · 10−6 547 1018 3631 – 6617
NMSMAX 2 1.5 · 10−4 694 – – – 4406
NMSMAX 3 5.7 · 10−6 33 66 106 – 192

Example 3. Consider a 5-by-5 truss with all nodes connected by 200 potential bars.
The nodes on the left-hand side are fixed in both directions, and forces (1,−0.333)
and (1, 0.333) are applied at the bottom-right and top-right nodes, respectively; see
Figure 4-left. The upper bound on a is again â = 0.25. The optimal design a∗ is
shown in Figure 4-right.

Table 2 presents the results in the same format as Table 1. We can see that,
in case of INI3, BTNCLC converged to a local optimum with c∗ = 0.44; the cor-
responding design is shown in Figure 5-right. The derivative-free code had serious
problems in this example and only obtained an acceptable solution with INI3, how-
ever, in much bigger number of iterations than BTNCLC.

INVERSE TRUSS DESIGN BY CONIC MPEC 19

Figure 4. Five-by-five truss (Ex. 3): initial layout and optimal design

Table 2. Results of Example 3. The last columns show the num-
ber of iterations needed to obtain the value of the objective function
smaller than 10−3–10−6 and (the last column) to fulfill the stopping
criterion.

number of iterations to reach
method INI c∗ 10−3 10−4 10−5 10−6 c∗

BTNCLC 1 2.6 · 10−7 67 92 111 313 143
BTNCLC 2 4.8 · 10−8 9 29 46 71 99
BTNCLC 3 4.4 · 10−1 – – – – 11
NMSMAX 1 5.3 · 10−3 – – – – 13487
NMSMAX 2 1.7 · 10−2 – – – – 7850
NMSMAX 3 2.0 · 10−6 68 157 171 – 207

We reiterate that the load vector f leading to the same design vector a is not
unique. Not only is the design a invariant with respect to scaling of f , it may differ
substantially from the original given load f∗. An example is shown in Figure 5-left
which presents the optimal solution obtained by BTNCLC from initial point INI1.
As seen in Table 2 (and indeed in Figure 5 itself), this load vector leads to the same
design as the original load f∗ depicted in Figure 4.

Appendix. To compute vectors α, γ satisfying (26),(27), we make use of the well-
known relationship

a ∈ NK(b)⇔ b = ProjK(a+ b) , (28)

which is valid for any closed convex set K. This enables us to express the limiting
coderivative of NLn(·) in terms of the limiting coderivative of ProjLn(·) and employ
the results of [30]. Since the formulas used to compute an element of the limiting
coderivative of the metric projection ProjLn(·) onto the second order cone Ln are
rather complicated, we decided to give them in full detail in this Appendix.

For x = (x̂, xn) with x̂ ∈ Rn−1, xn ∈ R, we define the spectral decomposition

x = λ1(x)c1(x) + λ2(x)c2(x)

20 MICHAL KOČVARA AND JIŘÍ V. OUTRATA

Figure 5. Five-by-five truss (Ex. 3): optimal load and correspond-
ing design as computed by BTNCLC with INI1 (left) and INI3
(right).

with
λ1(x) = xn + ‖x̂‖2, λ2(x) = xn − ‖x̂‖2

and, for x 6= 0,

c1(x) =
1

2

[x̂
‖x̂‖2

1

]
, c2(x) =

1

2

[
− x̂
‖x̂‖2
1

]
.

If x = 0 then

c1(x) =
1

2

[
w
1

]
, c2(x) =

1

2

[
−w
1

]
,

with any w ∈ Rn−1 such that ‖w‖2 = 1. The metric projection of x onto Ln can
then be written as

ProjLn(x) = (λ1(x))+c1(x) + (λ2(x))+c2(x) .

We further define the symmetric matrix of divided differences Ψ(x) =

[
Ψ11(x) Ψ12(x)
Ψ12(x) Ψ22(x)

]
by

Ψii(x) =

〈
1 if λi(x) ≥ 0

0 otherwise
for i = 1, 2

Ψ12(x) =
(λ1(x))+ − (λ2(x))+

λ1(x)− λ2(x)
.

Assume that x 6∈ Ln ∪ −Ln. Then we know ([20]) that the projection of x onto
Ln is Fréchet differentiable at x and

∇ProjLn(x) = 2

2∑
i=1

Ψii(x)ci(x)(ci(x))> + Ψ12(x)

[
I − x̂x̂>

‖x̂‖22
0

0 0

]
. (29)

We now recall formula (25)

αi ∈ D∗NL3(Ayi, µi)(Avi) for i = 1, . . . ,m

and show its particular forms for various values of y and µ. Using (28), we can
write the above relation equivalently as

−Avi ∈ D∗ProjL3(Ayi + µi)(−Avi − αi) for i = 1, . . . ,m , (30)

INVERSE TRUSS DESIGN BY CONIC MPEC 21

see [29, Lemma 19].
We recognize three main cases in which ProjL3 is differentiable and ∇ProjL3 is

symmetric:

Case 1: Ayi + µi 6∈ Ln ∪ −Ln. Then we can use (29) and relations (30) to obtain
the form of equations in αi, vi:

∇ProjL3(Ayi + µi)(Avi + αi)−Avi = 0 for i = 1, . . . ,m .

Case 2: Ayi ∈ int (Ln), µi = 0. Then we project an element from the interior of the
cone and the derivative of the projection is trivially ∇ProjL3(Ayi + µi) = I,
giving us the equations

αi = 0 for i = 1, . . . ,m .

Case 3: Ayi = 0 µi ∈ int (−Ln). Now we project an element from the interior of
the polar cone, thus ∇ProjL3(Ayi + µi) = 0 and (30) gets the form

Avi = 0 for i = 1, . . . ,m .

In the remaining three cases, the formulas for the limiting coderivatives of ProjL3 are
substantially more complicated; see [30, Thms. 3,4]. Nevertheless, for our purpose
it suffices to make the following choices which keep the adjoint system (24)–(27)
not too difficult to solve. In particular:

if Ayi ∈ Bd (L3) \ {0}, µi = 0, proceed as in Case 1 or Case 2;

if Ayi = 0, µi ∈ Bd (−L3) \ {0}, proceed as in Case 1 or Case 3;

if Ayi = 0, µi = 0, proceed as in any of Cases 1,2,3.

REFERENCES

[1] W. Achtziger, M. Bendsøe, A. Ben-Tal and J. Zowe, Equivalent displacement based formu-
lations for maximum strength truss topology design, IMPACT of Computing in Science and

Engineering, 4 (1992), 315–345.

[2] M. Bendsøe and O. Sigmund, Topology Optimization. Theory, Methods and Applications,
Springer-Verlag, Heidelberg, 2002.

[3] P. Beremlijski, J. Haslinger, M. Kocvara, R. Kucera and J. V. Outrata, Shape optimization in

three-dimensional contact problems with coulomb friction, SIAM Journal on Optimization,
20 (2009), 416–444.

[4] P. Beremlijski, J. Haslinger, J. V. Outrata and R. Patho, Shape optimization in contact

problems with coulomb friction and a solution-dependent friction coefficient, SIAM Journal
on Control and Optimization, 52 (2014), 3371–3400.

[5] J.-F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer
Science & Business Media, 2013.

[6] J. F. Bonnans and H. Ramı́rez, Perturbation analysis of second-order cone programming

problems, Mathematical Programming, 104 (2005), 205–227.
[7] J.-F. Bonnans, J. C. Gilbert, C. Lemaréchal and C. A. Sagastizábal, Numerical Optimization:

Theoretical and Practical Aspects, Springer Science & Business Media, 2006.
[8] A. L. Dontchev and R. T. Rockafellar, Characterizations of strong regularity for variational

inequalities over polyhedral convex sets, SIAM Journal on Optimization, 6 (1996), 1087–1105.
[9] A. L. Dontchev and R. T. Rockafellar, Implicit functions and solution mappings, Springer

Monographs in Mathematics. Springer, 194.
[10] D. Dorsch, W. Gómez and V. Shikhman, Sufficient optimality conditions hold for almost all

nonlinear semidefinite programs, Mathematical Programming, 158(1) (2016), 77–97.

[11] Gurobi Inc, Gurobi optimizer reference manual. Version 6.5, 2016.
[12] R. Henrion, A. Jourani and J. Outrata, On the calmness of a class of multifunctions, SIAM

Journal on Optimization, 13 (2002), 603–618.

22 MICHAL KOČVARA AND JIŘÍ V. OUTRATA

[13] N. J. Higham, Optimization by direct search in matrix computations, SIAM J. Matrix Anal.
Appl., 14 (1993), 317–333.

[14] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 2012.

[15] F. Jarre, Elementary optimality conditions for nonlinear SDPs, in Handbook on Semidefinite,
Conic and Polynomial Optimization (eds. M. Anjos and J. Lasserre), Springer, 2012, 455–470.

[16] C. Kanzow and A. Schwartz, Mathematical programs with equilibrium constraints: enhanced

fritz john-conditions, new constraint qualifications, and improved exact penalty results, SIAM
Journal on Optimization, 20 (2010), 2730–2753.

[17] M. Kočvara, M. Zibulevsky and J. Zowe, Mechanical design problems with unilateral contact,
M2AN Mathematical Modelling and Numerical Analysis, 32 (1998), 255–282.

[18] M. Kočvara, M. Kruž́ık and J. V. Outrata, On the control of an evolutionary equilibrium in

micromagnetics, in Optimization with multivalued mappings, Springer, 2006, 143–168.
[19] M. Kočvara and J. V. Outrata, Optimization problems with equilibrium constraints and their

numerical solution, Mathematical Programming, 101 (2004), 119–149.

[20] A. Korányi, Monotone functions on formally real Jordan algebras, Mathematische Annalen,
269 (1984), 73–76.

[21] J. Löfberg, YALMIP : A toolbox for modeling and optimization in MATLAB, in Proceedings

of the 2004 IEEE International Symposium on Computer Aided Control Systems Design,
Taipei, Taiwan, 2004, 284–289.

[22] Z.-Q. Luo, J.-S. Pang and D. Ralph, Mathematical Programs with Equilibrium Constraints,

Cambridge University Press, 1996.
[23] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation I: Basic Theory,

vol. 330, Springer Science & Business Media, 2006.
[24] B. S. Mordukhovich, N. M. Nam and N. T. Yen Nhi, Partial second-order subdifferentials in

variational analysis and optimization, Numerical Functional Analysis and Optimization, 35

(2014), 1113–1151.
[25] B. S. Mordukhovich and J. V. Outrata, Coderivative analysis of quasi-variational inequalities

with applications to stability and optimization, SIAM Journal on Optimization, 18 (2007),

389–412.
[26] B. S. Mordukhovich and R. T. Rockafellar, Second-order subdifferential calculus with appli-

cations to tilt stability in optimization, SIAM Journal on Optimization, 22 (2012), 953–986.

[27] MOSEK ApS, The MOSEK optimization toolbox for MATLAB manual. Version 7.1 (Revi-
sion 28), 2015, URL http://docs.mosek.com/7.1/toolbox/index.html.

[28] J. V. Outrata, M. Kočvara and J. Zowe, Nonsmooth Approach to Optimization Problems

with Equilibrium Constraints: Theory, Applications and Numerical Results, vol. 28, Springer
Science & Business Media, 1998.

[29] J. V. Outrata and H. Ramı́rez C, On the Aubin property of critical points to perturbed
second-order cone programs, SIAM Journal on Optimization, 21 (2011), 798–823.

[30] J. V. Outrata and D. Sun, On the coderivative of the projection operator onto the second-
order cone, Set-Valued Analysis, 16 (2008), 999–1014.

[31] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer, Berlin-Heidelberg, 1998.

[32] H. Scheel and S. Scholtes, Mathematical programs with equilibrium constraints: Stationarity,

optimality and sensitivity, Mathematics of Operations Research, 25(1) (2000), 1–22.
[33] H. Schramm and J. Zowe, A version of the bundle idea for minimizing a nonsmooth function:

Conceptual idea, convergence analysis, numerical results, SIAM Journal on Optimization, 2
(1992), 121–152.

Received xxxx 20xx; revised xxxx 20xx.

E-mail address: m.kocvara@bham.ac.uk

E-mail address: outrata@utia.czs.cz

