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Abstract. Stroke survivors often have difficulties performing Activities of Daily
Living (ADL). When trying to complete a task, they tend to rely on caregivers who
give them cues when necessary. However, this reliance on caregivers’ support may
affect their ability to live independently. In our study, we have developed CogWatch
- an assistive system designed to provide guidance to stroke survivors during tea-
making. An evaluation of the system was carried out on twelve patients. The latter
were asked to complete different ADLs with and without CogWatch’s assistance.
Results showed that patients succeed at the tasks more often when assisted by the
system than without guidance. It is anticipated that this system could be installed
in the home environment and provide early stage rehabilitation.

Keywords. Stroke survivors, Activities of daily living, Action planning, MDP,
Assistive technology

1. Introduction

There are more than 100,000 new stroke cases every year in the UK, with over half of
all stroke survivors depending on others to carry out Activities of Daily Living (ADL)
due to loss of physical and cognitive functions [1]. The loss of independence has a direct
impact on the patients, relatives, carers and society as a whole. The cost of stroke to
society is estimated to be £8.9 billion a year, with about half linked to indirect costs of
on-going support [2]. Difficulty in completing ADL due to cognitive deficits is estimated
to affect 46% of stroke survivors [3]. Errors during ADL relate to defective use of real
tools and objects [4], the inability to correctly select appropriate tools for a task [5], or
the inability to complete sequences of actions [6]. These impairments are associated with
loss of action knowledge [7], attention and executive function deficits [8], and/or loss of
object knowledge [9]. The aim of the current project is to develop a technology that can
support stroke survivors during everyday tasks, such as making a cup of tea. Technology
is widely used in physiotherapy and its efficacy is well researched [10]. In physiotherapy,
it is used for:
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1. Assessing patient’s functionality and improvement [11],
2. Administering rehabilitation tailored to the patient’s needs [12],
3. Providing on-going assistance and feedback [13].

When systems are able to monitor patients, they also have the potential to reduce the
number of consultations with specialists, assess disease progression and evaluate med-
ication effects [14]. In the arena of home-based monitoring of chronic diseases several
studies have been carried out, in particular [15, 16]. In [15], the authors proposed a mon-
itoring device able to provide self-assessments and motor tests. Cued and un-cued tests
were designed to collect data on upper limb conditions. The data were then analyzed to
evaluate user’s compliance and the usability of the device. Based on similar methods,
another home-based assessment tool was presented by Cunningham et al. in [16]. Their
novel approach ensured that users did not need to wear any sensorized objects to be
monitored. The computer-based device was designed to collect data on hand and finger
movements. Their results showed that the data collected could distinguish between the
states where the users’ medication was working at its best and when it had worn off.

Monitoring home-based systems can be enhanced with Artificial Intelligence (AI)
methods and automatic planning techniques. In such a case, these systems do not only
collect data on patients’ state but also provide reminders or guidance in order to help
them during ADL. The increased interest in this field led to the development of systems
such as Autominder [17], Guide [18] and COACH [19]. In [17], the authors described a
cognitive orthotic system - the Autominder. The latter is designed to provide personal-
ized reminders of ADL to older adults. To achieve its goal, the system tries to maintain a
correct representation of the user’s daily plan, monitor its execution, and plan reminders
accordingly. After being specified, the user’s plan is updated through the day. High qual-
ity reminders are then generated by an intelligent planning system based on a Planning-
by-Rewriting approach [20]. Implemented as a scheduling aid, the Autominder reminds
users what activities should be done through the day. However, it does not help them to
correctly go through each of these activities. Another example is COACH [19], which
has been designed to provide instructional cueing in order to guide users during one
specific task: hand-washing. The system uses a Markov Decision Process (MDP) based
planning system to provide prompts when needed. To fulfill this goal, it implements a
hand-tracking module that needs to capture enough information about the user’s envi-
ronment and behavior during the task. However, in [21], the authors highlighted the fact
that COACH did not track user progress well due to the poor performance of the tracking
module. Moreover, the process of generating an accurate model of a task for COACH is
extremely complex, time consuming and difficult to generalize to other activities [22].

Similarly to COACH, Guide [18] is an assistive system for cognition that focuses
on one specific task and provides verbal prompts. In [18], authors described how Guide
provides guidance to amputees with cognitive impairments when putting on their pros-
thetic limbs. To do so, the system interacts with users through speech. It asks a series
of questions to users about their task completion and provides prompts based on their
answers. Thus unlike COACH, Guide relies on users’ verbal input to infer their current
state. While this can overcome challenges related to the accuracy of automatic detection
of actions, it cannot be used with users who have speech impairments (i.e., aphasia). Such
impairments are a common problem of stroke survivors [23, 24] with high comorbidity
of praxis (difficulty in complex manual movement) and aphasia [25]. In such a case, it is
reasonable to consider that some users may be reticent to have to verbally interact with



an assistive system in order to make the later be aware of their task completion so they
can receive its guidance accordingly [26].
In this paper, we introduce a novel MDP-based assistive system technology: CogWatch.
Its aim is to provide meaningful instructional cues to stroke survivors during tea-making.
Compared to other systems previously described, the model on which CogWatch is based
has been designed to be easily adaptable to different ADLs and can automatically detect
when users need assistance. Indeed, the planning module implemented in CogWatch is
flexible, and allows the system to provide guidance during other tasks, such as teeth-
brushing. Note that in this paper, results will only be given on the system’s ability to
successfully guide users during tea-making.
For CogWatch to fulfill its goals, it monitors the users in a sensorized environment, tracks
their behavior, and infers their potential need for guidance in order to retrieve adequate
prompts. A prompt is considered to be adequate when (1) it is a valid continuation of
what the user has achieved so far (i.e., the user state), and (2) it is retrieved because
an incorrect pattern in the user’s behavior (i.e., user’s error) is detected by the system.
Hence, the assistive system implements an Artificial Intelligent Planning System (AIPS)
that is composed of at least two modules: (1) the Action Policy Module (APM), which
ensures that cues are a valid continuation of the user state, and (2) an Error Recognition
Module (ERM), whose aim is to detect potential user errors during the task. This means
that CogWatch needs to be able to plan, potentially under uncertainty, to retrieve the right
strategies to the user, and to do so at the right time. Planning is the core of many studies
focusing on automated sequential decision-making. Many researchers, in different fields,
have addressed this problem by using a Markov Decision Process (MDP) framework
[27, 28] as an underlying model for planning or recommendation. Even though assump-
tions can vary between fields, the MDP framework is powerful enough to embrace many
different applications: [29, 30, 31, 32, 33].

This paper will focus on the structure of the APM and ERM. We propose a novel
MDP state representation for ADL management, and report the ability of CogWatch to
guide a simulated user (SimU ) and twelve real patients during tea-making. The paper is
structured as follows. First an overview of CogWatch is given, then the technique used
for its APM and ERM to fulfill their goals is explained. The viability of our framework
is also analyzed, by comparing users’ performance with and without the help of the
system’s outputs. Finally, the limitations of the framework and future plans are discussed.

2. Assistive System Architechture

Figure 1 depicts the main modules composing CogWatch. It works as follows. First, the
user chooses the type of tea (e.g., “Black tea with sugar”) he/she would like to receive
training for. Immersed in an instrumented environment, the user moves sensorized ob-
jects at his/her disposal to perform an action (denoted by au in the figure). When moved,
these objects generate data that are passed to a module called the Action Recognition
System (ARS), whose aim is to recognize the user action. Processing the data in real-
time, the ARS outputs an observation o that it communicates to the AIPS. The latter is
in charge of selecting the prompts a∗m composed of: (1) the best next action a∗s the sys-
tem considers the user should follow to successfully continue the task, and (2) its best
understanding of whether the user has just made an error or not e∗s; and if an error has



Figure 1. CogWatch architecture

been made, what was the type of this error. Each AIPS prompt a∗m is then passed to the
Cue Selector, which displays, when necessary, the AIPS output in a form of a cue that
the user can easily understand ãm (e.g., still images, video, recorded message).

Figure 2 shows the graphical interface connected to the Cue Selector. It has been
designed for the user to easily interact with CogWatch. Through this interface, the user
has access to:

• A history of completed actions, provided by the AIPS and displayed in the
progress bar,

• A visual reminder of the type of tea currently selected (i.e., task selection),
• A “task completion button" that can be pressed if the user considers that the task

is finished,
• A “help button" that can be pressed if the user needs to receive the AIPS prompt

(it will cause a cue to be generated based on the best prompt a∗m),
• A “repeat button" that can be pressed if the user needs to repeat the last prompts,
• A screen which displays a video of the prompt if necessary.

After each action, the user can continue his/her interaction with the system and enter in
new cycles until the task is completed. For the AIPS to guide the user properly, it needs to
learn the optimal action the user should perform at any stage of the task. To do so, it acts
like an agent, and interacts with its environment by taking actions and receiving costs.
In the long run, its aim is to take actions that lead to the lowest expected long-term cost.
As one can see in Figure 1, when the AIPS receives an observation from the ARS, one of
its modules called the State Modeler uses this information to re-create a representation
rs of the system’s environment. In CogWatch, the system’s environment is what the user
has achieved so far (i.e., the user state). The representation of the user’s state is then
passed to the APM and the ERM which need to decide what is the optimal prompt to be



Figure 2. CogWatch patient’s screen

sent to the user. It is important to highlight that both modules may have an incomplete
understanding of the user state. In such a case, they may be forced to base their outputs
on a probabilistic estimation of this state. Various reasons can explain why an agent does
not necessarily have access to a complete understanding of the user’s state:

1. The sensors used to gather information about the environment can be noisy,
2. The ARS can make errors and output wrong information to the AIPS,
3. The effect of the agent actions on the environment can be unpredictable (e.g.,

user’s compliance to prompts),
4. Many events beyond the agent’s control can arise, such as exogenous events.

Note that in the case of the prototype presented in this paper, each time an ARS
observation did not correspond to the real user action, a clinician had the possibility
to modify this observation in real-time via a specific touch-screen. In other words, the
ARS observations could be corrected before letting them reach the AIPS. Thus, as it was
made possible to prevent the AIPS from receiving wrong information about the user’s
behavior, we made the assumption that the user state was fully observable from its point
of view. This case can be modeled by considering that each observation o output by
the ARS corresponds to the real user action au. This assumption implies that the AIPS
representation of the user state rs exactly corresponds to the user state. Thus, a fully
observable MDP framework can be applied to model the AIPS decision-making process.

3. The tea-making task

Although the principles underlying the CogWatch system are applicable to a range of
ADL, the CogWatch system focuses on tea preparation. The system provides assistance



for making four types of tea, namely “Black tea”, “Black tea with sugar”, “White tea”
and “White tea with sugar”. In each case, hierarchical task analysis [34] was employed
to represent the task as a hierarchical tree, where the first decomposition of the task is
into “actions”. For tea-making, the actions fall into two sets:

• Φ = {“Fill Kettle”, “Boil Water”, “Pour Kettle", “Add Teabag”, “Add Sugar”,
“Add Milk”, “Stir”, “Remove Teabag”}, and

• Ψ = {“Pour Cold Water into Mug”, “Toying”},

where Φ is the set of true actions related to tea preparation and Ψ comprises common
errors that are of special interest.

4. Action Recognition System

4.1. Aims

The aim of the Action Recognition System (ARS) is to detect hand position data via
KinectTM [35], and user actions from the outputs of the sensors attached to the objects
used during the task. For the tea-making task, the cup, milk jug and kettle are each
fitted with an instrumented “coaster”. This is an electronic device that fits on the base
of an object, which contains a three-axis accelerometer, three force-sensitive resistors
(FSRs), a microcontroller and a Bluetooth module for wireless transmission of the sensor
outputs. Fifty times per second, each sensor module outputs a raw 6 dimensional feature
vector comprising (x, y, z) acceleration values and the outputs of the three FSRs. The
accelerometer values indicate motion and changes in the orientation of objects, and the
FSRs measure changes in weight and whether or not the object is standing on a surface.
The ARS must be sufficiently flexible to accommodate variations between the sequences
of sensor outputs that result when different people perform the same task, or the same
person performs the same task on different occasions. Hidden Markov models (HMMs)
are general purpose statistical models of sequential data [36]. In the CogWatch ARS,
HMMs are applied at the actions level, with a single HMM for each element of the sets
Φ and Ψ.

4.2. Structure

The ARS in CogWatch is implemented as a parallel set of action detectors (Figure 3).
The left-hand side of Figure 3 shows the current feature vector, comprising synchronized
outputs from the sensors attached to the mug ([am,x, am,y, am,z, fm,1, fm,2, fm,3]), jug
and kettle and hand coordinate data. The middle column of the figure depicts the array
of action detectors, one for each element of Φ ∪ Ψ. Each detector takes as input those
parts of the feature vector that are useful for detecting its action (i.e., Figure 3 focuses on
the action “Add milk”). An action detector consists of a multiple state HMM represent-
ing that action, whose states are associated with Gaussian mixture models (GMMs). In
addition, the detector includes a single state “background” (or “toying”) HMM, whose
state is associated with a multiple-component GMM. An identical implementation of the
Viterbi algorithm [36] runs independently in each decoder. Briefly, each detector works
as follows: At each time t the detector receives a new feature vector, yt. For each state i
of each of its HMMs, a quantity αt(i) is calculated which can be thought of as an approx-



imation to the probability of the best explanation of data y1, ..., yt up to and including yt
ending in state i at time t. Intuitively, if the detector is for “Add Milk” and the ith state
corresponds to tipping the jug, then αt(i) can be thought of as the probability of the best
explanation of data up to time t culminating in the tipping action at t.

In the basic implementation of Viterbi decoding described above, the best explana-
tion of the data is not recovered until the final time T . However, in a real-time implemen-
tation there is no final time. The memory required to store the αt(i)s will increase and
no output will be produced. The solution is to use a technique called ‘partial traceback’
[37]. Each detector’s output up to a time s is generated as soon as its classification of the
data up to that point is unambiguous. The memory used to store alternative explanations
of the data up to s is then freed. In this way the decoders can run indefinitely.
Whenever an action HMM provides the most probably explanation of a section of input,
a label indicating that action is output. Otherwise the best explanation of the data is “toy-
ing” and nothing is output. The final column of Figure 3 shows the type of output that is
sent by the ARS to the AIPS. More information about the ARS and how user actions are
detected can be found in [35].

Figure 3. CogWatch ARS architecture



5. Action Policy Module

5.1. Aims

The first aim of the Artificial Intelligent Planning System (AIPS) is to take into account
the information delivered by the ARS, and to plan the best next action the user should
perform in order to successfully complete the task being carried out. The second aim of
the AIPS is to detect when the user makes an error during the task, and in such a case, to
find the specificities of this error. In this section, we focus on the ability of the AIPS to
plan actions via its APM (see Figure 1).
To fulfil its goal, the APM is based on a Markov Decision Process (MDP) framework,
which needs to be adapted to the system’s specifications.

5.2. MDP overview and adaptation

Formally, a MDP is a tuple
{
S, A, T , C

}
where:

• S is a set of AIPS states
• A is a set of prompts the AIPS can output
• T is a set of transition probabilities
T = {Ts′,s,am

}s′,s∈S,am∈A
where Ts′,s,am

= P (s′ | s, am)
• C defines the immediate cost c(s, am)

The MDP operates as follows. At each step, the AIPS is in an observable state s ∈
S (i.e., in this case, rs = s). Taking into account what the user has achieved so far, the
AIPS selects a prompt am ∈ A, then receives a cost c(s, am) for doing so. In order to be
applied to CogWatch and fit ADL management, some parameters of the MDP framework
are specifically defined based on the system’s ultimate goal:

The Machine’s Action Space A: The AIPS prompt is of the form a∗m = (a∗s , e∗s)
(i.e., a∗m ∈ A), with a∗s being the optimal action the APM can send to the user to guide
him/her during the task, and e∗s being the optimal ERM understanding of whether the
user has made an error, and if it is the case what was this error (e.g., addition error,
anticipation error). The Action Space is defined such as A = Φ ∪ Ψ.

The Machine’s State Space S: This is a finite set of machine’s states s. In this
paper, one of our contributions is to define these machine’s states as sequences of actions
au (see Figure 1). Concretely, for the APM, a state represents the history of the user’s
most recent actions. However, a restriction technique is applied to the State Space, so the
states only contain what psychologists consider as correct patterns of actions. This will
be explained in the next subsection.

The Cost Function C: The cost function c(s, am) is a mechanism to incorporate
human judgment about the importance of different types of behavior into the MDP. Two
types of functions were combined: one that allows the MDP to find the fastest strategy
(i.e., shortest route to task completion) (i), and another one that takes into account the
way participants successfully perform the task plus clinicians’ preferences (ii). This de-
cision has been taken due to the fact that when the fastest strategy may be valid, it is not
necessarily psychologically plausible. The results that will be presented in section 7.1
show that when the cost function (i) is combined with relevant knowledge from users



Figure 4. Example of state representation

and clinicians (i.e., cost function (ii)), it allows the AIPS to generate more meaningful
and efficient strategies during the task. In the rest of this paper, note that when using
the cost function (i) only, the AIPS strategies will be referred as Non-Psychologically
Plausible; when using the combination (i) and (ii), the AIPS strategies will be referred as
Psychologically Plausible [38].

5.3. State Space’s restriction technique

In Figure 4, one can see an example showing how the user state evolves based on the
actions made by the user, and how the restriction technique applied to S allows the APM
to maintain a reduced state. Let s̃ be the APM state and s the user state at step n:

• At n = 0, both the APM and user state are empty : no action has been made by
the user yet.

• At n = 1, the user makes action au,1 =“Add teabag”. As one can begin making a
cup of tea by doing so, the action is valid, and the APM copies it: s̃1=s1 =[“Add
teabag”].

• At n = 2, the user toys with the kettle, thus au,2 =“Toying”. The user state
automatically takes this action into account, with s2 =[“Add teabag”, “Toying”].
However, this action is not considered to be valid by psychologists because of the
casualties it can cause. Thus, it is ignored by the AIPS and s̃2 remains unchanged,
with s̃2 =[“Add teabag”].

• At n = 3, au,3 =“Add water in the kettle”, which is valid, so both s̃3 and s3 are
updated accordingly.

• At n = 4, the user repeats the same action au,3. The user state takes it into account
after update, but not the APM, as this action as already been performed. Indeed,
such a redundancy is defined as an error by psychologists, and is not allowed in
the APM state. Thus s̃4 is equivalent to s̃3.

In the rest of this paper, the reduced state s̃ will be referred as s, unless specified oth-
erwise. This restriction technique allows the State Space to be maintained at a relative
small size, while keeping enough information about the system’s environment. Note that
due to this technique, the State Space depends on the task for which it is defined, and on
specialists’ definition of errors. Let’s take the example of a user choosing “White tea with
sugar” at the beginning of the task. For this task to be completed, a minimum of six ac-
tions is required: “Fill Kettle”, “Boil Water”, “Pour Kettle", “Add Teabag”, “Add Sugar”,
“Add Milk”, “Stir”, “Remove Teabag’ (N.B., not necessarily in this order). Hence, taking
into account what psychologists working on CogWatch define as correct sequences of
actions during this task, we find 1539 states (i.e., correct combination of actions) which



Algorithm 1 MC policy optimization algorithm - APM
for s ∈ S, a ∈ A do
Q0(s, a)← arbitrary
N(s, a)← 0
π∗0(s)← arg minaQ

∗
0(s, a)

end for
for each iteration k do

for every s ∈ S and a ∈ A do
Generate a trial starting at s with action a and proceeding according to π∗k−1(s)
until a final state is reached.
During the trial, record each pair (s’, a’), compute the sum of the costs c(s′, a′)
following s until the final state, then update:
N(s′, a′)← N(s′, a′) + 1

Q∗k(s′, a′)← Q∗k−1(s
′,a′)∗N(s′,a′)+c(s′,a′)

N(s′,a′)

π∗k(s) = arg minaQ
∗
k(s, a)

end for
end for

can be part of the State Space for this task. In COACH [19], for a similar sequential task
(i.e., hand-washing), a different parameterization of the MDP framework led to over 22
million states.

5.4. Offline Training and MDP solving

To solve a MDP, a policy (π∗ : S → A) between the State Space S and the Action Space
A needs to be found, such that π∗(s) minimizes the expected cost incurred by a trial. To
achieve this goal, the APM is trained offline using a Monte Carlo (MC) Algorithm [39].
During training, a state-action value function Q(s, am) records the immediate cost for
taking prompt am in state s, for all states contained in the State Space S. The Q function
is defined as the expected cost of a trial starting in state s, the AIPS taking action am,
and thereafter proceeding according to the current policy π∗ until the trial ends and a
final state is reached. During each tea trial, a sequence of state-action pairs 〈s, am〉 is
recorded, and used to update the estimate Q(s, am). At the end of the training, when the
Q values are estimated, the optimal policy π∗ is obtained with:

π∗(s) = arg min
am

Q(s, am),∀s ∈ S, ∀am ∈ A. (1)

The policy optimization algorithm that was implemented is given in Algorithm 1 for
the APM training. Algorithm 1 begins by the initialization of the Q values, the num-
ber of time the pair (s, a) is visited (i.e., N(s, a)), and the current optimal policy π∗0 .
Then, for each trial the AIPS goes through, the states it visits and actions it takes are
recorded. When the final state is reached, the cost is calculated for each state-action pair
(s, a) recorded. The information is then used to update each correspondingQ(s, a) value,
N(s, a), and the optimal policy π∗, which allows to select, in the next turn, the action
that has accumulated the lowest cost for each state. This is repeated until convergence is
reached.



Figure 5. Simulated User architecture

Training can be done with real participants or with a simulated user. Since many
trials are necessary to robustly estimate the Q values, it is common practice that a simu-
lated user is used to interact with the system during policy optimization [40, 41, 42, 43,
44, 45, 46]. Hence, a Simulated User (SimU ) based on real patients’ data was imple-
mented in order to generate actions [38]. This SimU is composed of 5 main modules
(Figure 5). The core module is the User’s choice, which takes as inputs parameters from
the User Transition Matrix, the Memory Model, the current APM best strategy a∗s , and
the Behavioral Strategy module. During training, when the SimU generates an action
au, the APM responds with a prompt a∗m. The SimU receives the optimal action a∗s
contained in a∗m if the Cue Selector let it pass. If the Cue Selector does not communicate
a∗s to the SimU , the latter chooses what action to take by itself. If a∗s is communicated,
the SimU takes it into account with a compliance α (0 ≤ α ≤ 1), then selects its next
action au. The SimU uses a User transition Matrix based on action bigram probabilities
from data generated by 52 control and stroke survivors, aged between 21 and 82, who
completed four types of tea (“Black tea”, “Black tea with sugar”, “White tea”, “White tea
with sugar”). This module allows the SimU to have some knowledge about how humans
perform the tasks. This knowledge is then used to emulate the variability with which a
task can be achieved. Nevertheless, as only bigram probabilities are taken into account,
this knowledge is incomplete. Thus, when the SimU needs to act by itself without re-
lying on the prompts, and does not have enough information about what next action to
take, it has access to three behaviors through the Behavioral strategy module:

1. The SimU selects the “Task Completion Button” or the “Help Button” (see Fig-
ure 2). This will force the system and the Cue Selector to deliver the APM prompt
to the SimU , which will comply to it.



2. The SimU does nothing, which will trigger the AIPS after a specific amount of
time, forcing the APM to deliver a prompt to which the SimU will comply.

3. The SimU performs a random but meaningful action. A meaningful action is an
action that is not impossible for a human to perform. For example removing a
teabag from a cup while the latter was not put in beforehand, is not a meaningful
action.

The SimU also has access to 5 different types of memory through the Memory model
module. Each type of memory has a specific impact on how the SimU remembers the
history of actions it has already performed:

1. The SimU only remembers the last action it performed.
2. The SimU remembers all the actions it performed and can repeat some of them.
3. The SimU remembers all the actions it performed and cannot repeat any.
4. The SimU exponentially forgets the actions performed in the past (i.e., it has a

higher probability to forget actions performed in the past) and cannot repeat any
actions it still remembers.

5. The SimU exponentially forgets the actions performed in the past and can repeat
some of those it still remembers.

The risk with using a Simulated User is that it may not properly capture real users’ be-
haviors. However, our SimU is based on real user data, and in experiments, the task
completion rate for the SimU and real users is similar when interacting with the MDP-
based system [47].
As shown in Figure 6, the SimU is implemented into a virtualization of CogWatch, which
follows the same structure of the real system as described in Figure 1. In such an envi-
ronment, when the task is chosen, the SimU starts in state s0=∅ (i.e., the user has not per-
formed any action yet), and takes an action au that is sent to a virtual ARS. The virtual
ARS is implemented as aN×N confusion matrixC (N is the number of actions) whose
i, jth entry is the probability that the ARS outputs observation j when the user executes
action i. This observation is then passed to the AIPS. After receiving this observation,
the AIPS sends its optimal prompt a∗m = (a∗s , e∗s) to a virtual Cue Selector. The latter is
a filter; it sends ãm =

{
a∗s||Θ

}
to the SimU, where a∗s is the next best action the APM

considers the user should perform, and Θ is a signal forcing the SimU to chose the next
action by itself. In other words, each time the Cue Selector passes its output to the SimU,
this output only contains a∗s or Θ. If the ERM does not detect any error in the user’s state,
the signal Θ is sent; otherwise, it is the action a∗s that the SimU receives. This allows
the system to communicate prompts to the user only when needed (i.e., when the user
makes an error).

6. Error Recognition System

Contrary to the MDP-based APM, the ERM does not base its functionality on any re-
inforcement learning process. The state it takes into account directly corresponds to the
user’s state (see Figure 4), when no state restriction technique is applied. Indeed, only
the full user state keeps track of the potential errors made by the user. Hence, during the
task, if the ERM detects that a state is erroneous, its goal is to find what type of error it is.
To do so, it takes as an input the user state, then automatically compares it with different



Figure 6. Virtual CogWatch architecture

rules that have been encoded based on psychologists’ definitions of different types of
errors. When a type of errors is detected, the ERM looks for the cause of this error (i.e.,
the action, order of actions or combination of actions, which led to this error). Once the
cause is found, the ERM associates a label to this error corresponding to the specificity
of its type.

Thus, in the MDP-based system described in this paper, when the ERM outputs e∗s ,
the latter is a tuple containing two parameters: (error bool, error ID), with error bool
being a Boolean which is True if an error is detected and False otherwise; error ID is
the type of error detected. When output, e∗s fills its corresponding slot in the prompt a∗m,
along with a∗s , before being sent to the Cue Selector. In total, the ERM can detect seven
types of errors (see Table 1) defined by psychologists as follows:

1. Addition Error: An addition error occurs when the user makes an action that be-
longs to another task. For example, it is decided that the user should be retrained
to make “Black tea”, but he/she adds sugar during the task.

2. Perseveration Error: The term “perseveration” is used as a label for the repeti-
tive production of the same response to different commands [48]. Thus, in Cog-
Watch, a perseveration error occurs when the user repeats any action he/she has
already performed during the task. One can note that there are three rows for “Stir
multiple times” in Table 1. This is due to the fact that each of the errors described
in Table 1, when detected by the AIPS and shared with the Cue Selector, is sub-
jected to different thresholds before it is decided to send a cue to the user [49]. In



Table 1. Types of user’s errors the ERM can detect. BT - Black tea, BTS - Black tea with sugar, WT - White
tea, WTS - White tea with sugar

ID Error type Task Description of user’s error

E01 Button trigger All Press “help button”

E02 Perplexity error All Make long pause during task

E03 Fatal error All Toying

E04 Button trigger All Press “task completion button” when not required

E05 Omission error All Omit to press “task completion button” when required

E06 Perseveration error All Add water to kettle multiple times

E07 Omission error All Fail to add water to kettle

E08 Omission error All Fail to boil water

E09 Perseveration error All Boil water multiple times

E10 Omission error All Fail to add teabag to cup

E11 Perseveration error All Add teabag multiple times

E12 Anticipation error All Pour water to cup before boiling water

E13 Perseveration error All Pour water to cup multiple times after boiling water

E14 Omission error All Fail to add boiled water to cup

E15 Omission error All Fail to remove teabag from cup when required

E16 Anticipation error All Stir while no water is in the cup

E17 Omission error BTS, WTS Fail to stir

E18 Perseveration error BT Stir multiple times

E19 Perseveration error WT, BTS Stir multiple times

E20 Perseveration error WTS Stir multiple times

E21 Addition error BT, WT Add sugar when not required

E22 Quantity error BTS, WTS Add too much sugar

E23 Omission error BTS, WTS Fail to add sugar

E24 Addition error BT, BTS Add milk when not required

E25 Quantity error WT, WTS Add too much milk

E26 Omission error WT, WTS Fail to add milk

E27 Anticipation error All Switch on kettle before adding water inside

E28 Anticipation error All Remove teabag from cup before adding boiled water in the latter

C01 NA All Task successfully completed

the case of the tea-making task, the threshold for "stir multiple times" is not the
same for all the tasks. Thus these errors are referenced separately.

3. Anticipation Error: An anticipation error occurs when the user performs an ac-
tion too early in time compared to his/her current history of actions. For example,
stirring while the cup is empty or pouring water into the cup before boiling it.

Table 2. SimU success rates with the virtual CogWatch

Types of tea Assisted by AIPS Ignoring AIPS

Black Tea 100.0% 76.0%

Black Tea with Sugar 100.0% 54.1%

White Tea 97.1% 48.0%

White Tea with Sugar 96.0% 24.2%



4. Perplexity Error: A perplexity error occurs when the user does not perform any
action during a specific amount of time T . The ERM resets a counter after each
observation received, and is set up to consider that the user needs assistance if no
relevant action is received after time T .

5. Omission Error: An omission error occurs when the user considers that he/she
has finished the task, but the ERM detects that the latter is incomplete. For exam-
ple, the user considers that the task is over, while he/she has never put teabag in
the cup.
Note that in CogWatch, the trials stroke survivors go through while interacting
with the system can be seen as cognitive exercises. The system’s goal is to help
them re-learn how to perform a task. Thus, even though CogWatch can detect
task completion, users are asked to indicate if they believe they have finished the
task, so the system can assess if they are aware of their own task completion. If
users forgets to do so, then the omission error “E05” is triggered.

6. Quantity Error: A quantity error occurs when the user adds ingredients such as
milk or sugar in an excessive manner. For example, this error will be detected if
the user adds milk to the point where the cup is about to overflow.

7. Fatal Error: A fatal error occurs when the user action may lead to safety issues.
Such errors force the system to abort the task automatically, in order to prevent
the user from being harmed during the task.

The ERM can also be triggered via the patient’s interface (Figure 2). This is made pos-
sible when the user presses the “Task completion button” or “Help button” (see Button
trigger in Table 1)

7. User Study and Results

7.1. Evaluation via User Simulation

Before letting real participants interact with CogWatch, the latter was evaluated via User
Simulation through two experiments. In the first experiment, the SimU described in Fig-
ure 5 tried to make each type of tea 3000 times. Table 2 shows its success rate when com-
plying to psychologically plausible strategies suggested by the AIPS, and when ignoring
the latter. For Black tea and Black tea with sugar, the SimU success rate is 100% when it
always complies with the AIPS strategies. This means that the AIPS strategies are 100%
accurate for those two tasks. When the SimU ignores the AIPS and performs the tasks
following its own plan, its success rate significantly decreases: 76% for Black tea and
54.1% for Black tea with sugar. In the case of White tea and White tea with sugar, the
assistance of the AIPS strategies also permits to increase the SimU success rate, but the
latter is no longer 100%. This is due to the fact that CogWatch is an after-effect system,
where an action has to be made by the user for the AIPS to plan what to should be done
next. In those two cases, the AIPS strategies are always correct, but if the first action
made by the SimU is an error that cannot be corrected, then the system cannot help the
user.

In the second experiment, the SimU success rate was evaluated at varying levels of
compliance, when the AIPS outputs Psychologically Plausible (P.P) strategies, and Non-



Psychologically Plausible (N.P-P) ones. As explained in section 5, this is due to the cost
function used in the MDP. In Figure 7, one can see that when the SimU is 100% compliant
to the AIPS strategies, whether the latter outputs N.P-P or P.P strategies has no impact on
the SimU’s performance. This is an indicator that both N.P-P and P.P strategies are valid.
However, when the SimU decreases its compliance to the AIPS outputs, one can see in
Figures 7 (a-b-d-e), that its success rate is higher when the strategies are psychologically
plausible. In Figures 7 (a-b), when the SimU follows N-P.P strategies with a compliance
at 20%, its success rate is the same as if it was trying to perform the task by itself (i.e., 0%
compliance). It is possible to conclude that if both strategies are valid, the P.P ones are
optimal compared to N-P.P. To make a parallel with a realistic situation, the P.P strategies
can be seen as familiar ones; strategies able to take into account the ways a clinician
would perform the tasks or the optimal ways the patients are used to perform when they
succeed. Hence, with P.P strategies, when the user completes the task and accepts to
comply, the AIPS succeeds to redirect the user to the most efficient ways of succeeding
the task. On the contrary, even if N-P.P strategies are always correct, because they do not
take into account patients’ habits, they lead to more users’ failures. Indeed, in [50], [51]
De Klein and Graybiel highlighted the impact of familiar and unfamiliar sequences on
success rate. Familiar sequences are easier to execute and require less effort and energy,
as they are done through a sub-cortical structure where the sequence is reduced to a single
unit. In contrast for novel sequences or sequences that diverge from the familiar one, one
needs to use cortical mechanisms (more effort, higher demands on resources) to re-create
them. Taking into account the results obtained via simulation, it was decided to set up

Figure 7. SimU success rates at varying compliance to the AIPS strategy. P.P and N-P.P stand for Psycho-
logically Plausible and Non-Psychologically Plausible strategy; a, b, d and e correspond to Black tea, Black
tea with sugar, White tea, White tea with sugar.



Table 3. Number of Non Fatal Cues (N.F.C), Fatal Cues (F.C) and successes

N.F.C F.C Successes

With CogWatch 38 4 92

Without CogWatch 112 31 65

the AIPS for it to generate psychologically plausible strategies only. The evaluation of
the system was then re-run with real participants, as described in the following section.

7.2. Evaluation with Stroke Survivors

To measure the efficacy of CogWatch with real participants, two sets of 96 trials were
performed by 12 patients (i.e., 6 women, 6 men, aged between 53 and 82). They exactly
went through 24 trials of each type of tea: “Black tea with sugar”, “White tea with sugar”,
“White tea”, “Black tea”. During all trials, the system could observe patients’ behavior
and record the number of time a cue should be sent to them. However, during one set of
trials, patients did not receive any cues, while in the other one the same patients could
receive guidance from the system. Note that when CogWatch’s cues were made avail-
able for patients, the later were free to comply or not to the system’s outputs. First, we
compared the average number of cues triggered by patients when not using the system,
and when using it. Cues are messages generated by the Cue Selector (see Figure 1) when
the latter receives information from the AIPS. When a cue is triggered, it means that the
patient made an error and the whole system considers that this patient’s behavior needs
to be corrected. In Figure 8, one can see that patients triggered an average of 11.9 cues
when not using CogWatch, compared to 3.5 cues when using it. Recall that patients who
were not using the system could not receive cues. However, even in this case, the sys-
tem was observing their behavior and calculating the number of times it would have sent
them cues due to the errors they made. This means that when not using the system, the
patients made more errors than when they had access to the system’s guidance. Exactly
10 out of the 12 patients tested reduced the number of errors they made when assisted by
CogWatch. The two patients who did not improve, showed an increase in the number of
stirring repetition errors. It is likely that the system was more sensitive when detecting
such behavior as errors than a human assessor. This is a potential limitation of the study.
Indeed, the errors made during trials performed without CogWatch were detected via
video analysis made by human assessors. When Cogwatch was used, errors were coded
based on strict rules defined in advance (see Table 1), and which are not subject to hu-
man’s variability. In Table 3, we then compared the number of non-fatal cues (N.F.C) and
fatal cues (F.C) received by the patients when assisted by CogWatch (CW), and when
performing the tasks without its guidance.



Figure 8. Average number of cues triggered by patients

Figure 9. Types of errors triggering the cues received by patients

Concretely, Non Fatal Cues are related to recoverable errors (see the definition of
Fatal Errors in section 6). Non-recoverable errors can occur when the patient’s safety is at
risk. In the Table, one can see that when interacting with CogWatch, the patients receive
less Fatal and Non Fatal Cues, and succeed the tasks more often than when they do not
have access to the system’s prompts. Indeed, the patients’ success rate with CogWatch is
95.8%, and only 67.7% without. Figure 9 shows the type of errors made by patients that
triggered the cues they received during the trials. One can see that the use of CogWatch



significantly reduces the number of errors, such as omission, anticipation, quantity and
perseveration errors (Table 1). It means that when patients were guided by the system,
they forgot mandatory actions less often (e.g., adding the teabag in the cup); they made
less anticipation errors (e.g., trying to switch the kettle on when the latter is empty); they
did not misjudge the quantity of any ingredient (i.e., quantity error); and they repeated
actions less often during the task (i.e., perseveration error). As far as addition errors are
concerned, one can see that with or without the help of the system, the patients had the
same low tendency to add ingredients that did not correspond to the task they had to
complete.

All the results obtained show that CogWatch is able to properly provide guidance during
tea-making. When having access to the prompts delivered by the system, patients have
a lower probability to make mistakes and to fail the task. Meaningful comparisons with
other MDP-based assistive systems are hardly possible. To be able to do so in the future,
it will be necessary to reach consensus on a set of standard evaluation methods.



8. Discussion

When designing an assistive system such as CogWatch, another important feature to take
into account is its ability to be easily adaptable to other tasks. Indeed, different ADLs
may be essential for independent leaving from grooming to preparing food and drinks.
Users who have difficulty in completing one ADL (i.e., tea-making) are also likely to
have problems in other ADLs such as making coffee, making a snack, teeth-brushing,
cooking, etc. Thus, designing a single system that can support multiple tasks is highly
desirable. In this section we will discuss the flexibility of the current CogWatch system,
and how it can be adapted to other tasks. This section is based on our experience in
designing the latest prototype of Cogwatch, which included both tea making and teeth-
brushing. These two tasks are relatively different. Nevertheless, while it took over 2 years
to develop CogWatch for tea making, it took less than 6 months to adapt the system so it
can also provide assistance during teeth-brushing.

As explained in Section 2, CogWatch is composed of 4 main modules: 1) The sen-
sors (intelligent objects) that are used to capture user’s behavior; 2) Action recognition
infer user actions (i.e., ARS); 3) Artificial Intelligent Planning System which plans the
recommendations to be sent to users and detects potential errors (i.e., AIPS), and 4) a
module in charge of selecting the appropriate form in which a recommendation should
be shared with a user (i.e., Cue Selector). The amount of time and expertise necessary
to adapt the whole system to a new task depends on the approach taken to design each
module. Indeed, each module composing CogWatch has a different level of flexibility
and would require different types of modifications or updates in order to take into ac-
count new tasks.

From a general point of view, the important points to consider for each module can be
described as follows.

• Sensors: If the user’s behavior needs to be tracked during a task that involves
similar objects to those for tea-making, then the CogWatch coasters can be reused.
In the case where the new task involves different objects, the packaging of the
coasters may have to be re-designed in order to fit the new objects. If the objects
involved cannot be tracked with coasters (e.g., clothes during a dressing task)
CogWatch would then rely on KinectTM and its hand-tracking capabilities. As
explained in [35], KinectTM was used to capture hand-coordinates using software
based on “Kinect-Arms” [52]. It allowed the system to detect when the user hands
were in the vicinity of an object. One could then make the assumption that when
a hand remains stationary at the vicinity of an object, the user may be using this
object. Another possibility would be to use a new set of sensors. In this case, the
hardware of the new sensors would need to be adjusted depending on the objects
used in each task.
One may consider to change or add new sensors only if there is a need to increase
the level of information sent to the ARS, so the latter can detect more complex
and dexterous actions. For example, in the case of teeth-brushing, KinectTM ,
CogWatch coasters and Shimmers [53] were used to track the movements of the
toothbrush. Microphones were also added to the set of sensors to detect brushing
sounds.



• ARS: When the objects that are involved in a new task are identified and instru-
mented, the ARS can be updated by going through the same process that was
implemented during tea-making. First, a set of relevant user actions to recognize
during the task needs to be defined (e.g., (“add teabag”, “boil kettle”, ...) for tea-
making or (“open tap”, “wet hands”, “take soap”, ...) for hand-washing). Once
this set of user actions is defined, examples of sensor output for each of these ac-
tions will be recorded. This will be done for each user action individually and for
examples of complete tasks (i.e., uninterrupted sequence of user actions). When
this database of sensor outputs related to user actions is created, one should em-
pirically optimize the model parameters, the number of states and the number of
GMM components per state. See [35] for more details. To adapt the ARS to a
new task takes time and effort, and its learning process is repetitive. However,
the development part for a new task is relatively minimal here as the algorithm is
already in place. Beyond the time and effort, a limitation of the algorithm used in
the ARS is related to the fact that its parameters are specific to the objects used; or
in the case of KinectTM to the location of the objects in space. Hence, any change
to the physical environment and objects that are used requires a new training and
optimization of these parameters.
A more satisfactory approach would be to focus on a particular application do-
main, for example kitchen-based tasks or bathroom-based tasks. Depending on
the application domain, one should then have a fixed set of objects to be instru-
mented. Rather than modeling whole user actions, one could identify a set of sub-
actions from which each user action could be constructed (e.g., in the case of the
user action “pour water from kettle to cup”, a possible set of sub-actions could
be composed of (“grasp kettle handle”, “lift kettle”, “tilt kettle”, ...)). One could
then build HMMs of these sub-actions and then combine them to obtain models
of any user action.
Many research questions would still remain, for example: Is a model of the sen-
sor outputs for someone tilting a milk jug appropriate for someone tipping a ket-
tle? Or do different sizes of objects require different models? These are topics for
further research.

• AIPS: When the set of user actions to be recognized by the ARS is known, a list
of errors users tend to make needs to be defined, as explained in Section 6. This
process is undemanding and provides the AIPS the main elements it needs to be
trained to provide assistance during another task. Indeed, the sets of user actions
and errors will be used to update the parameters of the MDP and POMDP (i.e.,
S, A, T ) as described in Section 5. The software on which the AIPS is based has
been designed to allow such flexibility. The developer simply has to provide the
sets of actions and errors for the software to automatically generate the MDP and
POMDP parameters.
In CogWatch, the AIPS is trained with a simulated user in a virtual environment.
The same architecture can be reused for any other sequential task. The behavior
of the simulated user and the confusion matrix related to the ARS performance
can be randomly chosen or specified based on a database. As far as the simulated
user is concerned, this database should contain examples of actions taken by real
participants during the task, so it can calculate bigram probabilities (see Section
5). In the case of the confusion matrix related to the ARS performance, it can be



defined by assessing the outputs of the ARS when the user makes specific actions
or by going through the whole task. The training itself is done automatically, and
requires no more expertise or human intervention. Hence, the MDP or POMDP
based AIPS is easily adaptable to other sequential tasks.

• Cue Selector: The Cue Selector has been designed to be user-friendly. One can
easily modify its parameters via a graphical interface (i.e., clinician’s screen). In
other words, the number of times a cue should be shared with a user during a task
and the type of this cue (see Section 6) can be updated at any time depending
on the user’s needs. In CogWatch, the Cue Selector chooses the cues to send
to participants from a database of images, videos and sounds. These elements
are hints and contain visual or audio information about what the user should do
during the task. If another task needs to be taken into account this database will
be updated. For example, new images depicting the actions the user should do
must be taken so they correspond to the new task’s goal.
From a general point of view, any modifications applied to the Cue Selector are
effortless compared to the ARS or AIPS. Indeed, the Cue Selector does not go
through any learning process, and can quickly be adapted to fit the need of another
task.

9. Conclusion

In this paper, an assistive system designed to guide stroke survivors during everyday task
is described. The huge variance in the execution of the task is tackled by defining a spe-
cific Markov Decision Process (MDP) framework. The latter has the potential to model
any sequential activity of daily living. The algorithm that was used to solve the MDP,
and which allows the system to learn how to retrieve optimal prompts to patients during
the task is explained. Finally, the ability of the system to assist patients with psycholog-
ically plausible strategies during tea-making was proved. Indeed, we showed that, when
patients have access to the outputs provided by the system, the patients’ success rate is
higher and make fewer errors than when they cannot interact with the system.

The performance of the CogWatch system was presented during the tea-making task
only. However, the system’s AIPS has been developed to be easily adaptable to other
sequential activities of daily living. Indeed, in the case where the AIPS should provide
guidance during another task, only two important human inputs will be necessary: the
definitions of a new action space and errors stroke survivors tend to make during this
task. From these parameters, the AIPS will automatically infer what is the restricted state
space. The later will then be used to retrain the AIPS in order to obtain a new policy.

As far as the ARS is concerned, further work will be needed for it to be quickly
adaptable to any other task. Currently, if users’ behavior need to tracked and monitored
during another task that involves other objects, new sensors may have to be designed.
These sensors’ outputs will then be sent to the ARS which will learn how to infer users’
actions from the data it receives. To reduce the number of sensorized objects to develop,
one solution is to use KinectTM and its hand tracking capabilities [35]. The latter will
help the ARS during its action detection process without the need to rely on sensors
attached to objects only.

Another point to highlight is the fact that the system presented in this paper is semi-
autonomous. In the case of a system that would have to act in a total autonomous way, it



will need to automatically cope with the uncertainties related to its environment. In such
a case, one solution is to implement a Partially Observable MDP [54], which will model
these uncertainties, and enable the assistive system to act even if the user’s state is only
partially known from its point of view. Such a system has already been implemented in
CogWatch [55, 49, 56], and was tested with success via simulation.

The next step is to let stroke survivors interact with the POMDP-based assistive system
and evaluate its performance under uncertainty. Note that this paper focused on a system
designed to help stroke survivors. However, the models it implements and its flexibility
may allow it to provide assistance to other users with cognitive impairments (e.g., peo-
ple with dementia, with learning disabilities, with memory deficits). Indeed, CogWatch
provides instructional cueing, can detect when users make errors during a task automati-
cally, and intervenes when necessary. These capabilities can be helpful to any individual
who may need to re-learn how to perform daily activities.
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