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Abstract 

Additive manufacturing (AM), also known as 3D printing, is a revolutionary 

manufacturing technology that has attracted many industries in the past two decades. 

This is because AM enables the manufacturing of complex-shaped geometries 

without the limitations of other manufacturing techniques. In this paper, the design, 

development and testing of additively manufactured, monolithic catalyst beds are 

described. A novel design methodology was employed and achieved catalyst bed 

designs with complex geometry and high geometrical surface area whilst achieving 

an acceptable pressure drop. Catalyst bed samples incorporating alumina ceramic 

lattices with strut diameters ranging from 0.15 to 0.30 mm were fabricated via AM 

and a subsequent heat treatment. The surface areas of the samples were improved 

using different wash coats, including the use of gamma alumina and a mixture of 

gamma alumina and carbon nanotubes (CNT). Manganese oxides were used to coat 

the catalyst bed and decompose hydrogen peroxide. Four full-scale catalyst beds 

with the most promising candidate geometries and wash coats were then 

manufactured and subsequently tested in a 20 N-class HTP (High Test Peroxide) 

monopropellant thruster. The firing results show that the additively manufactured 

catalyst beds generally outperformed the baseline catalyst bed containing ceria 

pellets that were also coated with manganese oxides. 
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1. Introduction 

Hydrazine and its derivatives, such as monomethylhydrazine (MMH) and 

unsymmetrical dimethylhydrazine (UDMH), are the most commonly used propellants 

for the propulsion and control of a wide range of spacecraft and satellites. They have 

been the most favourable choice for aerospace applications for more than 50 years 

as they show excellent flight performance. However, they are highly toxic and 

carcinogenic. The use of these substances carries with it the burden of enhanced 

health and safety protection for working personnel [1, 2]. Recently, low toxicity 

(‘green’) storable liquid propellants have attracted a considerable amount of attention 

as replacements for hydrazine based propellants. The movement towards the use of 

green propellants is not only being driven by concerns regarding the toxicity of 

hydrazine and its derivatives, but more importantly by the possibility of these 

chemicals being banned [3, 4]. Hydrogen peroxide (H2O2) is a popular substance 

used in many industrial applications such as food processing, cosmetics, and 

wastewater treatment [5, 6]. High-test peroxide (HTP) is a highly concentrated 

solution of hydrogen peroxide, with a concentration range from 85 % to 98 %. HTP is 

considered to be a ‘green’ propellant because it only exhausts oxygen and water 

upon catalytic or thermal decomposition. It is particularly attractive because of its 

high density and low cost. HTP also promises considerable cost savings due to 

simplifications in health and safety procedures during production, storage and 

handling [7-9].  

For an HTP thruster to work effectively the HTP must be decomposed catalytically to 

produce superheated steam and oxygen, which can then be used either as the 

exhaust stream in a monopropellant application, or as the oxidiser in a bi-propellant 

application. In both applications, the thruster performance relies critically on the 
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ability of the catalyst bed to decompose fully the HTP. The bed must be capable of 

rapid and repeatable performance over the many operational cycles imposed by 

typical mission profiles. A high-performing catalyst bed will offer a high surface area 

(per unit volume of bed) and a low pressure drop, although these two requirements 

are typically in conflict [10-12]. 

HTP catalyst beds often incorporate either metallic gauzes or screens (typically pure 

silver, or silver-plated), or ceramic pellets coated with an active catalytic phase which 

could be metallic or some type of metal oxide [13, 14]. To achieve the required 

surface area per unit volume, the metal screens must by tightly-packed and therefore 

usually exhibit relatively high pressure drops. Pellet-based beds usually have higher 

surface areas and rather lower pressure drops, but the relative movement of the 

pellets, caused by the vigorous decomposition of the peroxide, can cause 

fragmentation and loss of pellets from the bed, possibly resulting in reduced lifetime 

[15, 16]. An alternative to both the above types is a monolithic bed, which is 

conventionally manufactured by extrusion of a ceramic paste through a die and then 

coated with an active phase. However, the flow path for the propellant is through 

straight channels which offer relatively low surface area so such beds are prone to a 

phenomenon known as “flooding”, which quenches the decomposition reaction [17]. 

To prevent this, the bed loading (mass flow rate of propellant per unit cross-sectional 

area) must either be kept very low, or the beds are made very long. This leads to 

catalyst beds that are relatively large compared with beds that incorporate pellets or 

metal screens, with attendant heat loss issues.   

Additive manufacturing (AM) is a disruptive technology that is developing rapidly. It 

promises to find widespread applications, especially in the aerospace industry. 

Compared with conventional manufacturing techniques, the major benefits of AM are 
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product design customisation for functionality, with reduced material wastage and 

low energy usage, and reduced lead-time. However, perhaps the greatest benefit of 

all is that AM enables design innovation, allowing the production of parts with 

complex geometry that would be impossible to manufacture by conventional means 

[18-21].  

For these reasons, the European Space Agency (ESA) initiated a recent research 

and development activity with the goal of enhancing HTP catalyst bed design 

through the use of AM. A monolithic catalyst bed with a complex internal geometry 

produced by AM could in principle overcome the limitations of the former types of 

beds described earlier and is the subject of the study described in this paper. Here, 

we describe the design and development of monolithic catalyst beds that are 

manufactured using AM and tested in a relatively small (20 N class) monopropellant 

thruster employing HTP. Computer Aided Design (CAD) and Computational Fluid 

Dynamics (CFD) were employed for the optimisation of the catalyst bed geometry. 

Alumina catalyst beds were fabricated using selective laser melting (SLM) and 

subsequently coated using a manganese oxide catalytic layer. The performance of 

the catalyst beds was initially evaluated by carrying out simple qualitative and semi-

quantitative tests on a range of small scale samples and then, after down-selection, 

thruster firing tests on full-scale beds. 
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2. Design and Experimental 

2.1 20 N Thruster Design 

The University of Southampton had previously successfully tested a monopropellant 

thruster which had been designed to produce 20 N at sea-level conditions with 87.5 

% concentration HTP at a propellant mass flow rate of 17.7 g/s [16].  In that previous 

work the catalyst bed chamber contained either ceramic pellets or metallic gauzes as 

the catalyst material; a monolithic catalyst bed was not investigated at that time. For 

this current work, as the baseline comparator for the AM monolithic catalyst beds 

that were developed, it was decided to use pellets of cerium oxide (ceria) which had 

been impregnated with a catalytic active phase comprising oxides of manganese 

(MnOx). Previous work [22] carried out at the University of Southampton, in which a 

variety of potential catalyst types was investigated, had indicated that these MnOx-

coated pellets exhibited a good reactivity and, of those catalysts tested in the 20 N 

thruster, provided the best level of performance [16].  Hence if the AM-fabricated 

monolithic catalyst bed exhibited a performance that was as good as, or exceeded, 

that of the ceria pellets when tested in the thruster, this would be considered a very 

promising development [23].  

In the current research, it was decided to retain the same geometry of catalyst bed 

chamber as in the previous work, with only slight design modifications required to 

allow two monolithic catalyst support elements to be inserted into the catalyst bed 

chamber, see Figure 1 in which the propellant flow is from right to left. The latter 

incorporated a baffle at approximately the mid-point, designed to prevent the 

preferential flow of undecomposed liquid HTP along the interior wall of the bed 
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chamber, a phenomenon known as channelling. One of the catalyst supports slid in 

upstream of the baffle and the other downstream.  

 

Figure 1: An exploded view of the catalyst bed chamber assembly 

Provision was made to allow access for a thermocouple probe just upstream of the 

baffle to measure the temperature of the HTP decomposition products at 

approximately the mid-bed location. The nominal outer diameter of the catalyst bed 

supports was 21 mm and each was approximately 24 mm long. 

Nickel foam discs were placed at the upstream and downstream ends of the bed to 

accommodate any compressive forces transmitted to the bed and hence prevent 

damage when the bed was connected to the remainder of the thruster components 

(see Figure 1). The latter included, upstream of the catalyst bed chamber, a 

showerhead-type injector plate with a plenum chamber upstream which enabled the 

pressure and temperature of the incoming HTP to be measured.  

Downstream of the bed chamber, a convergent-divergent nozzle assembly was 

attached. The nozzle served to pressurise the catalyst bed and was designed to 

Catalyst bed chamber 

Anti-channelling baffle 

Settling chamber 

Upstream catalyst support 

Downstream catalyst support 

Nickel Foam 

Nickel Foam 

Mid-bed thermocouple location 
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expand the decomposition products to sea-level atmospheric conditions at the 

thruster exit when operating at a pressure of 12 bar absolute. Such a nozzle will give 

the optimum thruster performance. Had the nozzle been designed for vacuum 

operation (as in the space environment) it would have had a higher expansion ratio 

(ratio of exit to nozzle throat areas) and the thrust produced would have been higher. 

The nozzle assembly also incorporated a plenum chamber which allowed the 

pressure and temperature of the HTP decomposition products at the bed exit to be 

measured.  

Between the bed exit and the nozzle assembly was a porous catalyst retainer plate. 

Although strictly speaking this component was not necessary with the monolithic 

beds, it was left in place so that the thermal mass of the metal components of the 

thruster assembly remained the same as that when tested with the ceramic pellet 

catalyst bed used as a baseline comparator. It should be noted that the thruster 

assembly has been used for catalyst testing only and so has not been optimised 

from a thermomechanical point of view.  

An exploded view of the original thruster components is shown in Figure 2.  

 

 

Figure 2: Original thruster components 



Page 8 of 40

Acc
ep

te
d 

M
an

us
cr

ip
t

8 
 

From right to left these are: the HTP injector plenum (with pressure transducer and 

thermocouple standpipes attached); the showerhead-type injector plate; the catalyst 

bed chamber; the catalyst retainer plate and finally the nozzle assembly, also with 

pressure transducer and thermocouple standpipes attached.   

The thruster was mounted to a swing-arm thrust stand. This, and the nitrogen-

pressurised propellant delivery system (PDS), is identical to that described in [24, 25]. 

The PDS included a turbine flow meter which provided a measurement of the 

propellant mass flow rate. Although the thrust produced was measured, the main 

emphasis of the thruster performance evaluation was based on the characteristic 

velocity, C*, since this is one of the main parameters that describe the performance 

of the catalyst bed, the other being the catalyst bed pressure drop. In this work the 

overall pressure drop across the catalyst bed and injector plate was determined from 

the pressure measurements that were taken. Knowing the propellant mass flow rate 

and the injector plate flow characteristics, the pressure drop across the catalyst bed 

alone could then be estimated.  

For a given monopropellant there is a theoretical maximum value of C*, which is 

obtained when the propellant is fully decomposed (or reacted) under isentropic 

conditions. Often, as here, the performance of the catalyst bed is assessed by 

estimating the C* efficiency, which is the actual value of C* estimated from 

experimental measurements, divided by the theoretical maximum value. A well-

performing catalyst bed will exhibit a C* efficiency in excess of 90 %. 

In this work, two values of C* were estimated, one based on the temperature 

recorded at the centre-line in the nozzle plenum chamber (equation (1)) and the 
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other based on the measured nozzle plenum chamber pressure and propellant flow 

rate, equation (2).  

γ+
γ− γ +=  γ  

1
11 1*

2
u cRTC
M

   (1)  

=
ɺ

* c tPAC
m

     (2) 

In the above, Tc and Pc are the measured nozzle plenum temperature and pressure, 

At is the nozzle throat area, ɺm is the propellant mass flow rate, Ru is the universal 

gas constant, M is the average molar mass of the decomposition products and γ  is 

the ratio of specific heats. If the thruster operates under ideal (isentropic) conditions, 

the two values would be identical. Because of non-idealities in the thruster operation 

and errors in the measured quantities, in practice the two usually differ by a small 

amount.   

2.2 Catalyst Bed Design 

As described earlier, one of the key design requirements for the catalyst bed is that it 

should have a large surface area per unit volume. Additive manufacturing offers the 

possibility of developing a catalyst bed with a complex internal geometry, and 

consequently tortuous flow path, which naturally increases the bed surface area and 

the residence time of the propellant within the bed, both of which promote HTP 

decomposition. However, in so doing the pressure drop across the bed would be 

increased and so a design trade-off is necessary.  

One of the main limitations of additive manufacturing is the overhang features, which 

requires building them on loose powder. This can lead to distortions and the failure 
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of the build. The exception of this limitation is to use self-supporting structures. The 

overhang angle of self-supporting structures depends on the material and the 

process parameters but in most cases, it is about 45 °.  

Nodally-connected diamond lattice structures were selected since these would be 

self-supporting, satisfying AM limitations, and would create a structure that is strong 

and has the required tortuous flow path [25-27]. Nodally-connected diamond lattice 

structures have a wide range of applications, such as in biomedical implants, shock 

or vibration damping and acoustic absorption [28-31]. Figure 3(a) shows an example 

of a nodally-connected diamond lattice structure and its unit cell. It is clear that the 

lattice geometry in terms of strut dimensions and arrangement influences the surface 

area presented to the propellant and the pressure drop experienced by the bed. 

Hence, a trade-off study is necessary to attempt to identify the optimum geometric 

characteristics of the monolithic bed, given the dimensional constraints imposed by 

the thruster. In order to carry out the trade-off study, four different lattice designs with 

various strut dimensions and arrangement were created using a CAD model, and 

these were then imported into a CFD package to estimate the pressure drop across 

the bed. The objective here is to obtain a design with the highest geometrical surface 

area and an acceptable pressure drop. 

Figure 3(b) – 3(d) shows the four different nodally-connected diamond shapes that 

were designed; designs 1 and 2 were similar in geometry but had different strut 

lengths (2 mm and 1 mm, respectively). In design 3, the lattice struts have been 

arranged in hexagonal shape. Finally, in design 4, the struts have been arranged so 

that one layer of lattice structure is rotated by 90 ° from the previous layer to allow a 

maximum interaction between the propellant and the catalyst bed.  
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Figure 3: The Nodally-connected diamond structures used in this study 

The aforementioned designs were used in developing the catalyst bed models. 

Figure 4 is an example of one of the full 3-D catalyst bed designs that were imported 

into the CFD package within the SolidWorks simulation toolbox. Each unit cell was 

arrayed in XYZ directions to form the catalyst bed support, and the thruster bed 

chamber dimensions were reproduced. The boundary conditions applied were 17.7 

g/s mass flow rate and 12 bar pressure at the exit of the catalyst bed. The catalyst 

bed support was modelled using solid elements. Only the gas phase (steam) has 

been considered in the CFD model, which was used to predict the pressure drop 

across the bed and the velocity within the bed. Additionally, the geometrical area and 

the pressure drop of each catalyst bed design were calculated. It is recognised that a 

single-phase, non-reacting CFD model would not fully represent the processes 

Designs 1 & 2 Design 3 Design 4 

Nodally-connected diamond structures 

(a) 

(b) (c) (d) 
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taking place in the bed but it was felt that, for design comparisons, this relatively 

simple CFD model would be adequate. 

 

 

Figure 4: One example of the full 3D CAD model with boundary conditions 

2.3 Manufacturing  

The catalyst bed material was chosen to be alumina, since this material exhibits 

advantageous high temperature mechanical and thermal properties. Selective laser 

melting (SLM) was the AM technology that was used to fabricate the proposed 

alumina catalyst bed. LPW Technology Ltd supplied the AlSi10Mg powder as the 

feedstock for the bed structure. A Concept Laser M2 SLM system, with a Nd:YAG 

laser of a wavelength of 1075 nm, a constant beam spot size of 50 µm in diameter, a 

maximum laser output power of 400 W and a maximum laser scanning speed of 

4000 mm/s, was used to build lattice structures. The powder was sieved using 65 µm 

mesh size. The average size of the powder is 22.8 µm and the Hausner ratio is 1.18 

(<1.25), which means the flow-ability of the powder is good. Alumina lattice 

Pressure 
12 bar Flow rate = 

17.7 g/s Gas inlet 

Gas Outlet 
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structures with strut diameters between 0.15 and 0.30 mm were successfully 

achieved using the method described in the literature [32] which is based on the heat 

treatment of AlSi10Mg lattice structures at 1600 ºC.  

 A number of alumina cubic samples with dimensions of about 6x6x6 mm were 

produced for reactivity evaluation purposes.  Initially, alumina samples with all the 

four lattice designs described above were manufactured. One of the key design 

requirements for catalyst bed was for the bed to have a large surface area per unit 

volume. Therefore, wash coat processes were used to promote the surface quality of 

the AM samples. In particular, a gamma alumina wash coat and a mixture of gamma 

alumina and carbon nanotubes (CNT) were used in the experiment.  

In the preparation of the gamma alumina wash coat, D-3005, a ceramic dispersant 

supplied by Rohm and Haas comprising an ammonium salt of a polyelectrolyte, was 

added to deionised water and mixed with the aid of magnetic stirrer for 5 min. Next, 

alumina powder supplied by Sigma Aldrich, comprising 50% gamma alumina (mean 

particle size 50 nm) and 50% alpha alumina (mean particle size 1 µm), was added to 

the mixture to achieve a constant solid loading of 5 % vol. The de-agglomeration of 

the powder was achieved by mechanical stirring for 1 h followed by ultrasonic 

processing for 10 min. Afterwards, acrylic-based binders B-1000 and B-1007, also 

supplied by Rohm and Haas, were added at a ratio of 1:4 and mixed for 30 min using 

a low speed stirrer to reduce any foaming. Next, the additive-manufactured alumina 

lattices were immersed in the prepared solution and placed inside a vacuum 

chamber at 0.3 bar to ensure that the solution penetrated inside all the lattice spaces. 

The samples were then dried in a Petri dish and heated to 750 °C for 2 h.  
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In the preparation of the CNT wash coat, sodium dodecyl sulphate was added to 

deionised water and mixed with the aid of magnetic stirrer for 5 min. Multi-walled 

carbon nanotubes (MWCNTs) were supplied by Alfa Aesar (Outer diameter of 20-30 

nm, purity > 95%) was added to the solution with a mass ratio of 1:10 and agitated in 

an ultrasonic cleaner for 1 h. This mixture was then added either to the sodium 

permanganate monohydrate active phase solution (see below) or to the gamma 

alumina wash coat solution, prepared as described above.    

It is well-known that manganese oxides (here referred to generically as MnOx) have 

very strong catalytic capabilities to decompose HTP [22]. A stable layer of MnOx on 

alumina can be obtained upon impregnation with a suitable precursor solution and 

subsequent calcination [33]. In this work, the AM alumina samples were impregnated 

with a sodium permanganate monohydrate precursor solution. Firstly, the samples 

were heated before impregnation to 500 °C for 2 h to remove any adsorbed moisture 

and then allowed to cool. Meanwhile, sodium permanganate monohydrate crystals 

and distilled water were mixed at a ratio of 3:5 and agitated using a magnetic stirrer 

at 60 °C, for 1 h. Once cool, the samples were then placed in the solution and stirred 

for 2 h. Next, the samples were removed and placed in a furnace and heated at 90 

°C for 1 h to dry them and then to 800 °C for a further 2 h for calcination to take 

place.  

2.4 Drop and dynamic weighing tests 

An initial batch of 15 test samples was manufactured and then evaluated firstly by 

carrying out simple, qualitative tests with HTP (so-called “drop tests”). The aim of 

these initial tests was to identify those samples which appeared to offer good 

reactivity and were thermo-mechanically robust. For this initial evaluation, samples 
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with different strut diameters (0.15 to 0.30 mm), strut lengths (0.75 to 2.0 mm), and 

wash coat processes were tested. At this stage the lattice design was confined to the 

simple diamond-shaped structure (designs 1 and 2 in Figure 3). Table 1 describes 

the details of the samples prepared.  

Table 1: AM samples prepared for initial evaluation 

Sample 
number 

Strut length, diameter 
(mm) 

Wash coat Active phase 

0 2, 0.3 None None 
1A 0.75, 0.15 None MnOx 
2A 1.5, 0.15  None MnOx 
3A 1.5, 0.15 ɤ alumina MnOx+CNT 
4A 2, 0.15  None MnOx 
5A 2, 0.3  ɤ alumina+CNT MnOx 
6A 1.5, 0.3  None MnOx twice 
7A 2, 0.3  None MnOx 
8A 1.5, 0.15  None MnOx,CNT 
9A 2, 0.3  None MnOx,CNT 

10A 1.5, 0.15  None MnOx 
11A 1, 0.3  None MnOx 
12A 1, 0.15 ɤ alumina MnOx twice 
13A 2, 0.3  ɤ alumina MnOx 
14A 1, 0.3  ɤ alumina+CNT MnOx 

 

Sample 0 had no wash coat or active phase coating and was used to confirm that 

the alumina substrate was inert to HTP. The “A” designates alumina as the lattice 

base material. As noted earlier, in some cases (samples 3A, 8A, 9A) the CNT 

solution was added to the active phase (MnOx) solution whereas in others (samples 

5A, 14A) the CNT solution was added to the gamma alumina wash coat solution. 

Two samples (6A, 12A) had a double coating of the active phase solution to create a 

thicker layer of the active phase on the lattice support. 

The tests involved exposing the samples to a few drops of 87.5 % concentration 

hydrogen peroxide (HTP), supplied by Evonik Industries AG, and simply observing 

and noting the vigour of the decomposition reaction that took place, using a 
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qualitative scale for comparison. The drop tests were repeated for each sample in 

order to observe whether or not the reactivity had declined at all after the first tests 

had taken place. If so, this might give an indication of a limited lifetime of the catalyst 

sample.  

A series of dynamic weighing tests – which were more quantitative in nature – were 

then conducted with the down-selected samples that had appeared to be most 

reactive in the drop tests. These tests were aimed at measuring and comparing the 

reactivity of the samples after repeated immersions in HTP. The method involved 

immersing each of the samples in 10 g of HTP (65 % concentration) in a beaker and 

measuring the loss of mass as oxygen and steam is evolved from the decomposing 

HTP. The rate at which the mass is lost gives an indication of the reactivity of the 

sample: a sample that gives a higher rate of mass loss is considered to be more 

reactive. The tests were conducted with a lower concentration of HTP than the initial 

drop tests because it was considered to be unsafe to do otherwise. A measurement 

of the HTP liquid temperature was also taken simultaneously: the peak temperature 

was achieved when the HTP solution started to boil (at about 105 °C for 65 % HTP 

at ambient pressure). The initial rate of change of temperature gives another 

indication of the sample’s reactivity. Each test lasted until 90 % of HTP was 

consumed, or the mass of the system was no longer changing, whichever was the 

sooner. If neither of these conditions was reached after 600 s the test was stopped. 

The tests were repeated with the same sample 5 times, from which the response 

with each immersion can be compared to gauge the decay in reactivity. This gives 

an indication of the possible useful lifetime of the catalyst material although, of 

course, it is not properly replicating the conditions the catalyst would experience 
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within a thruster. The performance of the samples was compared with those of a 

similar volume of MnOx-coated ceria pellets. 

2.5 Thruster test strategy 

Thruster tests were carried out with full-scale catalyst beds, having previously 

identified the most promising internal geometries and wash-coat/active phase 

coatings from the initial evaluation tests. The thruster test strategy adopted for this 

project was constrained by the available amount of 87.5 % peroxide. This was 

important when planning the test runs because to achieve the design peroxide mass 

flow rate of 17.7 g/s the gas delivery pressure had to be set very accurately. 

Because of the thermal capacity of the over-engineered thruster, the run parameters, 

such as chamber pressure and decomposition temperature, took some time to reach 

equilibrium. In addition, the bed pressure drop was unknown at the start of each test 

series.  

Accordingly, a simple bang-bang gas pressure control system was developed that 

allowed the operator to select a specific propellant delivery pressure. The 

instantaneous propellant tank pressure depended on both the ullage in the HTP tank 

and a potentiometer setting; the latter could be controlled by the operator and fixed 

the demanded tank pressure within the pressure control system.  The initial aim was 

to achieve pseudo steady-state at a peroxide mass flow rate slightly higher than the 

design value of 17.7 g/s. Once this was achieved, by monitoring the flow meter 

turbine frequency, the demanded pressure was decreased so that the mass flow rate 

would gradually reduce in a blow-down configuration. This cycle was then repeated 

until the end of the run. This ensured that there was at least one epoch in the data 
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series for which the indicated mass flow rate corresponded to the design value of 

17.7 g/s. 

In all cases, the thruster run was initiated with a series of pulses or ‘blips’ – a rapid, 

manual opening and closing of the propellant solenoid valve just upstream of the 

thruster to pre-heat the catalyst bed. The valve was open for typically less than half a 

second in each blip. Once the temperature at the catalyst mid-bed position exceeded 

300 °C, the valve was left open until shortly before propellant depletion.  

Before starting the run series the volumetric flow meter was calibrated using water at 

the correct mass flow rate. The load cell for measuring thrust was calibrated before 

commencing each run series. It was not possible to perform many runs for the same 

condition in order to arrive at a formal statement of uncertainty. This would have 

consumed large quantities of HTP and human resources. However, certain 

comments can be made concerning the uncertainty of the experiment data. 

Differential inputs were used for all thermocouple measurements. The uncertainties 

for the instrumentation used were ± 0.75 % for the mass flow rate, ± 0.1 % FSO for 

thrust, ± 0.75 % for temperature and ± 0.25 % for pressure. After taking into account 

calibration errors, the uncertainty for thrust increases to ± 0.5 %. The claimed 

uncertainty for C* is ± 2 %, using pressure and mass flow rate (equation 2), and ± 

0.5 %, using the temperature method (equation 1). Note, however, that the latter 

takes no account of uncertainties in the ratio of specific heats. The latter was 

estimated to be 1.275 according to the NASA CEA code [34]. In addition, the C* 

measurement based on temperature assumes that the same axial temperature 

prevails across the internal diameter of the bed. The temperature near the wall is 

likely to be somewhat lower although the oxidation colouration observed on the outer 
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wall of the catalyst bed chamber and nozzle plenum suggests that the wall was 

indeed in excess of 500 °C.  Consequently, it is estimated that the asymptotic 

(steady-state), temperature-based C* data are likely to have an uncertainty of 

approximately ± 1.5 %.    

3. Results and Discussion 

3.1 Computational Fluid Dynamic Results 

A typical output from the CFD model is shown in Figure 5, which illustrates the 

typical reduction in pressure across the bed. It was observed that the pressure drop 

was larger for lattice structures that were more dense. On the other hand, the 

average velocity of the flow reduces as the substrate structure becomes more 

complex and the flow path becomes more tortuous. Both observations were as 

expected.  

A summary of the CFD model results for each of the four lattice designs is shown in 

Table 2. The ‘density’ is the ratio of solid volume to total volume. The table quite 

clearly shows the trade-off between the density (and hence surface area) and 

pressure drop. Designs 3 and 4, both lattice-based designs that have a complex 

structure, were considered the best, having the highest surface areas and 

acceptable pressure drops. As described earlier, to evaluate the relative 

performance of the two designs, a down-selection test strategy was devised that 

would allow simple evaluation tests to be carried out quickly on relatively small test 

samples, rather than the full-scale catalyst beds. In addition to the lattice design, 

other variables such as active phase coating procedure, lattice dimensions, etc. 

could be investigated. Then, once the most promising designs and coating strategies 
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were identified, full-scale catalyst bed manufacture was undertaken and these beds 

were then tested in the 20 N thruster.  

 

 

Figure 5: Typical CFD model output (Pressure drop across the catalyst bed segment) 

 

 

(Pa) 

10 mm 
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Table 2: Summary of CFD model outputs 

Model Design 1 Design 2 Design 3 Design 4 

Density % 6% 21% 26% 28% 

Surface area/volume 
(mm2/mm3) 

0.9 3 3.9 4.5 

Pressure drop (Pa/mm) 313 1425 1940 3131 

 

3.2 Down-selection of samples 

As described earlier, drop tests were carried out on 15 samples with different 

geometries and wash coats (including the inert sample 0, see Table 1). In almost all 

cases, the reaction with the AM samples appeared to be more vigorous than with the 

MnOx-coated ceria pellets used as the baseline comparator, although this was at 

least in part due to the difference in sample size, and hence surface area. In some 

cases, the AM samples were observed to fragment during exposure to the HTP. 

Although qualitative, the drop tests enabled a down-selection of 8 samples that 

showed good reactivity and had survived the drop tests without fragmenting. These 

samples were then subjected to the repeated immersion, dynamic weighing tests. 

A result from one of these latter tests is shown in Figure 6. This is an example of a 

sample (sample 13A in Table 1) that did not perform particularly well, since even in 

the first immersion (Run 1), the rate of mass loss and rate of temperature rise was 

relatively low compared with some of the other samples, and the rates decreased 

significantly after each repeated immersion in HTP. To enable a comparison and 

ranking of the performance of each sample the following time parameters were 

determined from the test results: 
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a) Time to 60% mass loss (Run 1) 
b) Time to 60% mass loss (Run 5) 
c) Time to peak temperature (Run 1)  
d) Time to peak temperature (Run 5) 
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Figure 6: Typical sample screening test results 

From the relative rankings derived from this initial series of dynamic weighing tests it 

became clear that the more dense (higher surface area) lattice designs (3 and 4) 

(a) Mass Change with time (Sample 13 A) 

(b) Temperature Change with time (Sample 13 A) 
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were the more reactive and two of the samples (samples 5A and 12A, with 

washcoats of, respectively, gamma alumina plus carbon nanotubes and gamma 

alumina alone) were considered to be the most promising. A second batch of test 

samples was manufactured for further evaluation. A “design of experiments” (DOE) 

strategy was used to develop an experimental plan for testing the new batch of 

samples. Three parameters were included, where each parameter had two levels: 

these were lattice design (designs 3 and 4 described above), strut diameters (0.16 

and 0.30 mm) and coatings (5A and 12A). In total, therefore, there were 8 variations 

to be tested.  

After again carrying out qualitative drop tests with 87.5 % HTP (during which, 

encouragingly, none of the samples fragmented) a further series of dynamic 

weighing tests was performed. The initial reactivity of all of these samples was high 

and so the sample rankings were based on measurements of the time to 60% mass 

loss (t60%) and the time to peak temperature (tpT) at the end of run 5.  The results of 

these tests are summarised in Table 3:  

Table 3: Summary of the dynamic weighing results 

Experiment Design Strut 
diameter 

(mm) 

Coating t60% 

(s) 

tpT 

(s) 

1 3 0.16 5A 59.4 27.0 

2 4 0.16 5A 40.4 26.4 

3 3 0.30 5A 35.6 10.0 

4 4 0.30 5A 8.7 4.1 

5 3 0.16 12A 71.2 26.9 

6 4 0.16 12A 161.4 40.2 

7 3 0.30 12A 7.9 4.4 

8 4 0.30 12A 19.7 7.1 
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Figure 7: Results of DOE analysis (a) Time to 60% mass loss (b) Time to peak temperature. 

After carrying out the DOE analysis it became clear that the strut diameter had the 

strongest influence on the results, with the larger diameter (0.3 mm) being the better 

in terms of relative reactivity, whereas the influence of lattice design and type of 

coating was less strong, see Figure 7. As a result of these down-selection tests on 

the catalyst samples, it was decided to manufacture and test full-scale catalyst beds 

based on designs 3 and 4, with lattice strut diameters of 0.3 mm and with coatings 

5A and 12A. These beds were designated 3.5A, 4.5A, 3.12A and 4.12A (the “A” 

designating alumina as the substrate material). Figure 8 shows one of the full-scale 

(a) 

(b) 

M
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n 
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n 

t60

Main Effects Plot for Time to 60% loss (run 5) 

Main Effects Plot for Time to peak temperature (run 5) 
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catalyst bed inserts (two per bed) before coating with the active phase (left) and 

afterwards (right). 

 

Figure 8: Full-scale catalyst bed inserts before (left) and after coating with the active phase 

(right). The groove allows for the fitting of a thermocouple.  

Figure 9 and Figure 10, show, respectively, SEM images of the full-scale bed 

designs 3 and 4 (a) before and (b) after coating with the active phase/wash coat 

number 5. In each case a small region has been selected for energy dispersive X-ray 

spectroscopic (EDS) analysis. It is seen that the coatings reduce the void fraction but 

increase the effective surface area exposed to the HTP. Specific surface area (SSA) 

measurements before and after coating confirmed  this observation: the BET surface 

area of all the samples before coating was below 1 m2/g whereas it was increased to 

18.3 m2/g, 5.6 m2/g, 38.4 m2/g, 24.3 m2/g after coating for samples 3.5A, 3.12A, 4.5A, 

and 4.12A, respectively. The increase in surface area is desirable to promote HTP 

decomposition but the reduction in void fraction will cause an increase the pressure 

drop across the catalyst bed. The EDS data confirm that the un-coated lattice 

structures predominantly comprise aluminium and oxygen (alumina), with traces of 

silicon and magnesium from the feedstock powder used to create the AM structures. 

The oxygen content percentage indicates a good oxidation process and is in 

            5mm               5mm 
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agreement with the presence of Al2O3, SiO2 and MgO. The EDS data obtained from 

the surface of the coated samples confirms the predominant presence of 

manganese, oxygen, and sodium (from the sodium permanganate solution used to 

form the active phase layer). The negligible amount of aluminium indicates a good 

coating process. On the other hand, the sodium to manganese percentage is close 

to one, thus showing that all the sodium remains on the surface; moreover, the 

surface amount of oxygen displays clearly that the average oxidation number of 

manganese is in agreement with the possible formation of NaxMnO2. 

 

Figure 9: (a) SEM image of design 3 before coating (b) EDS chemical analysis of design 3 

before coating (c) SEM image of design 3 after coating with the active phase/washcoat #5 

(d) EDS chemical analysis of design 3 after coating. 
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Figure 10: a) SEM image of design 4 before coating (b) EDS chemical analysis of design 4 

before coating (c) SEM image of design 4 after coating with the active phase/washcoat #5 

(d) EDS chemical analysis of design 4 after coating. 

3.3 Thruster Tests 

This section presents a summary of the results of the thruster tests. Of particular 

interest are the decomposition temperature (since this drives C*), thrust, sea-level 

specific impulse, the start-up characteristics and any evidence of exhaustion of the 

active phase.  

It is important to note that the HTP liquid undergoes several stages of 

decomposition. At some distance downstream of the injector plate, the peroxide 

decomposes into three gases: oxygen, steam and peroxide vapour (the last 
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decomposes thermally and chemically rather rapidly). Upstream of this position, or 

phase-change plane, the fluid is in two phases, liquid and gas. It is a matter of 

conjecture as to the most desirable position of this phase-change plane. Since the 

gas phase produces a much higher pressure-drop, on account of the speed of 

advancement through the bed, it is desirable to shorten the length within the bed 

occupied by gas. On the other hand, if the fluid becomes completely gaseous a short 

distance from the injector then it is likely that the bed will have a longer life. 

When testing bed 3.12A, clouds of steam were seen coming from the nozzle in such 

quantities that they overwhelmed the laboratory’s exhaust-ducting system. Further 

testing of this bed was abandoned because it was deemed unsafe to proceed 

further. Beds 3.5A and 4.5A showed premature signs of active phase exhaustion 

after an HTP throughput of about 1 kg, although both exhibited a C* efficiency > 99 

% based on temperature in the early phase of the runs. Accordingly, this paper 

focuses on the results for the more promising bed 4.12A, the results for which are 

presented in Figures 11 – 14. It should be noted that in all the beds tested there was 

very little sign of mechanical attrition or cracking. 

Figure 11 shows the temperature histories for the thermocouple readings at both the 

mid-point position of the bed and the nozzle’s plenum chamber. The first heating 

pulse occurred at approximately time t = 23.3 s; the second rise in temperature (at 

approximately t = 27.4 s) occurred when the operator commanded the propellant 

solenoid valve to open fully. For both events, there is no significant lag between the 

temperature rise recorded at the mid-point position and that recorded in the nozzle 

plenum chamber. However, due to the combined effects of thermal inertia and heat 

losses the nozzle plenum temperature takes longer to reach equilibrium than the 

mid-point temperature. This was also observed in the baseline runs with the MnOx-
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coated ceria pellets. As noted earlier, the thruster design had not been optimised 

from a thermomechanical point of view and so its thermal mass and heat losses 

were higher than would be expected in a flight-rated thruster. In the case of the mid-

point thermocouple, the temperature record shows values that are above the 

theoretical maximum temperature for the adiabatic decomposition of 87.5 % HTP 

(approximately 695 °C) and therefore must be regarded with suspicion. The catalyst 

shows good reactivity after a single starting pulse; this should be compared with the 

6 pulses needed for the baseline MnOx-coated ceria pellets to achieve a 

temperature in excess of 300 °C mid-way along the bed.  

 

Figure 11: Catalyst bed 4.12A temperature history 

Figure 12 shows the indicated mass flow rate during the pseudo steady-state part of 

the run, from 45 s to 75 s. The trace reflects the operator’s use of the potentiometer, 

with the propellant feed pressure being ramped up during the time interval 45 – 52 s 

before allowing the system to settle in blow-down mode from 52 – 70 s. The 

“stepping” in the signal is due to signal averaging over 0.5s intervals to determine 

accurately the turbine frequency and hence HTP flow rate. It can be seen that the 

First Pulse 
Valve Opened 
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flow rate matches the target value of 17.7 g/s on four occasions and that it appears 

to be maintained just before the end of the run.  

 

Figure 12: Catalyst bed 4.12A mass flow rate 

 

Figure 13: Thrust history with catalyst bed 4.12A 

time (s) 
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Figure 14: Catalyst bed 4.12A C* history 

Figure 13 shows the thrust history recorded during this same time interval: it is 

observed that the variation in thrust closely matches that of the propellant mass flow 

rate.  

Figure 14 shows the instantaneous values of C*, calculated using a 60-second 

rolling average. The C* based on pressure and mass flow rate (equation 2) is clearly 

in error since it is significantly higher than the theoretical value of 909 m/s. This 

suggests a failure in the nozzle plenum pressure transducer. Unfortunately, there 

were insufficient HTP resources available to repeat this run with a replacement unit. 

The C* based on temperature (equation 1) leads to a C* efficiency of 100±1.5 % 

based on an HTP concentration of 87.5 %. Note that the concentration of HTP has 

an uncertainty of ±1.0 % so it is likely that the actual concentration used was slightly 

higher than 87.5 %. 

A summary of the results for catalyst bed 4.12A is compared with that of the baseline 

MnOx-coated ceria pellets in Table 4. 
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Table 4: Comparison between Bed 4.12A and the Baseline Ceria Pellets 

Parameter Baseline 4.12A 

C* (m/s) 
(from temperature data) 

886±18 909±14 

C* efficiency (%) 97.5±2  100±1.5 

Thrust (N) 17.5±0.08 21.2±0.1 

Sea level specific impulse 
(s) 

101±1.2 122±1.4 

Pressure drop (bar)  
(including retainer plate) 

3.1±0.016 3.2±0.016 

 

The AM bed out-performed the baseline pellets in terms of C* efficiency, when 

estimated using the temperature data. Bed 4.12A achieved a sea-level specific 

impulse of 122 s, at the design HTP mass flow rate, which is significantly higher than 

the baseline value. Surprisingly, the pressure drop for bed 4.12.A is almost the same 

as for the baseline ceria bed; it must be remembered though that although the AM-

bed is loosely described as being monolithic, in fact the internal topography is 

deliberately convoluted. 

Overall, it is difficult to draw a conclusion as to whether or not the AM-manufactured 

bed 4.12A is superior to the baseline ceria catalyst. This is because of the lack of 

information concerning lifetime. The baseline catalyst has a heritage at the University 

of Southampton that indicates a much higher peroxide throughput can be endured 

than the 2.25 kg to which bed 4.12A was exposed in the present tests. Nevertheless, 

the C* performance is very encouraging and suggests further testing and 

development is needed. 
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4. CONCLUSIONS 

This paper has described the development of novel and high performance monolithic 

catalyst beds for the use in a hydrogen peroxide (HTP) monopropellant thruster 

using the robustness of additive manufacturing. The design strategy introduced here 

is based on designing a flow-controlled catalyst bed. It was found that a nodal 

diamond-shape lattice design satisfies the requirements of AM overhanging 

structures and therefore different configurations of nodal diamond-shape based 

catalyst beds were studied. From the computational fluid dynamic results, it was 

found that catalyst beds with lattice struts arranged in hexagonal shape and lattices 

arranged with one layer of lattice structure rotated by 90 ° from the previous layer 

show the highest geometrical surface area and acceptable pressure drop. The two 

designs were successfully manufactured using alumina, derived from aluminium-

silicon-magnesium powder that was laid down by selective laser melting, as the 

substrate material with a strut thickness of 0.15 – 0.30 mm. Each design was coated 

with gamma alumina and a mixture of gamma alumina and carbon nanotubes (CNT), 

followed by coating with an active phase of oxides of manganese (MnOx) derived 

from a solution of sodium permanganate.  

Of the four full-scale beds that were produced, three exhibited good performance 

initially, although the performance of two of these beds later showed signs of 

deterioration after only a modest throughput of HTP had been achieved. The best-

performing AM catalyst bed remained fully active throughout the testing and 

exhibited better performance results than the same bed chamber containing MnOx-

coated ceria pellets, used as a baseline comparator a C* of 909 m/s, C* efficiency of 

100 %, thrust of 21.2 N and sea level specific impulse of 122 s. The bed pressure 

drop was approximately the same as the baseline comparator with a value of 3.2 bar. 
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This is therefore considered to be a very promising development and an appropriate 

application of AM technology. 

The work carried out in this research is forecasted to have particular impacts on the 

catalytic and aerospace industries in different aspects such as: 

a. Design innovation of the catalyst beds. 

b. Less material waste, production cost and reduced time to market with the use 

of AM. 

c. Thruster compactness and performance 

d. Enviro

nmental and safety procedures via the use of green monopropellant  
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Highlights 

 

 
 

• A novel monolithic catalyst bed design methodology has been introduced 
aiming to have complex geometry and high geometrical surface area 
whilst achieving an acceptable pressure drop. 

• Additive manufacturing has been successfully implemented as a novel 
technology to manufacture catalyst bed designs. Precision ceramic beds 
with minimum features of 150-300 micron have been obtained.  

• The developed AM catalyst beds show a C* of 909 m/s, C* efficiency of 
100%), thrust of 21.2 N, sea level impulse of 122 and pressure drop of 3.2 
bar. 

• The AM monolithic catalyst beds developed in this research show high 
performance in many aspects when compared to the baseline ceria pellets 
catalyst beds. 
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