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Hereditary tyrosinemia type 1 (HT1) is a severe human auto-
somal recessive disorder caused by the deficiency of fumaryla-
cetoacetate hydroxylase (FAH), an enzyme catalyzing the last

step in the tyrosine degradation pathway. Lack of FAH causes
accumulation of toxic metabolites (fumarylacetoacetate and
succinylacetone) in blood and tissues, ultimately resulting in
severe liver and kidney damage with onset that ranges from
infancy to adolescence. This tissue damage is lethal but can be
controlled by administration of 2-(2-nitro-4-trifluorometh-
ylbenzoyl)-1,3-cyclohexanedione (NTBC), which inhibits tyro-
sine catabolism upstream of the generation of fumarylacetoac-
etate and succinylacetone. Notably, in animals lacking FAH,
transient withdrawal of NTBC can be used to induce liver dam-
age and a concomitant regenerative response that stimulates the
growth of healthy hepatocytes. Among other things, this model
has raised tremendous interest for the in vivo expansion of
human primary hepatocytes inside these animals and for explor-
ing experimental gene therapy and cell-based therapies. Here,
we report the generation of FAH knock-out rabbits via pronu-
clear stage embryo microinjection of transcription activator-
like effector nucleases. FAH�/� rabbits exhibit phenotypic fea-
tures of HT1 including liver and kidney abnormalities but
additionally develop frequent ocular manifestations likely
caused by local accumulation of tyrosine upon NTBC adminis-
tration. We also show that allogeneic transplantation of wild-
type rabbit primary hepatocytes into FAH�/� rabbits enables
highly efficient liver repopulation and prevents liver insuffi-
ciency and death. Because of significant advantages over rodents
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and their ease of breeding, maintenance, and manipulation
compared with larger animals including pigs, FAH�/� rabbits
are an attractive alternative for modeling the consequences of
HT1.

Animal models bearing mutations/truncations in genes
causing human disease are essential to understand the mecha-
nisms underlying those diseases and to identify new diagnostic
or therapeutic procedures. In some cases, the idiosyncrasy of
human disease has also made these animals valuable for unex-
pected applications (1). One such example are Fah�/� mice (2),
which have been genetically engineered to lack fumarylaceto-
acetate hydrolase (FAH),3 an enzyme responsible for catalyzing
the last step in the degradation of the amino acid tyrosine (3). In
humans, lack of FAH causes hereditary tyrosinemia type 1
(HT1), a rare autosomal recessive condition characterized
by retrograde accumulation of toxic metabolites including
fumarylacetoacetate and succinylacetone in blood and tissues,
which ultimately causes liver failure and renal tubular dysfunc-
tion as the most prominent manifestations (4, 5). Liver failure
can develop acutely in the first few months after birth or be
more progressive. Treatment of HT1 consists mainly of ad-
ministration of 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-
cyclohexanedione (NTBC), which inhibits the conversion of
4-hydroxyphenylpyruvate to homogentisic acid by 4-hydroxy-
phenylpyruvate dioxygenase, the second step in the tyrosine
degradation pathway, thus preventing the accumulation of
fumarylacetoacetate and succinylacetone (6). However, if
patients are diagnosed too late or do not comply with NTBC
treatment, there is end stage liver disease with cirrhosis and
high risk of hepatocellular carcinoma due to chronic damage.
Notably, in Fah�/� mice, controlled withdrawal of NTBC can
be used to cause liver damage in a desired manner, inducing the
generation of a regenerative response that allows repopulation
of the damaged liver by the remaining normal hepatocytes after
NTBC is added back (2, 7). When Fah�/� mice are simultane-
ously deficient in key genes regulating the immune response
(e.g. Rag2 and/or Il2rg), the same principle allows liver repopu-
lation with transplanted heterologous primary hepatocytes (8),
stem cell-derived hepatocytes (9), or transdifferentiated hepa-
tocytes (10, 11) without immune rejection.

For a long time, genetic engineering of mammals has been
mostly restricted to mice. This is because of the availability of
mouse embryonic stem cells (ESCs) and the relative ease of
manipulating these cells with traditional gene modification
techniques. Genetically modified ESCs can then be injected
into mouse blastocysts to produce chimeric animals with germ
line transmission (12). Somatic cell modification and nuclear
transfer have been traditionally an alternative for genetic engi-

neering of species for which bona fide ESCs are not available,
but the procedure is inefficient (13). More recently, the de-
velopment of designer nuclease technologies (zinc finger
nucleases, transcription activator-like effector nucleases (TALENs),
and clustered regularly interspaced short palindromic repeats
(CRISPR)/CRISPR-associated protein 9 (Cas9) (14) has
expanded significantly the repertoire of species (e.g. rats, rab-
bits, dogs, pigs, sheep, and cattle) (15–20) amenable to routine
genetic engineering and made the procedure a less time-con-
suming effort; bona fide rat ESCs were also isolated recently (21,
22). Accordingly, several groups have reported the generation
of FAH-deficient pigs (23, 24) and rats (25, 26), which offer
some advantages over Fah�/� mice.

Rabbits are widely used for animal experimentation. Their
physiology is closer to humans than rodents, and they have
relatively low cost maintenance and are easy to breed (27, 28).
Herein, we report the generation of FAH�/� rabbits by inject-
ing TALENs into the cytoplasm of rabbit pronuclear stage
embryos. These FAH�/� rabbits have liver and kidney pheno-
typic features analogous to FAH-deficient rodents and pigs but
also develop frequent ocular manifestations including corneal
keratitis. We further show that allogeneic transplantation of
wild-type rabbit primary hepatocytes achieves efficient liver
repopulation and improves the liver function and survival rate
of FAH�/� rabbits. These results demonstrate that genetically
engineered FAH�/� rabbits are an attractive choice for model-
ing the consequences of HT1.

Results

Construction of TALENs and Generation of FAH Knock-out
Rabbits—We designed a pair of TALENs targeting exon 2 of the
rabbit FAH gene (Fig. 1A) and assembled them according to the
Golden Gate method with the following codes: NI for adenine,
NG for thymine, HD for cytosine, and NN for guanine. We
injected different concentrations (10, 20, 30, 50, and 100 ng/�l)
of in vitro transcribed TALEN-coding mRNAs into the cyto-
plasm of rabbit pronuclear stage embryos (20, 27) and then
transferred the embryos into surrogate mothers. NTBC was
administered to pregnant rabbits from day 15 of pregnancy to
prevent intrauterine death (2). With the highest concentration
of TALEN mRNAs, all foster mothers miscarried, and no rab-
bits were born (Table 1). The pregnancy was not affected with
the other TALEN mRNA concentrations; a total of 31 rabbits
were born, and the ear tissue of each animal was collected
for genotyping. With the lowest concentration of TALEN
mRNAs, all six newborn rabbits were negative for gene target-
ing. However, we detected FAH mutations using 20 and 30 ng/�l,
and the targeting efficiency was 100% (four of four newborns)
using 50 ng/�l (Table 1). These FAH mutant rabbits were mostly
mosaic with different insertions and/or deletions (indels) within
the FAH locus as shown in (Fig. 1B). Through breeding of FAH
mutant founder (F0) animals, we obtained a total of nine
FAH�/� first filial generation (F1) rabbits (Fig. 1C) and eight
FAH�/� rabbits, which appeared healthy at birth. These ani-
mals were bred further to produce additional filial generations.

To ascertain the importance of NTBC administration in pre-
venting death of FAH�/� rabbits, we prepared 13 FAH�/� rab-
bits and divided them into three groups, each with different

3 The abbreviations used are: FAH, fumarylacetoacetate hydroxylase; ALT,
alanine aminotransferase; AST, aspartate aminotransferase; CRISPR, clus-
tered regularly interspaced short palindromic repeats; Cas9, CRISPR-asso-
ciated protein 9; DiI, 1,1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine
perchlorate; ESCs, embryonic stem cells; F0, founder generation; F1, first
filial generation; HT1, hereditary tyrosinemia type 1; NTBC, 2-(2-nitro-4-tri-
fluoromethylbenzoyl)-1,3-cyclohexanedione; TALEN, transcription activa-
tor-like effector nuclease.
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NTBC administration modes (Fig. 1D). The rabbits were closely
monitored to collect blood before death and to store the tissues
in good condition. In the first group, no NTBC was adminis-
tered at any time after birth, and these animals died shortly
(within 1 week after birth) (Fig. 1E). In the second and third
groups, NTBC was continuously administered until the rabbits
were 2 weeks or 1 month old, respectively. Rabbits in the second
group survived no longer than 3 weeks after birth, whereas rab-
bits in the third group were able to live as long as 4 months after
birth (Fig. 1E). Western blotting analysis of liver tissue lysates
from two dead FAH�/� rabbits showed that FAH was undetect-
able when compared with wild-type rabbits (Fig. 1F). Likewise,
heterozygous knock-out (FAH�/�) rabbits expressed half of the
amount of protein of the wild type. Thus, we have generated
FAH�/� rabbits that can only be maintained alive with NTBC,

and we next proceeded to study whether these animals develop
characteristic phenotypic features of HT1.

FAH�/� Rabbits Have Liver and Kidney Phenotypic Charac-
teristics of HT1—We dissected the bodies of dead FAH�/� rab-
bits belonging to the above mentioned groups and observed
prominent liver swelling, hemorrhage, and yellow/green discol-
oration suggestive of both cholestasis and liver necrosis in con-
trast to the normal aspect of their wild-type counterparts (Fig.
2A). We also collected and sectioned the liver and kidney tis-
sues for immunohistological analysis with FAH antibodies. As
expected, FAH protein was completely absent in FAH�/� livers
and kidneys, two tissues that normally express it at a high level,
but displayed strong staining in wild-type rabbits (Fig. 2B). In
addition, hematoxylin and eosin staining showed diffuse hepa-
tocellular injury with dysplastic hepatocytes and tubule inter-
stitial nephritis in FAH�/� rabbits only (Fig. 2C), both of which
are hallmarks of HT1. Moreover, picrosirius red staining (29)
revealed mild fibrosis in the liver of FAH�/� rabbits but not in
wild type (Fig. 2D), which is in agreement with Fah�/� mice but
contrasts with the development of cirrhosis in FAH-deficient
rats and pigs (25, 30). In addition, we extracted serum from
blood samples and analyzed the levels of alanine aminotrans-
ferase (ALT), aspartate aminotransferase (AST), and triglyc-
erides, all of which are elevated as a consequence of liver dam-
age (23). A significant increase of all three parameters was

FIGURE 1. Preparation of TALENs and generation of FAH knock-out rabbits. A, design of TALENs targeting exon 2 of rabbit FAH gene. Bases in red indicate
the TALEN recognition sequences. B, Sanger sequencing of the targeted region in the FAH locus in F0 rabbits; * represents rabbits in which the wild-type FAH
sequence was detected. C, Sanger sequencing of the targeted region in the FAH locus in FAH�/� F1 rabbits. D, schematic of the three groups of FAH�/� rabbits
used to study the dependence on NTBC for long term survival (ON, NTBC administration; OFF, NTBC withdrawal); e means embryonic day and d means day after
birth. E, survival curve for the same three groups of FAH�/� rabbits. F, Western blotting analysis confirms that FAH�/� rabbits (�/�) are negative for FAH
protein expression in liver tissue lysates, whereas FAH�/� (�/�) rabbits express a reduced amount of FAH. Band intensities (FAH/Actin) were quantified using
ImageJ software and are shown relative to wild-type (�/�) rabbits.

TABLE 1
Generation of FAH knock-out rabbits using TALENs

No.
surrogates

TALEN mRNA
concentration

No. embryos
transferred

No. newborns
(%)

No. mutant
rabbits (%)

ng/�l
3 10 34 6 (12) 0
3 20 39 12 (31) 3 (25)
2 30 32 9 (28) 5 (56)
3 50 37 4 (11) 4 (100)
4 100 40 0 0
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observed in FAH�/� rabbits maintained without NTBC com-
pared with wild-type rabbits (Fig. 2E). We also detected that
tyrosine levels had increased in FAH�/� rabbits maintained
without NTBC, illustrating that, as expected, deletion of FAH
blocks the tyrosine metabolic pathway (2, 5). Altogether, these
results confirm that FAH�/� rabbits develop features similar to
HT1 patients and rodent/pig models (5, 7, 23–26).

Ocular Manifestations in FAH Knock-out Rabbits—Ocular
involvement is not frequent in HT1 patients, but in those rare
cases corneal keratitis is the main manifestation (31, 32). This

has been attributed to inflammation produced by local tyrosine
deposition in the form of crystals caused by low compliance
with a low protein diet and the secondary effect of using NTBC
on tyrosine accumulation. Interestingly, in the course of our
study, we noticed that FAH knock-out rabbits develop frequent
ocular manifestations too. This problem was observed in all
third filial generation FAH�/� rabbits and a small proportion of
FAH�/� rabbits. Of note, although the latter were not treated
with NTBC at any time after birth, it was administered to their
mothers during pregnancy. We performed ophthalmological

FIGURE 2. FAH�/� rabbits develop progressive liver failure in the absence of NTBC. A, severe necrosis in the liver of a FAH�/� rabbit (right) belonging to
group 3 of NTBC administration (as in Fig. 1D) in contrast to a healthy wild-type rabbit. B, immunohistochemistry (IHC) of liver and kidney sections of a FAH�/�

rabbit belonging to group 2 of NTBC administration shows no expression of FAH in contrast to a wild-type rabbit. Scale bars, 50 �m. C, hematoxylin and eosin
(HE) staining shows abnormal tissue architecture in liver and kidney sections of the same FAH�/� rabbit in B in contrast to a wild-type rabbit. In the FAH�/�

rabbit, diffused hepatocellular injury with dysplastic hepatocytes and tubular epithelial injury of kidney were observed. Scale bars, 50 �m. D, picrosirius red
staining shows the existence of mild interstitial fibrosis in the liver of the same FAH�/� rabbit in A but not in the wild-type rabbit. Scale bars, 50 �m. E, serum
biochemical parameters indicate liver damage in FAH�/� rabbits compared with a wild-type rabbit. TG stands for triglycerides. Error bars represent S.E. (n � 3
replicate measurements). * corresponds to p � 0.01 according to Student’s t test.
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analysis of two FAH�/� rabbits compared with a wild-type rab-
bit. Through direct eye inspection, we discovered keratoleu-
koma accompanied by edema and opacity in both eyes of the
two FAH�/� rabbits (Fig. 3A). Using slit lamp imaging, we also
noticed deeper chamber depth and lens opacification accom-
panied with dilated pupil and posterior synechia of the iris in
the right eye of the first FAH�/� rabbit (Fig. 3B), implying cat-
aract and iritis. Moreover, in the same rabbit, there was a path-
ogenic high intraocular pressure of 48.33 mm Hg in the left eye
(Fig. 3C), indicating secondary glaucoma, whereas intraocular
pressure in the right eye was normal. Conversely, chamber
depth and intraocular pressure were normal in the second
FAH�/� rabbit (Fig. 3, B and C), and no significant cataract was
found. In addition, hematoxylin and eosin staining showed
edema and thickening in the corneal epithelium and stroma of
both FAH�/� rabbits, and the corneal surface became irregular
in particular in the left eye of the second FAH�/� rabbit (Fig.
3D). Moreover, swelling, condensed nuclei, and fragmented
bodies could be seen in corneal epithelial and stroma cells in
both FAH�/� rabbits, indicating necrocytosis (Fig. 3D). There-
fore, there is frequent ocular involvement, mostly manifested as
corneal keratitis, in FAH knock-out rabbits.

Allogeneic Primary Hepatocyte Transplantation Rescues
Liver Damage of FAH�/� Rabbits—We then studied whether
transplantation of FAH-competent hepatocytes could rescue
the liver phenotype and prevent death of FAH�/� rabbits
untreated with NTBC. First, to assess feasibility, we induced
acute liver damage in wild-type rabbits with concanavalin A
(33), which causes a rapid regenerative response that facilitates
engraftment of transplanted cells, and 24 h later 107 rabbit pri-
mary hepatocytes extracted from a healthy wild-type rabbit
were injected intrasplenically. To assist with their identifica-

tion, transplanted hepatocytes were labeled with DiI, as this
fluorescent compound can last as long as 1 month in vivo (34,
35). The recipient animals were immunosuppressed with
cyclosporin A starting 24 h before transplantation. We
observed a large number of DiI-positive cells in liver sections
3 weeks after transplantation, proving the efficacy of the
approach (Fig. 4A). Next, we transplanted wild-type rabbit pri-
mary hepatocytes into two FAH�/� rabbits that had been
treated with NTBC after birth. A wild-type rabbit and a non-
transplanted FAH�/� rabbit treated with NTBC were used as
controls. NTBC was gradually decreased in the three FAH�/�

rabbits and completely withdrawn 1 week after the transplan-
tation (Fig. 4B). One month after NTBC withdrawal, a small
liver biopsy was obtained from one of the transplanted FAH�/�

rabbits and the non-transplanted FAH�/� rabbit for histologi-
cal analysis. Approximately 30% of liver cells in the examined
liver sections of the transplanted FAH�/� rabbit were DiI-pos-
itive at this time point (Fig. 4C). Likewise, FAH immunohisto-
chemistry confirmed significant engraftment of FAH-positive
hepatocytes in the same FAH�/� transplanted rabbit, and these
hepatocytes displayed normal morphology in contrast with
damaged cells in non-engrafted areas (Fig. 5A). We also mea-
sured weight in these FAH�/� rabbits and the wild-type control
over the post-transplantation period. We noticed that 11 weeks
after NTBC withdrawal the FAH�/� rabbit that did not receive
transplantation showed a 40% decrease in body weight and died
shortly after, whereas the wild-type and FAH�/� rabbits receiv-
ing allogeneic hepatocyte transplantation had similar weight
and appeared healthy (Fig. 5, B and C). In addition, we per-
formed serum biochemical analysis over the post-transplanta-
tion period to see whether liver function can be recovered in
FAH�/� rabbits compared with the control. Indeed, ALT and

FIGURE 3. Ocular manifestations in FAH knock-out rabbits. A, photographs of right (OD) and left (OS) eyes of two FAH�/� rabbits show corneal abnormalities;
a wild-type (WT) rabbit was used as control. B, slit lamp photographs of the same three rabbits show abnormalities of chamber depth and lens opacification in
FAH�/� rabbit number 1 compared with the wild type. C, measurement of intraocular pressure using a tonometer (Icare, Finland) in the same three rabbits. Only
the left eye of FAH�/� rabbit number 1 shows pathogenic levels. D, hematoxylin and eosin staining shows corneal structural abnormalities (edema, thickening,
cellular defects, and disorganization of the corneal epithelium and stroma) in the left eye of FAH�/� rabbit number 2 compared with the wild type. Scale bars,
50 �m.
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FIGURE 4. Hepatocyte transplantation of FAH�/� rabbits. A, transplantation of wild-type rabbit primary hepatocytes into the liver of a wild-type
rabbit treated with concanavalin A (ConA; 5.0 mg/kg, intrasplenic injection) to induce acute liver damage. Engraftment of DiI-labeled hepatocytes can
be observed under the fluorescence microscope at 3 weeks post-transplantation. DAPI was used to stain nuclei. Scale bars, 50 �m. B, schematic showing
the allogeneic transplantation procedure in FAH�/� rabbits. NTBC was administered for another 2 days after the first liver biopsy. C, engraftment of
DiI-labeled cells observed under the fluorescence microscope in a FAH�/� rabbit without NTBC at 1 month post-transplantation. Scale bars, 50 �m.

FIGURE 5. Wild-type primary hepatocyte transplantation rescues liver architecture and prevents death of FAH�/� rabbits. A, top panels, FAH immuno-
histochemistry shows wild-type hepatocyte repopulation of the liver of a FAH�/� rabbit 1 month post-transplantation compared with the control (non-
transplanted FAH�/� rabbit). Lower panels, hematoxylin and eosin staining shows restoration of liver architecture in the same transplanted FAH�/� rabbit
compared with the non-transplanted FAH�/� rabbit. Scale bars, 50 �m. B, body weight changes of the two FAH�/� rabbits in A (with or without transplantation)
and a control wild-type rabbit. * corresponds to p � 0.01. C, photographs of a transplanted FAH�/� rabbit at 3 months post-transplantation and a non-
transplanted FAH�/� rabbit. The non-transplanted FAH�/� rabbit appears weak. D and E, serum levels of ALT and AST in a wild-type rabbit and two FAH�/�

rabbits (with (w/) or without (w/o) transplantation). Error bars represent S.E. (n � 3 replicate measurements). * corresponds to p � 0.01. F, FAH immunohisto-
chemistry shows extensive wild-type hepatocyte repopulation of the liver of a FAH�/� rabbit 3 months post-transplantation compared with the non-trans-
planted FAH�/� rabbit. Scale bars, 50 �m. G, right panel, hematoxylin and eosin (HE) staining shows restoration of liver architecture (circled by dashed lines) in
the same transplanted FAH�/� rabbit at 3 months post-transplantation. Left panel, adjacent liver section of the transplanted FAH�/� rabbit showing co-local-
ization of areas with normal structure and positive FAH staining. Scale bars, 50 �m.
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AST values of wild type and a transplanted FAH�/� rabbit were
alike at week 10 post-transplantation, whereas the non-trans-
planted FAH�/� rabbit showed significantly higher values (Fig.
5, D and E). Interestingly, we also observed more engrafted
FAH-positive cells at 3 months in the transplanted FAH�/�

rabbits (Fig. 5, F and G), indicating long term stability of the
engrafted cells and suggesting in vivo proliferation. These data
prove the utility of FAH�/� rabbits as tools for testing experi-
mental methodologies involving liver cell transplantation.

Discussion

Patients with HT1 are treated with NTBC and dietary restric-
tions, but these are not curative, and, besides, a number of indi-
viduals fail to respond and require liver transplantation (7).
Because a shortage of donors limits organ transplantation,
other therapeutic strategies (e.g. stem cell-based or gene ther-
apy approaches) are urgently needed to treat this patient pop-
ulation. Appropriate preclinical animal models are required for
testing these experimental therapies, and although Fah�/�

mice present many phenotypic features of HT1, their physiol-
ogy (e.g. inflammatory responses (36)) differs significantly from
humans. Likewise, their small size and short life span pose a
limitation for analytical studies and long term assessments.
Aiming to solve these issues, Fah�/� rats (25, 26) and in partic-
ular pigs (23, 24) have been generated recently. However,
although pigs have many advantages over rodents for HT1 dis-
ease modeling, their handling and breeding is laborious and
costly.

Rabbits are excellent animals for state-of-the-art animal
experimentation. They are closer phylogenetically to primates
than rodents and have a longer life span (8 –10 years), and their
medium size, short pregnancy period (1 month versus 4 months
in pigs), and relatively straightforward husbandry requirements
facilitate production of large cohorts at relatively low cost (27,
28). Like pigs, rabbits also have a more diverse genetic back-
ground than rodents, a situation that is closer to that in
humans. Notably, the first transgenic rabbits were generated
over 3 decades ago (37, 38), but the lack of bona fide rabbit ESCs
for more complex genetic engineering and the inefficiency of
rabbit somatic cell nuclear transfer (39) hampered the develop-
ment of the field until the arrival of highly efficient designer
nuclease technologies (20, 40 – 42).

Our work presented here is the first description of genetically
engineered FAH�/� rabbits. We used TALEN mRNA microin-
jection into pronuclear stage rabbit embryos (20) rather than
the CRISPR/Cas9 system (40, 43) because we envisaged that for
embryo injections the toxicity and off-target effects of the for-
mer are easier to control (44), although recent improvements
of the CRISPR/Cas9 technique could solve this issue (45).
FAH�/� rabbits display liver and kidney manifestations of the
human genetic disorder but also have frequent ocular altera-
tions (mostly corneal keratitis). Ocular involvement is rare in
patients with HT1 but frequent in patients with tyrosinemia
type II (46), which is produced by mutations in tyrosine trans-
aminase, the enzyme undertaking the first step of tyrosine
catabolism. As with tyrosinemia type II, corneal keratitis in
HT1 patients and possibly FAH knock-out rabbits as well is
caused by enhanced local accumulation of tyrosine, which is

boosted by NTBC (31, 32). The frequency with which ocular
manifestations happen in FAH�/� rabbits potentially makes
them a useful model for studying how to prevent and treat this
potential complication in HT1 patients. FAH�/� rabbits did
not develop cirrhosis in our study, although it is likely that vary-
ing the NTBC administration/withdrawal routine and allowing
more chronic damage would induce it. Besides being an excel-
lent choice for modeling HT1 and studying chronic liver dam-
age, FAH�/� rabbits could also be used for testing gene therapy
approaches, which have proved successful in FAH-deficient
mice and pigs but require additional studies to evaluate long
term safety and efficacy (24). In addition, FAH�/� rabbits could
be exceptional bioreactors for growing primary human hepato-
cytes for in vivo human disease modeling (e.g. hepatitis B or C),
potential xenotransplantation, or for in vitro studies, but this
would require producing FAH�/�RAG2�/�IL2RG�/� rabbits
to avoid immune rejection. Such triple knock-out animals
would be valuable too as preclinical models for experimental
stem cell-based therapies including the transplantation of hep-
atocyte-like cells derived from induced pluripotent stem cells
(11) or produced through transdifferentiation (10, 11). Given
the time and cost of pursuing this approach in pigs, rabbits offer
an attractive option.

In summary, we have demonstrated that FAH�/� rabbits are
a promising alternative for modeling HT1 and for developing
therapeutic strategies aiming to cure this disease. From a wider
perspective, our work also shows that genetically engineered
rabbits offer a powerful approach to recapitulating human
disease.

Experimental Procedures

Animals and Ethics Statement—New Zealand White rabbits
were obtained from the Laboratory Animal Centre of Southern
Medical University (Guangzhou, China). All rabbit experi-
ments were conducted under the approval of the Animal Care
and Use committee of the Guangzhou Institutes of Biomedi-
cine and Health (ID 2012040) and the Department of Science
and Technology of Guangdong Province (ID SYXK 2005-0063).
Animals were observed at least once daily for clinical signs
and symptoms consistent with acute liver failure. To obtain
FAH�/� and FAH�/� F1 rabbits, we bred F0 animals with each
other, and then we bred F0 with F1, F1 with F1, and so on for
producing other filial generations. For details of which rabbits
were used in each experiment and their respective genotypes
see supplemental Table 1. Pregnant rabbits giving birth to
FAH�/� rabbits received 7.5 mg/liter NTBC/200 ml of drinking
water per day beginning on day 15 of pregnancy. The same dose
was used for maintenance of FAH�/� rabbits. Ophthalmologi-
cal evaluation was performed in Zhongshan Ophthalmic Cen-
ter, Sun Yat-sen University.

TALEN Preparation, Embryo Microinjection, and Embryo
Transfer—TALENs were designed and assembled according to
the golden gate assembly method (27). In vitro transcribed
TALEN mRNAs were prepared using an mMESSAGE
mMACHINE� T7 kit (Ambion, Austin, TX) and purified using
an RNeasy Mini Elute Cleanup kit (Qiagen, Valencia, CA). The
TALEN microinjection procedure was essentially as described
previously (27). Briefly, 6 – 8-month-old female rabbits were
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induced to superovulate with 50 IU of FSH every 12 h for 3 days,
mated with male rabbits about 72 h later, and injected with 100
IU of human chorionic gonadotropin. Female rabbits were
euthanized 18 h after injection, and the oviducts were flushed
with prewarmed embryo manipulation medium for collecting
embryos at the pronuclear stage. Mixed in vitro transcribed
TALEN mRNAs were microinjected into the cytoplasm, and
then embryos were transferred to Earle’s balanced salt solution
medium for in vitro culture in a 5% CO2 incubator at 38.5 °C
with 100% humidity. Approximately 15–30 optimal quality (as
judged by microscope inspection) injected embryos were trans-
ferred into unilateral pavilions of the oviducts for each recipient
mother.

Genotyping—DNA of newborn rabbits was extracted from a
small piece of ear tissue using a Hipure Tissue DNA Mini kit
(Magen, Beijing, China) following the manufacturer’s protocol.
PCR products spanning the TALEN target sites were amplified
with KOD-Plus-Neo DNA polymerase (Toyobo, Tokyo, Japan)
with the primers 5�-GCACTTGAGCCATCGTCCGT (FAH-F)
and 5�-ACCAGCAGCAGGCAATCCCA (FAH-R) and then
sequenced.

Western Blotting Assay—For Western blotting, liver tissue
samples were homogenized in radioimmune precipitation
assay buffer and centrifuged at 14,500 � g at 4 °C for 30 min;
supernatants were then collected, and protein concentration
was quantified. Lysates were subjected to 10% polyacrylamide-
SDS gel electrophoresis followed by immunoblotting onto a
polyvinylidene fluoride membrane (Millipore, Temecula, CA).
Membranes were blocked with 5% evaporated milk in TBS-
Tween 20 for 2 h and incubated overnight at room temperature
with primary antibodies against FAH (ab140167, Abcam, Cam-
bridge, UK). Membranes were then incubated with a secondary
HRP-conjugated anti-rabbit antibody (sc-2004, Santa Cruz
Biotechnology, Santa Cruz, CA) for 60 min at room tempera-
ture and imaged using a SuperSignalTM West Pico Chemilumi-
nescence Substrate kit (Thermo, Rockford, IL). ACTIN anti-
body (sc-47778, Santa Cruz Biotechnology) was probed as a
loading control.

Histology—Liver and kidney tissues were fixed with 4% neu-
tral buffered paraformaldehyde for 48 h and processed for par-
affin embedding and sectioning. For immunohistochemistry
staining, antigen retrieval was performed in a 1 M citrate buffer
(pH 6.0) bath for 20 min. Tissues were immunostained with
anti-FAH primary antibodies (ab140167) and visualized using
VECTASTAIN Elite ABC HRP kit (Vector Laboratories, Burl-
ingame, CA). Hematoxylin and eosin staining and picrosirius
red staining were performed using standard protocols.

Serum Analysis—Blood was obtained via puncture of the ear
vein using heparinized tubes. Serum was separated by centrif-
ugation at 900 � g for 20 min and stored at �80 °C prior to
biochemistry and amino acid analysis. Concentrations of ALT,
AST, and triglycerides were measured with a CL-8000 Hitachi
7180 automatic biochemical analyzer (Shimadzu, Kyoto,
Japan). Tyrosine was quantified by liquid chromatography-
mass spectrometry using the ABI 3200 Q TRAP LC-MS/MS
system (Applied Biosystems, Foster City, CA).

Allogeneic Hepatocyte Transplantation—Fresh hepatocytes
were isolated from wild-type rabbit livers by in situ collagenase

perfusion as reported previously (47). Briefly, the liver was per-
fused with calcium- and magnesium-free Hanks’ balanced salt
solution (Thermo) supplemented with 0.5 mM EGTA for 10
min and 10 mM HEPES for 3 min. The solution was changed to
Earle’s balanced salt solution supplemented with 0.1 mg/ml
collagenase IV (Sigma) for 10 min. The liver was then gently
minced in the second solution and filtered through 150-, 75-,
50-, and 37.5-�m nylon mesh, sequentially. After centrifuga-
tion at 50 � g for 5 min, the pellet was washed with DMEM
Gibco) supplemented with 4.5 g/ml glucose three times at 50 �
g for 2 min. The number and viability of cells were assessed by
trypan blue. 107 viable cells were then incubated in a 20 �M DiI
solution (Sigma) for 5 min at 37 °C and for 15 min at 4 °C for
labeling and washed in DMEM supplemented with 4.5 g/ml
glucose. Eventually, 107 hepatocytes in 2.5 ml of Clonetics�
hepatocyte culture medium (Lonza, Walkersville, MD) were
injected into the spleen of recipient rabbits via a small flank
incision. Concanavalin A and cyclosporin A were purchased
from Sigma.
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